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Abstract
Howler monkeys (Alouatta), comprising between nine and 14 species and ranging from southern Mexico to northern Argen-
tina, are the most widely distributed platyrrhines. Previous phylogenetic studies of howlers have used chromosomal and 
morphological characters and a limited number of molecular markers; however, branching patterns conflict between studies 
or remain unresolved. We performed a new phylogenetic analysis of Alouatta using both concatenated and coalescent-based 
species tree approaches based on 14 unlinked non-coding intergenic nuclear regions. Our taxon sampling included five of 
the seven South American species (Alouatta caraya, Alouatta belzebul, Alouatta guariba, Alouatta seniculus, Alouatta sara) 
and the two recognized species from Mesoamerica (Alouatta pigra, Alouatta palliata). Similarly to previous studies, our 
phylogenies supported a Mesoamerican clade and a South American clade. For the South American howlers, both methods 
recovered the Atlantic Forest endemic A. guariba as sister to all remaining South American species, albeit with moderate 
support. Moreover, we found no support for the previously proposed sister relationship between A. guariba and A. belze-
bul. For the first time, a clade composed of A. sara and A. caraya was identified. The relationships among the other South 
American howlers, however, were not fully supported. Our estimates for divergence times within Alouatta are generally older 
compared to estimates in earlier studies. However, they conform to recent studies proposing a Miocene age for the Isthmus 
of Panama and for the uplift of the northern Andes. Our results also point to an early genetic isolation of A. guariba in the 
Atlantic Forest, in agreement with the hypothesis of biotic exchange across South American rain forests in the Miocene. 
Collectively, these findings contribute to a better understanding of the diversification processes among howler monkey spe-
cies; however, they also suggest that further comprehension of the evolutionary history of the Alouatta radiation will rely 
on broadened taxonomic, geographic, and genomic sampling.
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Introduction

Howler monkeys (order Primates, family Atelidae, genus 
Alouatta) are the most widely distributed group of plat-
yrrhines, ranging from southern Mexico to northern 
Argentina. They inhabit a variety of forests—tropical 
rain forests, flooded forests, and gallery forests—as well 
as deciduous and semi-deciduous seasonal environments 
(Crockett and Eisenberg 1986; Zunino et al. 2001a, b). 
Their diet consists of leaves and fruits, with the propor-
tions of these dependent on the productivity and size of 
the forest areas inhabited, as well as the density of their 
groups (see Dias and Rengel-Negrín 2015). Howler mon-
keys play important roles in seed dispersal by feeding on 
a wide variety of plant species, and are likely to be the 
only seed dispersers for certain plant species. Howlers 
help in forest regeneration and assist in the restoration of 
degraded habitats that, differently to other large-bodied 
frugivores, they are able to inhabit (de Moura and McCo-
nkey 2007; Arroyo-Rodríguez et al. 2015). Unfortunately, 
many Alouatta species are threatened by habitat loss and 
extreme habitat alteration (International Union for Con-
servation of Nature 2019).

Although several studies used morphometric, molec-
ular or cytogenetics to infer species boundaries within 
the howlers over the last few years, the number of spe-
cies within Alouatta is still a matter of debate (Hershko-
vitz 1949; Meireles et al. 1999; de Oliveira et al. 2002; 
Cortéz-Ortiz et al. 2003). Hill (1962) estimated that the 
genus Alouatta was composed of six species. Decades 
later, Gregorin (2006) used a large morphological dataset 
(1286 specimens sampled for skin, fur, cranium and hyoid 
bone information) to separate the genus into ten species. 
In the most recent assessment, Cortés-Ortiz et al. (2015) 
recognized two Mesoamerican species (Alouatta pigra 
and Alouatta palliata) and nine South American species 
(Alouatta pigra, Alouatta palliata, Alouatta seniculus, 
Alouatta macconnelli, Alouatta caraya, Alouatta belzebul, 
Alouatta arctoidea, Alouatta guariba, and Alouatta sara; 
see Fig. 1 for their known distributions). Such taxonomic 
studies of Alouatta have focused largely on diagnosing the 
overall number of howler species, drawing on anatomical 
characters (Hershkovitz 1949) and aspects of pelage pat-
terns and coloring (Gregorin 2006). Despite often incorpo-
rating genetic information, those studies aimed to resolve 
the instability of the group’s alpha taxonomy, with limited 
focus on the phylogenetic relationships within Alouatta.

Fig. 1  Geographic distributions 
of currently recognized species 
of howler monkeys, genus 
Alouatta: Alouatta pigra (dark 
blue), Alouatta palliata (pink), 
Alouatta seniculus (black) 
Alouatta macconnelli (orange), 
Alouatta caraya (red), Alouatta 
belzebul (purple), Alouatta 
arctoidea (white), Alouatta 
guariba (yellow), Alouatta sara 
(green) {distributions modified 
from the Red List of Threatened 
Species [International Union for 
Conservation of Nature (IUCN) 
2016], https ://www.iucnr edlis 
t.org, downloaded 24 December 
2017}

https://www.iucnredlist.org
https://www.iucnredlist.org
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Moreover, phylogenetic reconstructions of howler monkeys 
based on various DNA datasets disagree on the topology of the 
Alouatta species tree (Cortés-Ortiz et al. 2003; Villalobos et al. 
2004). For instance, based on a single nuclear gene (γ1-globin 
pseudogene), Meireles et al. (1999) found a moderately sup-
ported clade grouping A. guariba and A. belzebul as sister 
taxa, with A. seniculus and A. caraya as respective sister line-
ages to this clade (Fig. 2a). However, the number of species 
sampled in that study was limited; for instance, no Mesoameri-
can howler species were included. A study by Cortés-Ortiz 
et al. (2003) increased the number of South American howler 
taxa sampled, including A. sara and A. macconnelli (a total of 
six South American taxa) as well as two Mesoamerican howler 
species (A. pigra and A. palliata). Their neighbor-joining anal-
ysis of concatenated sequences of the CYTB, ATPase 8 and 
ATPase 6 mitochondrial genes yielded a hypothesis in which 
a Mesoamerican group was strongly supported as sister to a 
South American clade. Within the South American clade, two 
clades were supported: one including A. seniculus, A. sara, A. 

macconnelli and A. caraya, and the other including A. belzebul 
and A. guariba (Fig. 2B). However, support for relationships 
within the South American clade was uniformly moderate to 
low; the highest level of support was that for a unique sister-
species grouping of A. belzebul and A. guariba at only 78% 
bootstrap support. Cortés-Ortiz et al. (2003) also analyzed 
sequences from two nuclear loci: calmodulin 1 (CALM1; the 
intron between exons 3 and 4) and the recombination acti-
vating gene 1 (RAG1), although these analyses yielded trees 
with little to no resolution within and between all species of 
Alouatta, with no support for separate Mesoamerican and 
South American howler clades. Lastly, Villalobos et al. (2004) 
analyzed mitochondrial DNA (mtDNA) sequences (CYTB and 
COII) in a matrix combined with several morphological and 
karyotypic features for five South American Alouatta species: 
A. seniculus, A. caraya, A. belzebul, A. guariba and A. sara, 
as well as the Mesoamerican howler A. palliata. That study 
found yet a third topology: while A. palliata fell outside the 
South American clade, the South American howlers A. sara 

Fig. 2a–c  Color-coded map of the distributions of Alouatta species 
and the three gene trees that have been generated in previous studies 
to examine the phylogenetic relationships among the South American 
species. a Maximum parsimony tree based on the γ1-globin pseudo-
gene, including bootstrap values, adapted from Meireles et al. (1999). 

b Neighbor-joining tree based on concatenated CYTB, ATPase 8, 
and ATPase 6 sequences, including bootstrap values, adapted from 
Cortés-Ortiz et al. (2003). c Consensus mitochondrial (concatenated 
CYTB and COII) tree, including Bremer decay indexes, adapted from 
Villalobos et al. (2004)
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and A. seniculus were inferred as sister taxa; an alternative 
arrangement was inferred for the relationships between A. 
caraya, A. guariba, and A. belzebul relative to the study of 
Cortés-Ortiz et al. (2003) (Fig. 2c). It is notable that Villa-
lobos et al.’s (2004) results did not support a sister-species 
relationship between A. guariba and A. belzebul, which had 
been supported in studies by Cortés-Ortiz et al. (2003) and 
Meireles et al. (1999).

This persistent uncertainty in the phylogenetic relation-
ships within Alouatta may result from limitations in the data 
types used for inference. For instance, chromosome structure 
has limited utility in phylogenetic inference because homolo-
gous chromosomal features are often difficult or impossible to 
determine; moreover, intraspecific diversity of chromosomal 
arrangements is high within Alouatta and closely related gen-
era (de Oliveira et al. 1999, 2002). Other data that have been 
crucial to studying species relationships are DNA sequences 
of mitochondrial markers; however, they represent the evolu-
tionary history of a single genomic region that is inherited in 
a linked and matrilineal mode, thus do not capture the influ-
ence of male population dynamics (see Moore 1995). In the 
face of these limitations, this study proposes a re-evaluation 
of evolutionary relationships within Alouatta on the basis of 
a combined analysis of several independent nuclear markers.

To help clarify the phylogenetic relationships among 
howler species, we generated DNA sequence data from 14 
unlinked intergenic nuclear regions (Kiesling et al. 2015) for 
two Mesoamerican howler species and five South Ameri-
can howler species, making our nuclear DNA dataset the 
most comprehensive for the group to date. The nuclear 
regions sequenced have been found to be useful for resolv-
ing inter-generic phylogenetic relationships among South 
American monkeys (Kiesling et al. 2015). The selected loci 
are unlinked and thereby provide independent estimates of 
phylogenetic relationships that, if congruent, can shed light 
on the actual species relationships. Additionally, since these 
regions are intergenic and non-protein coding, the action 
of natural selection is expected to be less intense, with pat-
terns of genetic variation being more likely to track species’ 
relationships (Wildman et al. 2009; Kiesling et al. 2015). 
The data were first concatenated to generate a tree under 
Bayesian inference, and then analyzed under a coalescent 
framework to infer a species tree (Pamilo and Nei 1988; 
Edwards 2009). Using fossil calibrations, we also estimated 
divergence times for the howler genus Alouatta and its spe-
cies clades.

Materials and methods

Utilizing previously existing genomic extractions, we ampli-
fied and sequenced DNA from 41 individuals of seven spe-
cies of Alouatta: A. pigra and A. palliata (Mesoamerican 

howlers) and A. guariba, A. caraya, A. belzebul, A. senicu-
lus and A. sara (South American howlers). DNA sequences 
were deposited in GenBank; the accession numbers are pro-
vided in the supplementary information (see online resource 
Table 1). Samples of two presumed species, A. macconnelli 
and A. arctoidea (Cortés-Ortiz et al. 2015), were not avail-
able to us. Our samples of A. guariba DNA were extracted 
from muscle and blood tissue samples as described in Harris 
et al. (2005); for A. caraya, A. belzebul and A. seniculus, 
DNA was extracted from blood samples using the protocol 
described by Schneider et al. (1996) and Sambrook et al. 
(1989). The sources of DNA samples used in our sequenc-
ing experiments are provided in the supplementary online 
resource Table 2. Although A. belzebul has a disjunct geo-
graphic distribution, with populations in both Amazonia 
and the coastal Brazilian Atlantic Forest (Fig. 1), we were 
only able to secure samples from the Amazonian population. 
As outgroups, orthologous DNA sequences from five spe-
cies of closely related platyrrhines from the Atelidae family 
were downloaded from GenBank, including Ateles paniscus, 
Ateles belzebuth, Ateles geoffroyi, Lagothrix lagotricha and 
Brachyteles arachnoides (Kiesling et al. 2015; see online 
resource Table 3 for accession numbers). We designated 
these species as outgroups based on the results of recent 
phylogenetic studies by Wildman et al. (2009) and Kiesling 
et al. (2015), as well as previous phylogenies of platyrrhines 
(Villalobos et al. 2004; Schneider et al. 1996, 2001; Silvestro 
et al. 2017).

Using protocols reported in Kiesling et al. (2015), we 
established an amplification panel for 16 unlinked intergenic 
regions using oligonucleotide primers developed by Wild-
man et al. (2009) (see online resource Table 4). Polymerase 
chain reaction (PCR) protocols were adapted from Meireles 
et al. (1997), including an initial denaturation of 3 min at 
94 °C, 30 cycles of denaturation at 94 °C (30 s), anneal-
ing at 55 °C (45 s), extension at 72 °C (45 s), and a final 
extension of 10 min at 72 °C. For a given locus, annealing 
temperatures varied among species from 42 °C to 56 °C 
(for more details see online resource Table 5). PCR prod-
ucts were visualized by agarose gel electrophoresis (1%) and 
sequenced on an ABI 3730xl DNA Sequencer at Macrogen 
(New York, NY) and on an ABI 3500XL (School of Phar-
maceutical Sciences, Universidade de São Paulo—Ribeirão 
Preto). To verify sequence accuracy we sequenced forward 
and reverse strands. Sequences were edited in Geneious ver-
sion R6 [https ://www.genei ous.com (Kearse et al. 2012)], 
aligned using the global alignment method within Geneious, 
examined by eye, and then manually adjusted if needed. 
Limited numbers of samples per population might prevent 
confident estimation of the phase of heterozygous positions 
for coalescent-based phylogenetic inference (see below); 
therefore, we conservatively replaced all ambiguous posi-
tions that might correspond to heterozygous sites (K, M, 

https://www.geneious.com
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R, S, Y, W) by N (for the coalescent-based analysis only). 
We used Jmodeltest (Posada 2008) to determine models of 
nucleotide substitution for each locus and best-fit partition 
schemes, which were subsequently used in our phylogenetic 
analyses. To assess how informative the individual markers 
were for the purpose of phylogenetic inference, we estimated 
the number of variable sites across samples for each gene 
using the program Molecular Evolutionary Genetics Analy-
sis (MEGA) version 4 (Tamura et al. 2007) (see Table 1).

We performed phylogenetic analyses using three 
approaches. First, we generated a tree under a concatenated 
approach using Bayesian inference in MrBayes 3.2.1 (Ron-
quist et al. 2012). For that purpose, we carried out three 
independent runs and four Markov chains of 20 million 
generations each, sampling every 1000 steps. Second, we 
used a coalescent-based analysis in *BEAST (Heled and 
Drummond 2010) to generate a species tree. For that, we set 
up three independent runs of 100 million generations each, 
sampling every 10,000 steps. Lastly, we performed estimates 
of divergence times under a Bayesian framework using 
BEAST 1.10.4 (Drummond et al. 2012). For divergence 
time estimation, we implemented an uncorrelated lognor-
mal relaxed clock (Drummond et al. 2006) with a uniform 
prior distribution (interval = 0–1) to the mean rate of the 
molecular clock (ucld.mean parameter). A birth–death tree 
prior was used, and the parameters that describe substitution 
rates and nucleotide frequencies were set to the defaults. We 
ran three independent chains of 100 million steps, sampling 
every 10,000 steps.

To calibrate the dated phylogeny, we used the ages of 
two primate fossils. These fossils were chosen after consult-
ing Silvestro et al. (2017), who examined evolutionary rates 

and trends among platyrrhines. The first fossil is Stirtonia 
tatacoensis (Stirton 1951), found in the late 1940s in Colom-
bia, and widely recognized as closely related to the Alouatta 
group (e.g., Szalay and Delson 1979; Setoguchi et al. 1981; 
Delson and Rosenberger 1984; Rosenberger 1992; Hartwig 
and Meldrum 2002; but see Hershkovitz 1970). The speci-
men of S. tatacoensis consists of dental remains (Stirton 
1951; Flynn et al. 1997). As per Silvestro et al. (2017), we 
used this fossil to calibrate the crown defined by all sampled 
Alouatta species by implementing a lognormal distribution 
with offset = 12.5 million years ago (MYA) (μ = 0, σ = 1). 
We also calibrated the crown using Solimoea acrensis, a 
taxon for which the description is based on a set of isolated 
dental elements from Brazil’s Solimões Formation (Kay and 
Cozzuol 2006). Following Silvestro et al. (2017), we used 
this fossil to calibrate the crown clade defined by Ateles, 
Brachyteles, and Lagothrix by implementing a lognormal 
distribution with offset = 7.5 MYA (μ = 0, σ = 1).

For all three approaches (MrBayes, BEAST, *BEAST), 
we assessed stationary model parameters and convergence 
of model parameters in Tracer 1.7 (Rambaut and Drummond 
2009), applied a 10% burn-in, and combined the three runs 
in LogCombiner 1.10.4. We then summarized a maximum 
clade credibility tree in TreeAnnotator 1.10.4 (Drummond 
et al. 2012). The final trees were visualized in FigTree 1.4. 
(https ://tree.bio.ed.ac.uk/softw are/figtr ee/).

Results

Phylogenetic analyses

Of the 16 pairs of primers screened, we were able to success-
fully amplify and obtain high-quality DNA sequences from 
14 loci (see online resource Table 6 for amplification success 
per species and per locus). Two loci (M113T7 and M1803) 
were not included in the subsequent analyses given the poor 
quality of most of their sequences. For the set of 14 loci that 
we successfully amplified, the size of sequenced fragments 
ranged from 332 to 904 base pairs (see Table 1). The mean 
number of variable sites across the 14 loci was 26 (ranging 
from 12 to 46), and the mean number of phylogenetically 
informative sites was 12 (ranging from 6–36; Table 1).

Both the concatenated and species tree approaches 
inferred high support [posterior probability (PP) of 1.0 and 
0.98, respectively] for a Mesoamerican howler clade con-
taining A. pigra and A. paliatta. The South American howler 
clade comprising A. guariba, A. belzebul, A. seniculus, A. 
caraya, and A. sara also received high support [MrBayes 
tree PP = 0.91 (Fig. 3); *BEAST PP = 0.99 (Fig. 4)]. All spe-
cies for which multiple individuals were sequenced formed 
monophyletic clades with very high support, except for A. 
seniculus (PP = 0.68; see Fig. 3).

Table 1  Number of polymorphic sites, number of phylogenetically 
informative sites, and models of nucleotide substitution per marker

Marker Variable sites Phylogeneti-
cally informa-
tive

Length 
(base 
pairs)

Model selected

M002 14 6 332 HKY + I
M003 12 11 480 HKY + I
M085 19 10 367 HKY
M093 14 6 450 HKY
M190 28 7 620 HKY + G
M194 18 10 472 HKY + G
M201 10 6 738 HKY + G
M252 46 36 763 HKY
M254 29 10 460 HKY
M258 27 8 726 HKY + G
M265 24 9 843 GTR + G
M271 46 19 703 GTR 
M1701 29 11 600 K80
M4344 43 15 904 HKY

https://tree.bio.ed.ac.uk/software/figtree/
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Fig. 3  Bayesian inference tree built with Mr. Bayes, based on concatenated sequences. Posterior probability (PP) values are next to the nodes. 
Branch lengths are underlined 
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Within the South American howler clade, both 
MrBayes and *BEAST found moderate support for a 
sister taxon relationship between A. caraya and A. sara 
(MrBayes PP = 0.82, *BEAST PP = 0.63). The remain-
ing South American species of Alouatta were placed as 
successive sister taxa to this clade, although occupying 
alternative positions for each of the two methods. The 
Atlantic Forest species A. guariba was positioned by both 
methods as the sister to all the other South American 
howlers, with moderate support (MrBayes PP = 0.89, 
*BEAST PP = 0.91).

Estimates of divergence times

Estimates of divergence times using BEAST and based 
on fossil calibrations placed the age of the genus 
Alouatta at ca. 13.2 MYA [95% highest posterior den-
sity (HPD) = 12.5–15.0 MYA; Fig. 5]. The Mesoameri-
can howler clade containing A. pigra and A. palliata was 
dated to ca. 2.8 MYA (HPD 0.68–6.0 MYA), while the 
node at the base of all South American howlers was dated 
to ca. 10.7 MYA (HPD 6.3–13.5 MYA). The clade that 
contains A. sara and A. caraya was dated to ca. 4.8 MYA 
(HPD 2.3–8.1 MYA) [see the figure in the supplemen-
tary online resources for the PP values for clades in the 
divergence tree]. 

Discussion

All three phylogenetic trees generated from the 14 mark-
ers analyzed here support previous studies in recovering 
distinct Mesoamerican and South American howler clades, 
which are sister to each other (Villalobos et  al. 2004; 
Figueiredo 1998; Cortés-Ortiz et  al. 2003). We found 
maximum support for this relationship.

In disagreement with the trees of Meireles et al. (1999) 
and Cortés-Ortiz et al. (2003), we found no support for a 
sister relationship between A. belzebul and A. guariba. 
Instead, all trees in this study inferred the endemic Atlan-
tic Forest howler species A. guariba to be the sister line-
age to all other South American howlers, with moderate 
levels of support (see Figs. 3–5). Despite having distinct 
underling models, both the concatenated and multispe-
cies coalescent approaches recovered the same position 
for A. guariba. This differs from any topology previously 
published for this group. If this relationship is supported 
as more data are collected, it would suggest a biogeo-
graphical history for the genus in which the easternmost 
Atlantic Forest species split early from the ancestor of all 
the species that today occupy the Cerrado (dry savanna) 
and Amazonia (tropical rain forest). In breaking up the 
close sister-species relationship previously hypothesized 
for A. guariba and A. belzebul, the results here resemble 

Fig. 4  Species tree generated in *BEAST, following a coalescence-based approach. PP values are next to the nodes 
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those of Villalobos et al. (2004). As such, a close relation-
ship between these two species can no longer be assumed 
and should be further analyzed on the basis of additional 
genomic evidence.

The relationships among the remaining South Ameri-
can species, however, are less clear, particularly regarding 
the placement of A. seniculus and A. belzebul. The concat-
enated MrBayes gene tree (Fig. 3) and the BEAST dated tree 
(Fig. 5) placed A. belzebul as sister to a clade that includes 
A. seniculus, A. sara, and A. caraya, with moderate support. 
In placing A. belzebul as external to a clade that contains A. 
seniculus, the tree recovered by MrBayes resembles that of 
Villalobos et al. (2004) and Cortés-Ortiz et al. (2003). By 
contrast, the species tree placed A. seniculus as the sister 
species to a clade that includes A. sara, A. caraya, and A. 
belzebul, but support for this arrangement was low. In addi-
tion, although A. caraya and A. sara were recovered as sister 
species in all analyses performed here, this relationship con-
sistently had moderate support. This clade arrangement is 
a novel result relative to both Cortés-Ortiz et al. (2003) and 
Villalobos et al. (2004), which recovered A. sara as more 
closely related to A. seniculus, with A. caraya (see Fig. 6 

black howler monkey) being placed more externally on the 
tree.

The low level of resolution among the Amazonian and 
Cerrado howlers (A. belzebul, A. seniculus, A. sara, and A. 

Fig. 5  Dated Bayesian analysis based on concatenated sequences 
calibrated using two fossils, Stirtonia and Solimoea, placed as per 
arrows. Bars represent the 95% highest posterior densities (HPD), 

above the bars are values of divergence in ages (million years) on 
nodes discussed in the text

Fig. 6  Alouatta caraya (male)
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caraya) may be related to the relatively recent time frame 
over which speciation transpired. Alleles along the lineage 
separating A. guariba from the remaining South American 
howlers seem to have experienced greater allele sorting, 
whereas the more recently derived species may still show 
high levels of incomplete lineage sorting. It is well known 
that incomplete lineage sorting of ancestral alleles imposes 
difficulties for phylogenetic reconstruction, even when 
coalescent-based methods are used (Pamilo and Nei 1988; 
Maddison and Knowles 2006; Edwards et al. 2016; Degnan 
and Rosenberg 2009). In other words, rapid speciation with 
relatively short internal branches separating species lineages 
or clades, as we see here, may make it problematic to resolve 
evolutionary relationships because random sorting of ances-
tral alleles obscures phylogenetic signals. In this study, while 
the length of internal branches separating South American 
howler species ranged from 0.0008 to 0.0015 nucleotide 
substitutions per site (Fig. 3), with the lowest values corre-
sponding to weakly supported clades, the branch separating 
Mesoamerican and South American howlers were as much 
as 11 times longer (0.0089), and the PP support for this rela-
tionship was at the maximum value.

It may be challenging to find nuclear regions that possess 
levels of nucleotide divergence sufficient to resolve short 
internal divergences among species that have diverged over 
a recent time frame. Short branches may be inordinately 
difficult to resolve even with large multi-locus datasets 
(Wiens et al. 2008). Although the lengths (in base pairs) 
of the regions sequenced for each loci in this study were 
comparable to those in other multi-locus studies of primates 
(Pozzi et al. 2014; Wiens et al. 2008; Weisrock et al. 2012), 
nucleotide divergence was low; phylogenetically informa-
tive sites ranged from six to 36 (Table 1), with a mean of 12 
informative sites over the 14 loci. Still, it may be possible to 
improve phylogenetic inference by including greater num-
bers of nuclear loci for Alouatta species, particularly through 
the generation of genome-scale datasets.

Our estimates of divergence dates differed from those 
reported in previous studies. The divergence dates esti-
mated by Cortés-Ortiz et al. (2003) using mitochondrial 
DNA sequences recovered a split between the Mesoameri-
can and the South American howler clades at 6.8 MYA, 
while our analysis estimated this split at 13.2  MYA 
(HPD = 12.5–15.0 MYA). Cortés-Ortiz et al. (2003) placed 
A. guariba as the sister species of A. belzebul diverging at 
4.0 MYA, whereas our analysis recovered A. guariba as sis-
ter to all other South American howlers with a divergence 
date of 10.7 MYA (HPD = 6.3–13.4 MYA). However, the 
divergence between the two Mesoamerican species, A. 
pigra and A. palliata, was estimated as 2.8 MYA (HPD 
0.68–6.0 MYA), similar to Cortés-Ortiz et al. (2003), who 
estimated it at 3.0 MYA. The differences in estimated diver-
gence dates between this and previous studies likely stem 

from distinct dating strategies. Unlike Cortés-Ortiz et al. 
(2003), we used multiple nuclear genomic regions as well 
as lognormally distributed fossil-based priors (Stirtonia and 
Solimoea) for node calibration. The use of prior distribu-
tions aims to accommodate the possibility that the age of 
each calibrated node predates the minimum age defined by 
a fossil (Ho and Phillips 2009). By contrast, Cortés-Ortiz 
et al. (2003) employed Sanderson’s (1997) nonparametric 
rate smoothing approach, and notably calibrated their tree 
based on a non-fossil estimate of the chimpanzee-human 
divergence. Such secondary calibration strategies, based 
on previous molecular estimates of divergence, can lead to 
underestimation of node divergence dates (Graur and Martin 
2004; Sauquet et al. 2012).

Extinct species such as S. tatacoensis (Stirton 1951) from 
the Middle Miocene of Colombia are morphologically simi-
lar to Alouatta (Fleagle et al. 1997; Rosenberger et al. 2015), 
raising the possibility that the latter may have originated in 
that general area. From there, howlers may have expanded 
both northwards into Mesoamerica and southwards into the 
Amazon and Atlantic forests. Movement northwards would 
have depended on the formation of a land bridge connection, 
the Isthmus of Panama, whose date is still debated. Recent 
studies have suggested that the closing of the isthmus might 
have occurred around 10–6 MYA (Bacon et al. 2015) or 
15–13 MYA (Montes et al. 2015), earlier than initial esti-
mates at 3 MYA. In agreement with those studies, our analy-
ses inferred that the split between Mesoamerican and South 
American howlers dates to around 13 MYA. Similarly, there 
is debate regarding the date of the formation of the Andes, 
which may have played a role in the early separation between 
Mesoamerican and South American howlers. Recent analy-
ses have suggested that the Andes attained their present-day 
height as early as ~ 14 MYA (Evenstar et al. 2015), consider-
ably earlier than hypothesized by previous studies [~ 6 MYA 
(Garzione et al. 2008; Molnar and Garzione 2007)]. This 
earlier date conforms to our estimates for the separation 
between Mesoamerican and South American howlers.

In addition, our analyses placed the time frame of species 
diversification within South American howlers considerably 
earlier (between 10.7 and 4.8 MYA) relative to the diver-
gence between the two Mesoamerican howler species (at 
2.8 MYA). We are unable to identify the factors contribut-
ing to this early South American diversification and to the 
relative lack of diversification among Mesoamerican forms. 
Importantly, our dates for the diversification of the South 
American species during the Late Miocene do not conform 
to a model of diversification driven by the climate effects 
of glaciation cycles as predicted by the Pleistocene refugia 
hypothesis (Haffer 1969).

One of our most striking results is the inference of the 
brown howler (A. guariba), endemic to the Atlantic For-
est, as sister to all other South American howlers, with a 
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divergence date of 10.7 MYA. Such a date for the diver-
gence may point to an early isolation of the Atlantic For-
est. Rain forests in eastern South America are thought to 
have been continuous in the past, separating with increas-
ing dry conditions through the Tertiary (Bigarella 1975), 
and perhaps becoming distinct towards the end of the Plio-
cene around 2.5 MYA. A dry and open diagonal formed 
between the Amazon and Atlantic forests in a northeast to 
southwest axis, encompassing three biomes: the Caatinga in 
northeastern Brazil, the Cerrado in central Brazil, and the 
Chaco in Argentina and Paraguay (Costa 2003; Bigarella 
1975). Climatic changes throughout the Pleistocene are 
thought to have caused contractions and expansions of both 
the Amazon and Atlantic forests, which would have allowed 
intermittent connections and biotic exchange (Dal Vechio 
et al. 2018, 2020; Prates et al. 2016, 2018). Nevertheless, 
studies on many animal groups support the hypothesis that 
biotic connections between Amazonian and Atlantic forests 
have also happened much earlier, during the Miocene (Dal 
Vechio et al. 2018; Prates et al. 2017, 2020), in remarkable 
agreement with our estimates for the divergence between A. 
guariba and howler species from western South America.

Concluding remarks

Our analyses of 14 intergenic loci provide strong support for 
separate Mesoamerican and South American howler clades 
and for the monophyly for each howler species. Regarding 
the interrelationships among species within the South Amer-
ican howler group, our results provide mixed support for the 
phylogenetic hypotheses published thus far. Our results pro-
vide no support for a sister relationship between A. guariba 
and A. belzebul, which was found in recent mtDNA studies 
(see Cortés-Ortiz et al. 2003). We also found moderate sup-
port for the early divergence of the Atlantic Forest-based 
A. guariba relative to the remaining South American howl-
ers. Lastly, our estimates of divergence times are often older 
than estimates previously proposed for the group, which may 
reflect our conservative dating strategy based on prior dis-
tributions for node calibration. Two non-mutually exclusive 
reasons may explain the moderate to low support offered by 
the nuclear loci we sampled: low rates of nucleotide sub-
stitution in nuclear genes (even in intergenic regions, pre-
sumably less constrained by selection), and incomplete line-
age sorting on short internodes between clades. Our study 
contributes to a better understanding of the diversification 
processes that led to howler monkey species; however, they 
also suggest that further comprehension of the evolution-
ary history of the Alouatta radiation will rely on broadened 
taxonomic, geographic, and genomic sampling.
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