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Abstract. In 1989 Glasner, Maon, and Weiss showed that there exists a large family of
topologically weakly mixing homeomorphisms of the two-torus that are uniformly rigid. In
this paper we use their category argument to study uniform rigidity sequences for topo-
logically weakly mixing homeomorphisms of the two-torus. We show that if an increasing
sequence of odd natural numbers grows fast enough, then it can be realized as the uniform
rigidity sequence for a topologically weakly mixing homeomorphism of the two-torus.

1. Introduction

Uniform rigidity was introduced in 1989 by Glasner and Maon in their paper entitled
“Rigidity in Topological Dynamics” [6] and is the topological analogue of classical rigidity
in the ergodic theory framework. For more information about classical rigidity see [2] and
[3]. In [7] Glasner and Weiss show that there is a large family of topologically weakly mixing
homeomorphisms of the two-torus and later in [6] Glasner and Maon couple this with another
result to show that there is a large family of topologically weakly mixing homeomorphisms
of the two-torus that are uniformly rigid.

The idea of constructing maps with varied behavior by conjugating rotations is due to
Anosov and Katok in their seminal paper [1]. This idea of conjugating a rotation is exploited
in [7] to produce a large family of topologically weakly mixing homeomorphisms of the two-
torus.

Let ↵ be an irrational number between 0 and 1 and � be a homeomorphism of the two-
torus defined as irrational rotation by ↵ in the first coordinate and the identity in the second
coordinate. Let O be the closure of the set of conjugations of � by homeomorphisms of
the two-torus (this closure is taken with respect to the topology of uniform convergence of
homeomorphisms and their inverses). The result of Glasner and Weiss in [7] discussed above
can be stated precisely as:

Theorem 1.1. There exists a dense G
�

subset R of O such that every T 2 R is topologically

weakly mixing and uniformly rigid.

We will use the above category argument by Glasner andWeiss to obtain information about
the structure of uniform rigidity sequences for topologically weakly mixing homeomorphisms.
The main result of this paper is the following theorem.
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Theorem 1.2. Suppose (n
m

) is an increasing sequence of odd natural numbers and  (n
m

) =

n
m(4n2

m+2)
m

. If (n
m

) satisfies
n
m+1

n
m

�  (n
m

)

then there exists a topologically weakly mixing homeomorphism of T2
that is uniformly rigid

with respect to (n
m

).

Previously the author studied uniform rigidity sequences for weakly mixing homeomor-
phisms of the two-torus equipped with Lebesgue measure [10]. The required growth rate
is faster and a weakly mixing homeomorphism is produced, as opposed to a topologically
weakly mixing homeomorphism. The main result is

Theorem 1.3. Let  (x) = xx

3
. If (n

m

) is an increasing sequence of natural numbers

satisfying

n
m+1

n
m

�  (n
m

)

there exists a Lebesgue measure preserving homeomorphism of T2
that is weakly mixing and

uniformly rigid with respect to (n
m

).

Before we proceed with the proof of Theorem 1.2, it is necessary to recall some standard
definitions from topological dynamics (see [5], [9]). Let X be a compact metric space with
metric d and T : X ! X a homeomorphism of X. Let H(X) be the set of homeomorphisms
of X.

Definition 1.4. The homeomorphism T is topologically weakly mixing if for any open subsets

U1, U2, U3, U4 of X there exists t 2 Z such that

T t(U1 ⇥ U2) \ (U3 ⇥ U4) 6= ;.

Note that in the above definition, T t(U1 ⇥ U2) is shorthand for T t(U1)⇥ T t(U2).
Define the uniform distance between two homeomorphisms S, T by

d
u

(S, T ) = sup
x2X

d(S(x), T (x)) + sup
x2X

d(S�1(x), T�1(x)).

With this metric the space H(X) is a complete metric space and the topology induced by
d
u

is the topology of uniform convergence. To simplify notation in the proof of Theorem 1.2
define

d(S, T ) = sup
x2X

d(S(x), T (x)).

Notice that even though d
u

is not right-invariant, d is right-invariant. This fact will be
exploited throughout the paper.

Definition 1.5. The homeomorphism T is uniformly rigid if there exists an increasing se-

quence of natural numbers (n
m

) such that

d
u

(T nm , Id) ! 0

as m ! 1.
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2. Uniform Rigidity Sequences

In [7] Glasner and Weiss produce a large family of homeomorphisms of the two-torus
that are topologically weakly mixing. We will use the inherent structure of their category
argument to determine a su�cient growth rate for a sequence of natural numbers that
guarantees the existence of a topologically weakly mixing homeomorphism of the two-torus
that is uniformly rigid with respect to the given sequence.

From now on we will be working on the two torus T2. We will view T2 as [0, 1)2 where
the coordinates are taken modulo 1. We will be using additive notation and | ·| will denote
the distance to the nearest integer or absolute value (the distinction should be clear from
context).

The first step in our construction is to choose an irrational rotation that we will then
conjugate. In [4] Eggleston shows that if an increasing sequence of natural numbers (n

m

)
is such that lim

m!1
nm+1

nm
= 1 then lim

m!1 |n
m

x| = 0 holds for an uncountable set of x
values. In the following lemma we use a similar argument.

Lemma 2.1. Suppose (n
m

) is an increasing sequence of natural numbers and let  (n
m

) =

n
m(4n2

m+2)
m

. If (n
m

) satisfies

nm+1

nm
�  (n

m

) and (h0
m

) is an increasing sequence of natural

numbers satisfying

1/h0
m

nm/nm+1
! 1 as m ! 1 where h0

m

> n2
m

then there exists ↵ such that

1

h0
m

< |n
m

↵| < 1

2(n
m

)2
.

Proof. Our goal is to build a Cantor set using the n
m

-th roots of unity. From this Cantor
set we will be able to select ↵ irrational such that the desired bounds hold.

Let h
m

= 2n2
m

. In this case 1/hm

nm/nm+1
! 1 as m ! 1. Also, recall from our assumptions

that the sequence (h0
m

) satisfied similar properties. Let M be large enough so that for all
m � M we have n

m+1 � 10n
m

h
m

and n
m+1 � 10n

m

h0
m

. Note that M = 2 is su�cient for
this purpose.

Now we will build our Cantor set inductively. Supposem � M . As part of the construction
put two intervals close to “some” of the n

m

-th roots of unity (determined as part of the
induction) such that any point in either of the intervals is at most 1

nmhm
away from the

n
m

-th root of unity and at least 1
2nmh

0
m
away. In this stage of the construction note that each

n
m

-th root of unity that appears above has two symmetric intervals close to it, one on either
side, each of length at least 1

2nmh

0
m
. Call the union of this collection of intervals C

m

.

Since 1
nm+1

is much smaller than 1
2nmh

0
m
, there are many points of the form j

nm+1
in each

symmetric interval around the above mentioned n
m

-th roots of unity. Now select in C
m

pairs
of symmetric intervals, each of size at least 1

2nm+1h
0
m+1

, close to each of the n
m+1-th roots of

unity inside C
m

in the same way as above. Call the union of this collection of intervals C
m+1.

Continue on in this manner and let the Cantor set C be defined as

C =
1\

m=M

C
m

.
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For each point x 2 C we have that n
m

x is at most 1
hm

away from the closest integer and

at least 1
2h0

m
away from the closest integer. That is,

1

2h0
m

< |n
m

x| < 1

h
m

.

Hence, if x 2 C then |n
m

x| ! 0 as m ! 1.
Note that C is uncountable. Thus there exists ↵ 2 C that is irrational. Hence, ↵ has the

desired properties.
⇤

2.1. Proof of Theorem 1.2. Let (n
m

) be a sequence of odd natural numbers satisfying

n
m+1 �  (n

m

)n
m

where  (n
m

) = n
m(4n2

m+2)
m

. Let (h0
m

) be a sequence that satisfies the conditions of Lemma
2.1 (this sequence will be easier to point out at each stage of our construction). From Lemma
2.1 we obtain an irrational ↵ such that

1

2h0
m

< |n
m

↵| < 1

2(n
m

)2
.

We will need both of these bounds later in the proof. Let � : T2 ! T2 be defined by
�(x, y) = (x + ↵, y). By the nature of our choice of ↵, (n

m

) is a uniform rigidity sequence
for �.

Define the set O(�) as

O(�) =
�
G�1 � � �G : G 2 H(T2)

 
.

This set will be considered as a subset of all homeomorphisms of T2 with the topology of
uniform convergence of homeomorphisms and their inverses. Let O = O(�) with the closure
taken in the above topology.

Before we proceed, we need to define the set of topologically weakly mixing homeomor-
phisms of O as a dense G

�

set. Consider the countable collection of open dyadic cubes in T2

where a dyadic cube of order i has the form
�

`

2i ,
`+1
2i

�
⇥
�
m

2i ,
m+1
2i

�
where `,m 2 {0, 1, . . . , 2i�1}.

Now, select open dyadic cubes U1
1 , U

1
2 , U

1
3 , U

1
4 such that each U1

j

has order 1. For the sec-
ond step select open dyadic cubes U2

1 , U
2
2 , U

2
3 , U

2
4 such that each cube still has order 1 and

U1
1 ⇥ U1

2 ⇥ U1
3 ⇥ U1

4 6= U2
1 ⇥ U2

2 ⇥ U2
3 ⇥ U2

4 as a subset of T8. We continue in this manner
until we have exhausted all selections of four open dyadic cubes of order 1 and then proceed
to dyadic cubes of order 2. In this way define U i

1, U
i

2, U
i

3, U
i

4 for i � 1.
Define the set R

i

as

R
i

=
�
T 2 O : there exists an integer t with T t(U i

1 ⇥ U i

2) \ (U i

3 ⇥ U i

4) 6= ;
 
.

Note that we are using shorthand notation when we write T t(U i

1 ⇥ U i

2). It is clear that
R =

T1
i

R
i

is the set of topologically weakly mixing homeomorphisms of O. Recall that in
[7] Glasner and Weiss show that this set is a dense G

�

subset of O.
We are going to show that successive conjugations of � converge to a topologically weakly

mixing homeomorphism that is uniformly rigid with respect to (n
m

). We will form a nested
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sequence of closed balls B
i

such that each B
i

✓ R
i

. Then,
T1

i=1 Bi

will contain a homeomor-
phism T0 that is topologically weakly mixing. The center of each B

i

will be a conjugation
of � and will be chosen carefully so that in the end, T0 will be the uniform limit of these
conjugations and (n

m

) will be a uniform rigidity sequence for T0. We will use Lemma 2.1 to
help us form this nested sequence of closed balls. This will be an inductive construction.

To begin, let 0 < ✏1 < 1. Let U1
j

=
⇣

aj

2 ,
aj+1
2

⌘
⇥
⇣

bj

2 ,
bj+1
2

⌘
, where a

j

, b
j

2 {0, 1} for

j = 1, 2, 3, 4. Notice that if G 2 H(T2) then

GR
i

G�1 =
�
T 2 O : there exists an integer t with T t(GU i

1 ⇥GU i

2) \ (GU i

3 ⇥GU i

4) 6= ;
 

where GU i

j

should be interpreted as G
�
U i

j

�
. Thus for notational purposes, if G 2 H(T2)

define

R
G�i =

�
T 2 O : there exists an integer t with T t(GU i

1 ⇥GU i

2) \ (GU i

3 ⇥GU i

4) 6= ;
 
.

Then, if G 2 H(T2) we have GR
i

G�1 = R
G�i. The first step is to find G1 2 H(T2) such that

(1) d
u

(G�1
1 � � �G1, �) < ✏1

(2) G�1
1 � � �G1 2 R1.

The homeomorphism G1 will have a similar form as the homeomorphism G in the generic
argument in [7]. However, this construction is more technical because we need explicit
constants in order to use the given growth rate to form our first closed ball B1.

Let y1 be a point in
�
32b1+9

64 , 32b1+11
64

�
and choose �1 irrational such that y3 := y1 + �1 2�

32b3+13
64 , 32b3+15

64

�
. Define h1 : T ! T by h1(y) = y + �1.

Similarly, let y2 be a point in
�
32b2+17

64 , 32b2+19
64

�
and choose �2 irrational such that y4 :=

y2+�2 2
�
32b4+21

64 , 32b4+23
64

�
. Define h2 : T ! T by h2(y) = y+�2. Without loss of generality,

assume �1 > �2.
Now choose x1 2

�
32a1 + 9

64 , 32a1+11
64

�
, x2 2

�
32a2+17

64 , 32a2+19
64

�
, x3 2

�
32a3+13

64 , 32a3+15
64

�
, and

x4 2
�
32a4+21

64 , 32a4+23
64

�
.

We are now ready to start building our desired function G1 2 H(T2). Let x ! g1
x

be a
continuous function from [0, 1) to H(T) such that g10, g

1
3
4
, g11 = Id, g11

4
= h1, and g11

2
= h2 with

linear interpolation in between. Thus

g1
x

(y) = 4x�1 + y ; 0  x  1

4

g1
x

(y) = �1(2� 4x) + �2(4x� 1) + y ;
1

4
 x  1

2

g1
x

(y) = �2(3� 4x) + y ;
1

2
 x  3

4

g1
x

(y) = y ;
3

4
 x  1.

The modulus of continuity of g1 is !
g

1(�) = sup|x�x

0|<�

d
u

(g1
x

, g1
x

0)  8�1�.
By the choice of the y

j

’s above we know that they are all distinct. Thus we may place
non-overlapping tent maps around each y

j

. To that end, let p1 be a tent map such that
5



p1(y1) = 1 and p1
��

8b1+2
16 , 8b1+3

16

�
c

�
= 0. Similarly, define p2, p3, p4 by

p2(y2) = 1 ; p2

✓✓
8b2 + 4

16
,
8b2 + 5

16

◆
c

◆
= 0

p3(y3) = 1 ; p3

✓✓
8b3 + 3

16
,
8b3 + 4

16

◆
c

◆
= 0

p4(y4) = 1 ; p4

✓✓
8b4 + 5

16
,
8b4 + 6

16

◆
c

◆
= 0.

In this case the modulus of continuity of each p
j

is !
pj(�)  32 · 21�. Let M1 = 32 · 21 and

C1 = 26M1.
Let ⌘1 =

✏1
16M1

and �1 =
⌘1

16 . Then, if |x� x0| < �1 we have d
u

(g1
x

, g1
x

0) < ⌘1

2 . Since (n
m

) is

an increasing sequence, there exists M such that n
M

> max( 1
�1
, 8192 · 32 · 215C1). WLOG,

suppose that n1 > max( 1
�1
, 8192 · 32 · 215C1).

Define c
j

2 [0, 1) such that

x1 + c1 =
1

4n1
, x2 + c2 =

3

4n1
, x3 + c3 =

1

4n1
+

1

2
, x4 + c4 =

3

4n1
+

1

2

all taken modulo one. Let f1 be defined by

f1(y) =
4X

j=1

c
j

p
j

(y).

Then, if |y � y0| < ⌘1 we have

|f1(y)� f1(y
0)| 

4X

j=1

c
j

|p
j

(y)� p
j

(y0)| < 4M1⌘1 =
✏1
4
.

Now we are ready to define G1. Let G1 : T2 ! T2 be defined by

G1(x, y) =
�
x+ f1(y), g

1
n1(x+f1(y))(y)

�
.

Then,

G�1
1 (x, y) =

�
x� f1((g

1
n1x

)�1(y)), (g1
n1x

)�1(y)
�

and

G�1
1 � � �G1(x, y) = (x+ ↵ + f1(y)� f1(y⇤), y⇤)

where y⇤ = (g1
n1(x+↵+f1(y))

)�1g1
n1(x+f1(y))

(y). The modulus of continuity of G1 is given by

!
G1(�)  C1n1�. It should also be noted that the modulus of continuity of G�1

1 is bounded
by the same number.

We will first check that condition (1) is satisfied, that is d
u

(G�1
1 ���G1, �) < ✏1. To begin,

notice that

G�1
1 � � �G1 (x, y)� � (x, y) = (f1(y)� f1(y⇤), y � y⇤) .

Since |n1(x+ ↵ + f1(y))� n1(x+ f1(y))| = |n1↵| < 1
2(n1)2

< 1
n1

< �1, we must have

d
⇣�

g1
n1(x+↵+f1(y))

��1
g1
n1(x+f1(y)), Id

⌘
<
⌘1
2
.
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This implies that |y � y⇤| < ⌘1 and therefore, |f(y)� f(y⇤)| < ✏1
4 . Thus d

�
G�1

1 � � �G1, �
�
<

✏1
2 . In a similar fashion, d

�
G�1

1 � ��1 �G1, �
�1
�
< ✏1

2 . Therefore, d
u

(G�1
1 � � � G1, �) < ✏1

and (1) is verified.
At this point our first conjugation of � remains close to �. Now we need to check that the

conjugation of � we chose belongs to R1. Our goal is to find t1 2 N such that

G�1
1 � �t1 �G1

✓✓
a1
2
,
a1 + 1

2

◆
⇥
✓
b1
2
,
b1 + 1

2

◆◆
\
✓✓

a3
2
,
a3 + 1

2

◆
⇥
✓
b3
2
,
b3 + 1

2

◆◆
6= ;

G�1
1 � �t1 �G1

✓✓
a2
2
,
a2 + 1

2

◆
⇥
✓
b2
2
,
b2 + 1

2

◆◆
\
✓✓

a4
2
,
a4 + 1

2

◆
⇥
✓
b4
2
,
b4 + 1

2

◆◆
6= ;.

Recall that in the generic argument in [7] the existence of such a t1 is shown. For this proof
we need however to explicitly calculate t1. This is where the upper and lower bounds on
|n

m

↵| come into play.
We have chosen ↵ so that

512n1 � 1

1024n3
1

< |n1↵| <
1

2n2
1

.

Note that h0
1 = 1024n3

1
512n1�1 . Let t1 = n2

1. In this case, 512n1�1
1024n1

< |t1n1↵| < 1
2 and

��t1n1↵� 1
2

�� <
1

1024n1
. Notice that

G1 (x1, y1) =
�
x1 + c1, g

1
n1(x1+c1)(y1)

�
=

✓
1

4n1
, y3

◆

and

G�1
1 ��t1 �G1(x1, y1) =

 
1

4n1
+ t1↵� f1

 ✓
g1
n1

⇣
1

4n1
+t1↵

⌘

◆�1

(y3)

!
,

✓
g1
n1

⇣
1

4n1
+t1↵

⌘

◆�1

(y3)

!
.

Therefore,

G�1
1 � �t1 �G1(x1, y1)� (x3, y3)

=

✓
1

4n1
+ t1↵� f1

✓⇣
g11

4+t1n1↵

⌘�1

(y3)

◆
� x3,

⇣
g11

4+t1n1↵

⌘�1

(y3)� y3

◆

Consider the first coordinate above:

1

4n1
+ t1↵� f1

✓⇣
g11

4+t1n1↵

⌘�1

(y3)

◆
� x3

=

✓
1

4n1
+

1

2

◆
+

✓
t1↵� 1

2

◆
� f1

✓⇣
g11

4+t1n1↵

⌘�1

(y3)

◆
� x3

= c3 +

✓
t1↵� 1

2

◆
� f1

✓⇣
g11

4+t1n1↵

⌘�1

(y3)

◆

=

✓
t1↵� 1

2

◆
+ f1

 ✓
g1
n1

⇣
1

4n1
+ 1

2

⌘

◆�1

(y3)

!
� f1

✓⇣
g11

4+t1n1↵

⌘�1

(y3)

◆
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Since
��t1n1↵� 1

2

�� < 1
1024n1

, we have
�����

✓
g1
n1

⇣
1

4n1
+ 1

2

⌘

◆�1

(y3)�
⇣
g11

4+t1n1↵

⌘�1

(y3)

����� < 4�1

✓
1

1024n1

◆
<

4

1024n1
,

which implies
�����f1

 ✓
g1
n1

⇣
1

4n1
+ 1

2

⌘

◆�1

(y3)

!
� f1

✓⇣
g11

4+t1n1↵

⌘�1

(y3)

◆����� < 4M1

✓
4

1024n1

◆
=

M1

64n1
.

Since n1 is odd, we have
����
1

4n1
+ t1↵� f1

✓⇣
g11

4+t1n1↵

⌘�1

(y3)

◆
� x3

���� <
1

1024
+

M1

64n1
<

1

64
+

1

64
=

1

32
.

Similarly, for the second coordinate we obtain
����
⇣
g11

4+t1n1↵

⌘�1

(y3)� y3

���� <
4

1024n1
<

1

32
.

Thus, G�1
1 � �t1 � G1

��
a1
2 ,

a1+1
2

�
⇥
�
b1
2 ,

b1+1
2

��
\
��

a3
2 ,

a3+1
2

�
⇥
�
b3
2 ,

b3+1
2

��
6= ;. In a similar

manner, we obtain G�1
1 � �t1 � G1

��
a2
2 ,

a2+1
2

�
⇥
�
b2
2 ,

b2+1
2

��
\
��

a4
2 ,

a4+1
2

�
⇥
�
b4
2 ,

b4+1
2

��
6= ;.

Therefore (2) is satisfied.
Now that we have G�1

1 � � �G1 2 R1, we proceed with finding a closed ball, which we will
call B1, centered at G�1

1 � � � G1 such that B1 ✓ R1. We need to explicitly calculate the
radius of B1 to ensure that B1 ✓ R1. Let

1 =
1

16 · 21(C1n1)2n
2
1�1

and
B1 =

�
T 2 O : d

u

(G�1
1 � � �G1, T )  1

 
.

Notice that for any n 2 N and T 2 O, we have d
u

(T n, G�1
1 � �n � G1) = d(T n, G�1

1 � �n �
G1) + d(T�n, G�1

1 � ��n �G1). Consider the following:

d(T n, G�1
1 � �n �G1) = d((G�1

1 � � �G1)(G
�1
1 � �n�1 �G1), T (T

n�1))

 d((G�1
1 � � �G1)(G

�1
1 � �n�1 �G1), (G

�1
1 � � �G1)(T

n�1))

+ d((G�1
1 � � �G1)(T

n�1), T (T n�1))

 !
G

�1
1 ���G1

(d(G�1
1 � �n�1 �G1, T

n�1)) + d(G�1
1 � � �G1, T )


n�1X

i=0

!i

G

�1
1 ���G1

(d(G�1
1 � � �G1, T ))

 d(G�1
1 � � �G1, T )

n�1X

i=0

[(C1n1)
2]i

= d(G�1
1 � � �G1, T )

(C1n1)2n � 1

(C1n1)2 � 1

 d(G�1
1 � � �G1, T )(C1n1)

2n�1

8



where !0 = Id. A similar calculation can be carried out to yield d(T�n, G�1
1 � ��n � G1) 

d(G�1
1 � ��1 �G1, T

�1)(C1n1)2n�1. Thus,

d
u

(T n, G�1
1 � �n �G1)  d

u

(G�1
1 � � �G1, T )(C1n1)

2n�1.

We will show that B1 ✓ R1. Let T 2 B1. In this case,

d
�
T t1 (x1, y1) , (x3, y3)

�
 d

�
T t1 (x1, y1) , G

�1
1 � �t1 �G1 (x1, y1)

�

+ d
�
G�1

1 � �t1 �G1 (x1, y1) , (x3, y3)
�

 d
u

(G�1
1 � � �G1, T )(C1n1)

2t1�1 +
1

16

 1 (C1n1)
2t1�1 +

1

16

=
1

32
+

1

16

<
1

8
.

Thus T t1
��

a1
2 ,

a1+1
2

�
⇥
�
b1
2 ,

b1+1
2

��
\
��

a3
2 ,

a3+1
2

�
⇥
�
b3
2 ,

b3+1
2

��
6= ;. In a similar manner,

T t1
��

a2
2 ,

a2+1
2

�
⇥
�
b2
2 ,

b2+1
2

��
\
��

a4
2 ,

a4+1
2

�
⇥
�
b4
2 ,

b4+1
2

��
6= ;. Hence, we have the desired result

i.e. B1 ✓ R1.
Thus far we have constructed the closed ball B1 centered at G�1

1 � � � G1 such that
B1 ✓ R1. The next step in our inductive procedure is to find G2 2 H(T2) such that
G�1

1 � G�1
2 � � � G2 � G1 2 R2 \ B1 and then construct the closed ball B2 centered at

G�1
1 � G�1

2 � � � G2 � G1 such that B2 ✓ R2 \ B1. Notice that in the second step of the
induction, the dyadic cubes still have order 1. To that end, let ✏2 =

1
2C1n1

< ✏1. Now similar
to before, we want to find G2 2 H(T2) such that

(1) d
u

(G�1
2 � � �G2, �) < ✏2

(2) G�1
2 � � �G2 2 R

G1�2.

Let U2
j

=
⇣

aj

2 ,
aj+1
2

⌘
⇥
⇣

bj

2 ,
bj+1
2

⌘
, where a

j

, b
j

2 {0, 1} for j = 1, 2, 3, 4. Let U20
j

be an

open dyadic sub-cube of U2
j

such that any point in U20
j

is at least 1
8 from the boundary of

U2
j

. Since we need to construct G2 2 H(T2) such that G�1
2 �� �G2 2 R

G1�2, we will consider

dyadic cubes inside each G1U
20
j

and repeat a similar argument.
Observe that G1 is a bi-Lipschitz map such that

1

C1n1
d ((x, y) , (x0, y0))  d (G1 (x, y) , G1 (x

0, y0))  C1n1d ((x, y) , (x
0, y0)) .

Let k1 be the smallest integer such that n1  2k1 . Then each G1U
20
j

contains a dyadic cube
of order 15 + k1. To see this, use the bi-Lipschitz property of G1 to obtain a lower bound
on the size ball that each G1U

20
j

contains and then place a dyadic cube inside the ball. Now

let
⇣

cj

215+k1
,

cj+1

215+k1

⌘
⇥
⇣

dj

215+k1
,

dj+1

215+k1

⌘
, where c

j

, d
j

2 {0, 1, . . . , 215+k1 � 1}, denote the dyadic

cube inside G1U
20
j

for j = 1, 2, 3, 4.
9



Now we will pick new points x
j

, y
j

and new functions h1, h2 for the second step in the
induction. We abuse notation here to avoid excessive use of superscripts. Let y1 be a point
in
�
32d1+9
220+k1

, 32d1+11
220+k1

�
and choose �1 irrational such that y3 := y1 + �1 2

�
32d3+13
220+k1

, 32d3+15
220+k1

�
.

Define h1 : T ! T by h1(y) = y + �1.
Similarly, let y2 be a point in

�
32d2+17
220+k1

, 32d2+19
220+k1

�
and choose �2 irrational such that y4 :=

y2+�2 2
�
32d4+21
220+k1

, 32d4+23
220+k1

�
. Define h2 : T ! T by h2(y) = y+�2. Without loss of generality,

assume �1 > �2.
Now choose x1 2

�
32c1 + 9
220+k1

, 32c1+11
220+k1

�
, x2 2

�
32c2+17
220+k1

, 32c2+19
220+k1

�
, x3 2

�
32c3+13
220+k1

, 32c3+15
220+k1

�
, and

x4 2
�
32c4+21
220+k1

, 32c4+23
220+k1

�
.

We are now ready to start building our desired function G2 2 H(T2). Let x ! g2
x

be a
continuous function from [0, 1) to H(T) such that g20, g

2
3
4
, g21 = Id, g21

4
= h1, and g21

2
= h2

with linear interpolation in between. Thus as before, the modulus of continuity of g2 is
!
g

2(�) = sup|x�x

0|<�

d
u

(g2
x

, g2
x

0)  8�1�.
By the choice of the y

j

’s above we know that they are all distinct. Thus, we may place
non-overlapping tent maps p

j

around each y
j

as before, where the modulus of continuity of
each p

j

is !
pj(�)  32 · 215+k1�. Let M2 = 32 · 215+k1 and C2 = 26M2.

Let ⌘2 = ✏2
16M2

and �2 = ⌘2

16 . Then, if |x� x0| < �2 we have d
u

(g2
x

, g2
x

0) < ⌘2

2 . If n2 �
8192 · 32 · 240C2 then we proceed similar to before and define new c

j

2 [0, 1) such that

x1 + c1 =
1

4n2
, x2 + c2 =

3

4n2
, x3 + c3 =

1

4n2
+

1

2
, x4 + c4 =

3

4n2
+

1

2

all taken modulo one. Let f2 be defined by

f2(y) =
4X

j=1

c
j

p
j

(y).

Then, if |y � y0| < ⌘2 we have

|f2(y)� f2(y
0)| 

4X

j=1

c
j

|p
j

(y)� p
j

(y0)| < 4M2⌘2 =
✏2
4
.

Now we are ready to define G2. Let G2 : T2 ! T2 be defined by

G2(x, y) =
�
x+ f2(y), g

2
n2(x+f2(y))(y)

�
.

Then,

G�1
2 (x, y) =

�
x� f2((g

2
n2x

)�1(y)), (g2
n2x

)�1(y)
�

and

G�1
2 � � �G2(x, y) = (x+ ↵ + f2(y)� f2(y⇤), y⇤)

where y⇤ = (g2
n2(x+↵+f2(y))

)�1g2
n2(x+f2(y))

(y). The modulus of continuity of G2 is given by
!
G2(�)  C2n2�, where C2 = 26M2. It should also be noted that the modulus of continuity

of G�1
2 is bounded by the same number.

If it is not the case that n2 � 8192 · 22C2
2 , then we use U1

j

in place of U i

j

and G
i

= Id at
each stage of the induction until a term of the sequence (n

m

) exceeds 8192 · 32 · 240C2.
10



We now proceed with the induction under the assumption that n2 � 8192 · 32 · 240C2.
Similar to before, to show that d

u

(G�1
2 � � � G2, �) < ✏2 we need to check that n2 > 1

�2
.

Observe

1

�2
=

16

⌘2

=
256M2

✏2

=
512 (C1n1)M2

1

= 512
�
16 · 21

�
M2 (C1n1)

2n2
1

 8192C1 (32) · 215n2
1 (n1)

4n2
1

< (n1)
4n2

1+2 · n1

  (n1)n1.

Therefore, d
u

(G�1
2 � � �G2, �) < ✏2.

Next we need to show that G�1
2 � � �G2 2 R

G1�2. Our goal is to find t2 2 N such that

G�1
2 � �t2 �G2

✓✓
c1

215+k1
,
c1 + 1

215+k1

◆
⇥
✓

d1
215+k1

,
d1 + 1

215+k1

◆◆

\
✓✓

c3
215+k1

,
c3 + 1

215+k1

◆
⇥
✓

d3
215+k1

,
d3 + 1

215+k1

◆◆
6= ;

G�1
2 � �t2 �G2

✓✓
c2

215+k1
,
c2 + 1

215+k1

◆
⇥
✓

d2
215+k1

,
d2 + 1

215+k1

◆◆

\
✓✓

c4
215+k1

,
c4 + 1

215+k1

◆
⇥
✓

d4
215+k1

,
d4 + 1

215+k1

◆◆
6= ;.

We have chosen ↵ so that
�
16 · 218+k1

�
n2 � 1

(16 · 219+k1)n3
2

< |n2↵| <
1

2n2
2

.

Note that h0
2 =

(16·219+k1)n3
2

(16·218+k1)n2�1
. Let t2 = n2

2. It follows that
(16·218+k1)n2�1

(16·219+k1)n2
< |t2n2↵| < 1

2 and
��t2n2↵� 1

2

�� < 1

(16·219+k1)n2
. Similar to the earlier calculation, we obtain

G�1
2 � �t2 �G2(x1, y1)� (x3, y3)

=

✓
1

4n2
+ t2↵� f2

✓⇣
g21

4+t2n2↵

⌘�1

(y3)

◆
� x3,

⇣
g21

4+t2n2↵

⌘�1

(y3)� y3

◆

and
����
1

4n2
+ t2↵� f2

✓⇣
g21

4+t2n2↵

⌘�1

(y3)

◆
� x3

���� <
1

16 · 219+k1
+

M2

219+k1n2
<

1

218+k1
.
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Similarly, for the second coordinate we obtain
����
⇣
g21

4+t2n2↵

⌘�1

(y3)� y3

���� <
4

(16 · 219+k1)n2
<

1

218+k1
.

Thus, G�1
2 � � �G2 2 R

G1�2.
Recall that our goal for the second step in the inductive procedure is to find G2 2 H(T2)

such that G�1
1 �G�1

2 �� �G2 �G1 2 R2 \B1. Thus far we have constructed G2 2 H(T2) such
that G�1

1 �G�1
2 � � �G2 �G1 2 R2. We now need to check that G�1

1 �G�1
2 � � �G2 �G1 2 B1.

To that end, observe

d(G�1
1 �G�1

2 � � �G2 �G1, G
�1
1 � � �G1) = d(G�1

1 (G�1
2 � � �G2), G

�1
1 (�))

 C1n1

⇣✏2
2

⌘

= C1n1

✓
1

4C1n1

◆

=
1
4
.

Similarly, d(G�1
1 � G�1

2 � ��1 � G2 � G1, G
�1
1 � ��1 � G1)  1

4 and d
u

(G�1
1 � G�1

2 � � � G2 �
G1, G

�1
1 � � �G1)  1

2 , which implies that G�1
1 �G�1

2 � � �G2 �G1 2 B1 ✓ R1.
Let G2 := G2 �G1. With this new notation we have shown that (G2)�1 �� �G2 2 R2\B1.

Now we need to find a closed ball, call it B2, centered at (G2)�1 � � �G2 that is a subset of
R2 \ B1. Let

2 =
1

16 · 22(C1C2n1n2)2n
2
2�1

and

B2 =
�
T 2 O : d

u

((G2)
�1 � � �G2, T )  2

 
.

We will first show that B2 ✓ R2. Let
�
x0
j

, y0
j

�
= G�1

1 (x
j

, y
j

) 2 U20
j

for j = 1, 2, 3, 4. Let
T 2 B2 and consider

d
�
T t2 (x0

1, y
0
1) , (x

0
3, y

0
3)
�
 d

�
T t2 (x0

1, y
0
1) , G

�1
1 �G�1

2 � �t2 �G2 �G1 (x
0
1, y

0
1)
�

+ d
�
G�1

1 �G�1
2 � �t2 �G2 �G1 (x

0
1, y

0
1) , (x

0
3, y

0
3)
�

 d
u

(G�1
1 �G�1

2 � � �G2 �G1, T )(C1C2n1n2)
2t2�1

+ d
�
G�1

1 �G�1
2 � �t2 �G2 (x1, y1) , G

�1
1 (x3, y3)

�

 2 (C1C2n1n2)
2t2�1 + C1n1

✓
1

217+k1

◆

 1

32
+

1

32

=
1

16
.

Hence, we have the desired result, that is B2 ✓ R2.
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Next we will show that B2 ✓ B1. Let T 2 B2 and consider

d
u

(T,G�1
1 � � �G1)  d

u

(T, (G2)
�1 � � �G2)

+ d
u

((G2)
�1 � � �G2, G

�1
1 � � �G1)

 2 +
1
2

<
1
2

+
1
2

= 1.

Therefore, B2 ✓ R2 \ B1.
Thus far in our inductive procedure, we have constructed two closed nested balls B1 ◆ B2

centered at conjugations of � such that B1 ✓ R1 and B2 ✓ R2. The general inductive step
can be carried out in the same way.

In the end, this inductive procedure produces a nested sequence of closed balls (B
m

) and
a sequence (G

m

) of homeomorphisms where each G
m

= G
m

� G
m�1 � · · · � G1 and each G

m

is of the form

G
m

(x, y) = (x+ f
m

(y), gm
nm(x+fm(y))(y)).

After the m-th stage of the construction has been completed, we have a homeomorphism
G

m

that satisfies

(1) d
u

(G�1
m

� � �G
m

, �) < ✏
m

where ✏
m

= m�1

2C1···Cm�1n1···nm�1

(2) G�1
m

� � �G
m

2 R
G1�···�Gm�1�m.

At the end of this stage we also have a closed ball B
m

centered at
�
G

m

��1 � � � G
m

with
radius


m

=
1

16 · 2m (C1 · · ·Cm

n1 · · ·nm

)2n
2
m�1

such that B
m

✓ R
m

. Recall that we are working in a complete metric space. Let T0 =T1
m=1 Bm

. Therefore, T0 is topologically weakly mixing. Also,
�
G

m

��1 � � � G
m

converges

uniformly to T0 since
�
G

m

��1 � � �G
m

is the center of B
m

.
Now that we have T0 which is topologically weakly mixing, we need to show that it is

uniformly rigid with respect to (n
m

). To do this, we need to make a preliminary estimate.
First notice that

G�1
m

� �nm �G
m

(x, y)� �nm(x, y) = (x+ f
m

(y)� f
m

(y⇤), y⇤)

where y⇤ =
⇣
gm
nm(x+nm↵+fm(y))

⌘�1

gm
nm(x+fm(y))(y). In either case

��n2
m

↵
�� < 1

n
m

< �
m

and we can conclude that d
u

(G�1
m

� �nm �G
m

, �nm) < ✏
m

. Now observe the following:

d
⇣�

G
m

��1 � �nm �G
m

,
�
G

m�1

��1 � �nm �G
m�1

⌘
=

13



d
⇣�

G
m�1

��1 �
G�1

m

� �nm �G
m

�
,
�
G

m�1

��1
(�nm)

⌘

 (C1 · · ·Cm�1n1 · · ·nm�1)
⇣✏

m

2

⌘

=

m�1

4
.

Hence, d
u

(
�
G

m

��1 � �nm �G
m

,
�
G

m�1

��1 � �nm �G
m�1)  m�1

2 .
The final estimate will show that T0 is uniformly rigid with respect to (n

m

). Indeed

d
u

(Tnm
0 , Id)  d

u

⇣
Tnm
0 ,

�
G

m

��1 � �nm �G
m

⌘

+ d
u

⇣�
G

m

��1 � �nm �G
m

,
�
G

m�1
��1 � �nm �G

m�1

⌘

+ d
u

⇣�
G

m�1
��1 � �nm �G

m�1, Id
⌘

= d
u

⇣
Tnm
0 ,

�
G

m

��1 � �nm �G
m

⌘
+ d

u

⇣�
G

m

��1 � �nm �G
m

,
�
G

m�1
��1 � �nm �G

m�1

⌘

+ d
⇣�

G
m�1

��1 � �nm �G
m�1, Id

⌘
+ d

⇣�
G

m�1
��1 � ��nm �G

m�1, Id
⌘

= d
u

⇣
Tnm
0 ,

�
G

m

��1 � �nm �G
m

⌘
+ d

u

⇣�
G

m

��1 � �nm �G
m

,
�
G

m�1
��1 � �nm �G

m�1

⌘

+ d
⇣�

G
m�1

��1
(�nm),

�
G

m�1
��1

(Id)
⌘
+ d

⇣�
G

m�1
��1

(��nm),
�
G

m�1
��1

(Id)
⌘

 
m

(C1 · · ·Cm

n1 · · ·nm

)2nm�1 +

m�1

2
+ 2

✓
C1 · · ·Cm�1n1 · · ·nm�1

n2
m

◆


✓

1

16 · 2m(C1 · · ·Cm

n1 · · ·nm

)2n2
m�1

◆
(C1 · · ·Cm

n1 · · ·nm

)2nm�1 +

m�1

2

+ 2

✓
n1n2 · · ·nm�1

n
m

◆2

 1

2m
+

m�1

2
+ 2

✓
 (n

m�1)

n
m

◆2

 1

2m
+

m�1

2
+ 2

✓
1

n
m�1

◆2

.

Thus d
u

(Tnm
0 , Id) ! 0 as m ! 1 and T0 is uniformly rigid with respect to (n

m

). Therefore
we have constructed a topologically weakly mixing homeomorphism that is uniformly rigid with
respect to (n

m

).
⇤
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