Biological invasions are one of the main threats to biodiversity (Mack et al., 2000). Introduced organisms may negatively affect native species and ecosystems, for instance by imposing new competition and predation pressures and introducing new pathogens (e.g. Blackburn et al., 2014; Miaud et al., 2016). Because exotic species are usually difficult to control once they become invasive (Genovesi, 2005), it is important to promptly detect and document new introductions.

All over the world, an increasing number of introductions by exotic lizard species have been documented, with successful establishment often leading to major ecological impacts (e.g. Krysko et al., 2004; Engeman et al., 2011; Vasconcelos et al., 2014; Kraus, 2015). This is the case for a number of anole species (Anolis, Dactyloidae), which have been widely reported outside their natural ranges, following human-mediated introductions (e.g. Eales et al., 2008; Nicholson and Richards, 2011; Samelo and Barrela, 2016; Yasumiba et al., 2016). Among them, the brown or festive anole, Anolis sagrei Duméril and Bibron, 1837, has arguably become one of the most widespread exotic reptiles worldwide. Native to Cuba, the Bahamas, and the Cayman islands, Anolis sagrei has been detected as an invasive species in several countries in the Americas and Asia (Greene et al., 2002; Norval et al., 2002; Kolbe et al., 2004; Tan and Lim, 2012; Granatosky and Krysko, 2013; Stroud et al., 2017). Following introductions, this species can reach high population densities and undergo rapid range expansion (Kolbe et al., 2004). In South America, the occurrence of A. sagrei was recently reported for the first time based on specimens found in coastal Ecuador, where it was likely introduced through human-mediated transportation.
such as aboard commercial ships (Amador et al., 2017). In this contribution, we provide the first record of this aggressive invasive lizard in Brazil.

We recorded specimens of *Anolis sagrei* during fieldwork carried out within the limits of the Antonio Carlos Jobim International Airport, aka Galeão Airport (-22.8052, -43.2413, WGS84; 6 m elevation), in the metropolitan area of the city of Rio de Janeiro, southeastern Brazil (Figure 1). The surveyed area is characterized by highly fragmented and anthropically altered lowland Atlantic Rainforest vegetation. Surveys were carried out in 10 January 2017 (summer, the rainy season) and 13 June 2017 (winter, the drier and cooler season), during the morning. Lizards were collected manually or using elastic rubber bands and sacrificed with an intraperitoneal injection of veterinary anesthetic (lidocaine). Collecting permits were issued by Brazil’s ICMBio (SISBIO/56517-1) and the Galeão Airport. Specimens were deposited in the Museu Nacional – Universidade Federal do Rio de Janeiro, in Rio de Janeiro, Brazil (voucher numbers MNRJ 26779-84).

Species identification was based on scale characters and colour pattern and on the diagnoses provided by Savage (2002) and Amador et al. (2017), and confirmed by expert opinion (Dr. Miguel T. Rodrigues, Universidade de São Paulo, Brazil; Dr. Kevin de Queiroz, Smithsonian Institution, USA) based on photographs of live specimens.

We collected six individuals of *A. sagrei* during fieldwork (one in January and five in June). Colour pattern of these specimens varied from dark brown with lighter markings to uniform light brown or beige (Figure 2A), often in the same individual at different moments. These specimens are morphologically consistent with those of other populations of *Anolis sagrei* from both native and introduced ranges based on morphometrics and pholidosis (Table 1). This species is promptly recognized in the field by having a well-developed dewlap with a red or orange background and a yellow rim, as well as two dark bars above the eyes (Figure 2A,B; Savage, 2002; Amador et al., 2017). These traits distinguish *A. sagrei* from the five native Atlantic Forest anole species, namely *Anolis fuscoauratus*, *A. nasofrontalis*, *A. ortonii*, *A. pseudotigrinus*, and *A. punctatus* (Prates et al., 2017). Of these, *A. fuscoauratus* and *A. ortonii* are the most similar to *A. sagrei* due to their similar body size, brownish/greyish dorsal coloration and reddish dewlap (variable in *A. fuscoauratus*), but our specimens differ from both species (and agree with *A. sagrei*) in having keeled ventrals (vs. smooth), 5-6 supralabials (vs. 7-10) and a laterally compressed tail (vs. round in cross section) (see Avila-Pires, 1995).

We found males and females of *Anolis sagrei* perched on vegetation and on the ground, next to a construction site. These animals perched at heights up to 1.5 m on herbaceous plants, and up to 3.0 m on small trees, which is considered typical for the species (Losos et al., 1993). During sampling trips, we observed males of *Anolis sagrei* extending their dewlaps, apparently performing territorial displays. We also observed juveniles (in both months; not collected) and one pair of adults copulating (in January; the male was collected). At the study site,
we observed two other lizards co-occurring with *A. sagrei*, namely *Tropidurus torquatus* (Tropiduridae) and *Cnemidophorus* gr. *lemniscatus* (Teiidae).

This study provides the first record of *Anolis sagrei* as an introduced species in Brazil. This is also the second record of the brown anole in South America, following its recent detection in Guayaquil, Ecuador (on South America’s Pacific coast), some 4,600 km northwest of Rio de Janeiro (Amador et al., 2017). To our knowledge, the presence of *A. sagrei* in southeast Brazil (on South America’s Atlantic coast) represents the most meridional record of this species to date.

The observation of juveniles and mating couples in the Galeão Airport suggests that *Anolis sagrei* is established locally, which represents the second case of an established exotic anole species in Brazil. The first case was that of *Anolis porcatus* (also native to Cuba), which was recently reported from the Baixada Santista, state of São Paulo (around 340 km southwest of Rio de Janeiro), in coastal southeastern Brazil, possibly as a result of overseas transportation by ships (Prates et al., 2016; Samelo and Barela, 2016). Before that, a single individual assigned to *Anolis carolinensis* was found in the state of Bahia in northeastern Brazil, though with no evidence of an established population (Fonseca et al., 2014), which might nonetheless reflect lack of subsequent sampling. While the source of introduction of *A. sagrei* in Brazil is currently unknown, its occurrence within the premises of an international airport is consistent with a scenario of unintentional transportation by airplanes, presumably within or amongst air cargo.

The actual geographic extent and potential for spread of *Anolis sagrei* in Rio de Janeiro and in Brazil are currently unclear. This species may be presently restricted to the Galeão Airport area, or to the continental island where this airport is located (Ilha do Governador). This island is nonetheless separated from the mainland by a narrow canal (~300 m), and connected to the continent by multiple bridges. In the event of range expansions, it remains to be seen whether *A. sagrei* will be able to colonize natural environments, such as the surrounding Atlantic Rainforest remnants. These lizards thrive in human-modified settings and altered habitats such as forest edges, yet do not seem to reach high densities in closed-canopy forests (Huang et al., 2008a).

The establishment of brown anole populations elsewhere has led to shifts in substrate use by native anoles (Losos et al., 1993; Stuart et al., 2014), as well as promoted major shifts in the structure of local insect assemblages (Huang et al., 2008b). As such, this species has the potential of affecting local ecological communities in Brazil. However, the effects of the establishment of *A. sagrei* on the local lizard species found coexisting with it at our study site are difficult to predict. *Tropidurus torquatus* is a semi-scansorial sit-and-wait forager like *A. sagrei*, but reaches a much larger adult size (ca. 100 mm SVL), whereas *Cnemidophorus* gr. *lemniscatus* is a terrestrial lizard that forages widely (and, thus, very distinct ecologically from *A. sagrei*). Further inventories are necessary to shed light on whether and to what extent *Anolis sagrei* may be able to extend its range in Brazil, as well as its potential to affect the native ecological communities, particularly in Atlantic Rainforest areas.

Acknowledgments. We thank the administration of the Antonio Carlos Jobim International Airport for providing access to the study site. Species identification was kindly confirmed by Dr. Miguel T. Rodrigues and Dr. Kevin de Queiroz. Danielle Rivera provided comments that helped to improve this manuscript. JCFO thanks Programa de Pós Doutorado FAPERJ Nota 10
References

Accepted by Graham Walters