Comprehensive SWAG

Comprehensive Small Wearable
Analyzer of Gait

Department of Electrical and Computer Engineering 1

Meet The Team

S)¢
. *
Alex Fanolis - EE Jack Shaffery - EE
Advisor - Professor Aura Ganz
Department of Electrical and Computer Engineering 2

Gait Analysis

= Motivation
« Predict diseases, prevent disorders, rehab from injuries

« Current Gait Analysis
« Analysis usually requires a doctor's referral
- Limited variable terrain testing
« Appointments are expensive
« Analysis can take anywhere from 30 minutes to 3 hours

= Qur Solution
« Completely portable
« Real time analysis
« Much cheaper than current devices

Department of Electrical and Computer Engineering 3

JMNMassAmhe

Our Solution

Department of Electrical and Computer Engineering 4

Previous Block Diagram

On-Ankle

Insole

—>

Microcontroller Accelerometer

Pressure
Sensors

I

‘ Power Supply] [Bluetooth ’
USER Mobile Phone

Data
? ? 3 ‘ Processing J [GuI ’
-

Bluetooth Algorithms
Receiver

Department of Electrical and Computer Engineering 5

Redesigned Block Diagram

On-Ankle
insole | welare,
‘ Accele{ometer Microcontroller
Pressure
Sensors
Power ‘ g:::l; ‘ Bluetooth
l Sensor &
Accelerometer data
USER On-Ankle
Data
ook GUI <> Processing &
Algorithms
Department of Electrical and Computer Engineering 6

Promised M DR Deliverables

= Identify and purchase required hardware:
¢ Microcontroller
* Pressure sensors
« Accelerometers and gyroscopes
= Establish communication between sensors and microcontroller
= Identify specific power source
= Research algorithms for specific gait parameters
= Rough draft of graphical user interface

Department of Electrical and Computer Engineering 7

JMNMassAmhe

MDR Checkoff

Identify and purchase required hardware: J
¢ Microcontroller

 Pressure sensors

« Accelerometers ard-gyroscopes
= Establish communication between sensors and microcontroller
= Identify specific power source
= Research algorithms for specific gait parameters
= Rough draft of graphical user interface

Department of Electrical and Computer Engineering 8

MDR Checkoff

Identify and purchase required hardware:
« Microcontroller
 Pressure sensors

« Accelerometers anrd-gyroscopes

= Establish communication between sensors and microcontroller

= Identify specific power source
= Research algorithms for specific gait parameters
= Rough draft of graphical user interface

v
v

Department of Electrical and Computer Engineering

MDR Checkoff

Identify and purchase required hardware: \/

e« Microcontroller
e Pressure sensors

« Accelerometers ard-gyroscopes
= Establish communication between sensors and microcontroller \/
= Identify specific power source \/

- Research algorithms for specific gait parameters
= Rough draft of graphical user interface

Department of Electrical and Computer Engineering 10

MDR Checkoff

Identify and purchase required hardware:

¢ Microcontroller

 Pressure sensors

« Accelerometers ard-gyroscopes

= Establish communication between sensors and microcontroller
= Identify specific power source

= Research algorithms for specific gait parameters

= Rough draft of graphical user interface

K A

Department of Electrical and Computer Engineering 11

MDR Checkoff

Identify and purchase required hardware:
¢ Microcontroller

e Pressure sensors

« Accelerometers ard-gyroscopes

= Establish communication between sensors and microcontroller
= Identify specific power source

= Research algorithms for specific gait parameters
= Rough draft of graphical user interface

KKK S

Department of Electrical and Computer Engineering 12

MDR Checkoff

Identify and purchase required hardware:
¢ Microcontroller

e Pressure sensors

« Accelerometers ard-gyroscopes

= Establish communication between sensors and microcontroller
= Identify specific power source

= Research algorithms for specific gait parameters

= Rough draft of graphical user interface
+\ - Functional algorithm working

SKLKL S

Department of Electrical and Computer Engineering 1

(OV)

MDR Checkoff

= Identify and purchase required hardware:
¢ Microcontroller
 Pressure sensors
« Accelerometers ard-gyroscopes
= Establish communication between sensors and microcontroller
= Identify specific power source
= Research algorithms for specific gait parameters
= Rough draft of graphical user interface
#= = Functional algorithm working
== | = Early stages of app developed

WKL

Department of Electrical and Computer Engineering 1

N

Insole

On-Ankle
Voltage
‘ Accele{ometer Microcontroller
Pressure
Sensors
Power ‘ g:::l; ‘ Bluetooth
l Sensor &
Accelerometer data
USER On-Ankle
S E— Data
ook GUI <> Processing &
Algorithms
Department of Electrical and Computer Engineering 15

JMNMassAmhe
Sensors

= Tekscan Flexiforce A201 Resistive Sensor
- Low physical profile
- High weight tolerance (Max 100lbs per)
- Low power drive circuitry

- LTC660 Voltage Converter pr— ﬂ/
- Provides negative voltage / A

for sensor
« 100mA safely, 10mA _
minimal voltage drop i

U

Department of Electrical and Computer Engineering 16

Sensor Demo

https://www.youtube.com/watch?
v=LMUANAdEJ1qgY

Department of Electrical and Computer Engineering 17

J\]assAmhe
Optimizing Sensor Placement

The area of least
pressure
The best placement

of sensor (M) A wrong placement

of sensor

The area of

maximum pressure A bigger sensor

that may
underestimate
pressure due to
averaging effect

Department of Electrical and Computer Engineering 18

On-Ankle

Insole woigninigl f—
‘ Accele{ometer Microcontroller
Pressure
Sensors
(—
Power Bluetooth
Sensor &
v Accelerometer data
USER On-Ankle
S E— Data
ook GUI <> Processing &
Algorithms
Department of Electrical and Computer Engineering 19

Power

« USB Power Bank (2000mAh)
« Portability
« Capacity
- Ease of implementation, reuse

= 5V, 3.3V, <20mA
« External circuit power
<163 mW
« Arduino idle power 232.5 mW
« Max power 315.5mW
- Battery life ~5.05 hrs on one charge

Department of Electrical and Computer Engineering 20

Accelerometers

= ADXL335
- Low power (350 pA typical for 1.8-3.6V)
- Ease of use

Department of Electrical and Computer Engineering 21

Microcontroller

= Control communication between sensors and

mobile app via Bluetooth
« Built in ADC for simple reading of analogue sensors
- Simple to program for prototyping .
- Requires additional hardware
for Bluetooth functionality

Department of Electrical and Computer Engineering 22

Bluetooth

= JY-MCU Arduino Bluetooth Wireless Serial Port
Module

 Utilizes Arduino’s built in serial communication library
« 2.1 Mbps data rate
- 30 ft range

Department of Electrical and Computer Engineering 23

Data Rate Calculations

= 4 x 10 bit force sensor readings

= 3 x 10 bit accelerometer reading

« 50 Hz sampling frequency

= 3.5kbps sampling total

= Bluetooth capable of sending 2.1Mbps

Department of Electrical and Computer Engineering 24

Data Processing and Algorithms

Vol On-Ankle
oltage
Insole weight infg
‘ Accele{ometer Microcontroller
Pressure
Sensors
D E— Power
Power ‘ Supply ‘ Bluetooth
Sensor &
Accelerometer data
USER
On-Ankle
user = N
input
€« Data
app
feednck GUI Processing &

Algorithms

Department of Electrical and Computer Engineering

25

Algorithms and Data Processing

= Convert array of raw sensor data to useable
format

= Filter beginning and end of data, so only steps
are studied

= Calculate specific parameters given sensor data

= Compare parameters to healthy averages, and
identify abnormalities

Department of Electrical and Computer Engineering 26

Algorithms and Data Processing

= Avg step Time ~ .5s
- Sample rate of 50Hz will give us about 25

samples per step
« Well within Arduino frequency range
- Depending on testing could choose higher frequency

Department of Electrical and Computer Engineering 27

Algorithms Demo

= Filtered beginning and end (to avoid using "non
step samples)

« Heel Strike Times

= Toe off Times

= Step/Swing Times

= Cadence

Department of Electrical and Computer Engineering 28

Algorithms and Data Processing

Time Force Force Force Force Accelerometer x ~ Accelerometer y Accelerometer z
Sensor 0 Sensor 1 Sensor 2 Sensor 3
(toe) (mid foot) (mid foot) (heel)
t0 fs00 fs10 . Az0
t1
t2
tn Azn

29

Department of Electrical and Computer Engineering

First Heel/ Last Toe

public static int getFirstHeel(int[][] sensorbData){
int prevHeel = 1;
int firstHeel=0;
for (int i = 0; i < sensorData.length ; i++){
if (prevHeel == 0 && sensorDataf[i]l][4] == 1){
firstHeel=i;
break;
b 2
prevHeel=sensorDatal[i]l[4];

return firstHeel;

>
public static int getLastToe(int[][] sensorbData) {
int lastToe = 0;
int nextToe=1l;
for (int i = sensorbData.length-1; i >= 0; i--—){
if (nextToe == 0 && sensorData[i]l[l])==1){
lastToe = i+1l;
break;

nextToe=sensorData[(i][1];
>
| return lastToe;
b ¢

« firstHeel - time where heel sensor first switches from no load to load - first heel strike
+ lastToe - last time where toe sensor switches from load to no load - last toe off
« We know values between these are steps — all data between is good data

Department of Electrical and Computer Engineering 30

Heel Time/ Toe Times

public static double[] getHeelTimes(double[][] sensorData, int stepCount, int firstHeel, int lastToe) {
double prevHeel = ©;

int j = ©;
double[] heelTimes = new double[stepCount];
for (int i = firstHeel; i < lastToe; i++) {
if (sensorData[i][4] >= 1 && prevHeel < 1) {
heelTimes[j] = sensorData[i][@];
J++;

prevHeel = sensorData[i][4];
return heelTimes;

public static double[] getToeTimes(double[][] sensorData, int stepCount, int firstHeel, int lastToe) {
double prevToe = 0@;
int j = ©;
double[] toeTimes = new double[stepCount];
for (int i = firstHeel; i <= lastToe; i++) {
if (sensorData[i][1] <= 1 && prevToe > 1) {
if (j < stepCount) ﬂ
toeTimes[j] = sensorData[i][@];
J++;
¥
¥
prevToe = sensorData[i][1];
¥

return toeTimes;

*Finds all heel strike times, between first heel and last toe
*Creates Array of heel strike times

-Finds all toe off times, between first heel and last toe
Creates Array of toe off times

Department of Electrical and Computer Engineering 31

Step Time / Swing Time

public static int[] getStepTimes(int[] heelTimes, int[] toeTimes, int stepCount) {
int[] stepTimes = new int[stepCount];

for (int i = 0 ; i < stepCount; i++){
if (heelTimes[0] < toeTimes[0])
stepTimes[i] = toeTimes[i] - heelTimes[i];
else
stepTimes[i] = toeTimes[i + 1] - heelTimes[i];
}
return stepTimes;
}
public static int[] getSwingTimes(int[] heelTimes, int[] toeTimes, int stepCount) {
int[] swingTimes = new int[stepCount-1];
for (int i = 0; i < stepCount-1; i++) {
if (heelTimes[0] > toeTimes[0])
swingTimes[i] = heelTimes[i] - toeTimes[i];
else
swingTimes[i] = heelTimes[i + 1] - toeTimes[i];

}

return swingTimes;

bl

-Step time = Toe off time - Heel Strike Time
Creates array of all step times

Swing time = Heel strike time - Toe off time
«Creates array of off swing times

»Averages are calculated in separate method

Department of Electrical and Computer Engineering 32

Compare Step and Swing Time

public static void compareSwingandStep(double[] swingTimes, double[] stepTimes){
for (int i = @ ; i < swingTimes.length && i < stepTimes.length ; i ++){
if (swingTimes[i] < .8*stepTimes[i])
System.out.println("YOUR SWING TIME IS SIGNIFICANTLY SHORTER THAN YOUR STEP TIME");
if (stepTimes[i] < .8*swingTimes[i])
lSystem.out.pr‘intln("YOUR STEP TIME IS SIGNIFICANTLY SHORTER THAN YOUR SWING TIME");

}
}
Compares step times to swing times, and prints message if there is an abnormality
Department of Electrical and Computer Engineering 33

Cadence

public static int getCadence(double avgStepTime){
return (int) (60/avgStepTime);
¥

public static void compareCadence(double cadence){
if (cadence < 100)
System.out.println("User walks with slow cadence.");
if (cadence>120)
System.out.println("User walks with fast cadence.");

A
=Cadence = steps per minute
*Average walking cadence is between 100 and 120 steps per minute
Prints message if user is outside normal cadence
Department of Electrical and Computer Engineering 34

{{e.00, 10, 10, 10, 10},{0.02, 20, 10, 10, 0},{0.04, 30, 5, 5, 0},{0.06, 40, ©, 0, 0},

{0.08, 0, 0, 0, 0},{0.10, 0, 0, 0, 0},{0.12, 0, 0, 0, 0},{0.14, 0, ©, 0, 0},{0.16, 0, 0, 0, 0},{0.18, 0, 0, 0, 40},

{0.20, 0, 0, 0, 40},{0.22, 0, ©, 0, 40},{0.24, 0, 5, 5, 30},{0.26, ©, 10, 10, 20},{0.28, 5, 1@, 10, 15},{0.30, 10, 10, 10, 10},

{0.32, 20, 10, 10, ©},{0.34, 30, 5, 5, 0},{0.36, 40, 0, ©, 0},{0.38, 10, 0, 0, 0},{0.40, 10, ©, 0, 0},{0.42, 10, 0, 0, 0},

{0.44, 10, 0, 0, 0},{0.46, 10, 0, 0, 0},{0.48, 10, ©, 0, 0},{0.50, 10, ©, 0, ©},{0.52, 10, 0, 0, 0},{0.54, 10, 5, 5, 0},{0.56, 10, 10, 10, O},
{0.58, 5, 10, 10, ©},{0.60, 10, 10, 10, ©},{0.62, 20, 10, 10, 0},{0.64, 30, 5, 5, 0},{0.66, 40, 0, 0, 0},{0.68, 40, 0, 0, 0},

{e.70, o, 0, 0, 0},{0.72, 0, 0, 0, 0},{0.74, 0, 0, 0, 0},{0.76, 0, ©, O, 0},{0.78, 0, 0, 0, ©},{0.80, 0, 0, ©, @ },{0.82, 0, 0, O, O},
{e.84, o, 0, 0, 0},{0.86, 0, 0, 0, 0},{0.88, 0, 0, 0, 0},{0.90, 0, ©, 0, 0},{0.92, 0, 0, 0, ©0},{0.94, 0, 0, 0, 0},{0.96, 0, ©, O, O},
{0.98, 0, 0, 0, 0},{1.0, ©, 0, 0, 0},{1.02, 0, O, 0, 0},{1.04, 0, ©, O, ©},{1.06, ©, 0, ©, 0},{1.08, 0, ©, 0, 0},{1.10, ©, 0, 0, O},
{1.12, 1e, 1e, 1@, 10},{1.14, 20, 1@, 1@, 10},{1.16, 30, 5, 5, 10},{1.18, 40, 0, ©, 10},

{1.20, 10, @, ©, 10},{1.22, 10, @, ©, 10},{1.24, 10, 0, ©, 10},{1.26, 10, 0, ©, 10},{1.28, 10, 0, ©, 10},{1.30, 10, 0, 0, 40},

{1.32, 1e, @, ©, ©},{1.34, 10, 0, ©, 0},{1.36, 10, 5, 5, 0},{1.38, 18, 10, 10, 0},{1.40, 5, 10, 10,0 },{1.42, 1@, 10, 10, O},

{1.44, 20, 10, 10, ©},{1.46, 30, 5, 5, ©},{1.48, 40, @, ©, 0},{1.50, 10, ©, ©, 0},{1.52, 18, ©, O, 0},{1.54, 18, ©, 8, 0},

{1.56, 10, @, ©, 0},{1.58, 10, ©, 0, 0},{1.60, 10, ©, 0, 0},{1.62, 10, ©, 0, ©},{1.64, 10, 0, 0, 0},{1.66, ©, ©, 0, O},

{1.68 ,0 ,0 ,0 ,0},{1.70 ,0 ,0 ,0 ,0},{1.72, 0, p, @, ©}};

Cadence- 113 steps per minute

First Heel @ .18 s

Last Toe @ 1.66 s

heel times[0.18, 1.12]

toe times[0.7, 1.66]

step times[0.52, 0.5399999999999998]
swing times[0.42000000000000015]
avg swing time 0.42

avg step time 0.53

Department of Electrical and Computer Engineering 35

Test 2

i{e,1,1,1,1},{.02,0,1,1,1},{.04,0,0,0,1},{.96,0,0,0,0},{.08,1,0,0,0},{.1,1,1,1,0},{.12,1,1,1,1},{.14,0,1,1,1},{.16,0,0,0,1},
{-18,6,0,8,6},{ 2 1)6 ele}J{ 22)1)]')1)8}){'24J1)1)1)1}J{'26)9)1J1)1}){' 8,0,6,6,1},{-38,6,6,6,9},{-32,1,9,6,@},{.34,1,1,1,0},
{.36,1,1,1,1},{.38,0,1,1,1},{.40,0,0,0,1},{.42,0,0,0,0},{.44,1,0,0,0},{.46,1,1,1,0},{.48,1,1,1,1},{.50,0,1,1,1}};

Cadence - 2999 steps per minute

First heel @ .12 s

Last toe @ .5s

heel times[0.12, 0.24, 0.36, 0.48]

toe times[0.14, 0.26, 0.38, 0.5]

step times[0.020000000000000018, 0.020000000000000018, 0.020000000000000018, 0.020000000000000018]
swing times[0.09999999999999998, 0.09999999999999998, 0.09999999999999998]

avg swing time 0.10

avg step time 0.02

Should throw errors for fast cadence, as well as mismatched step and swing time

Department of Electrical and Computer Engineering 36

JNMassAmhe

GUI

Vol On-Ankle
oltage
Insole weight infg I
‘ Accele{ometer Microcontroller
Pressure
Sensors
I E— Power
Power ‘ Supply ‘ Bluetooth
Sensor &
Accelerometer data
USER On-Ankle
) Data
app
feednck GUI Processing &
Algorithms

Department of Electrical and Computer Engineering 37

Inputs for Mobile Application

Sensor 1,2...n -> force (N) at given time (sec)

AR, T Lo 5

Average force (N) applied at given time (sec)

Time between step (sec)

Distance foot swings outside starting stance (cm)

Height above ground during step (cm)

Height above ground (cm)

Stride length per step (meter)

Department of Electrical and Computer Engineering 38

UI Mockup

V4l o=

SWAG (1]

Menu

Arch Type

Gait Cycle Analysis

Results

Setup

Arch Type

0753

Press start to begin and stand still

Start

Gait Cycle

Press start to begin and take 5 steps

—sen)

L R

Drag to view over time

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla
gquam velit, vulputate eu pharetra nec, mattis ac neque.

Click to learn more

Things To Note

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla
quam velit, vulputate eu pharetra nec, mattis ac neque. Lorem
ipsum dolor sit amet, consectetur adipiscing elit. Nulla quam velit,
vulputate eu pharetra nec, mattis ac neque. pharetra nec, mattis
ac neque

Send results to health care professional

Click to learn more

Department of Electrical and Computer Engineering

39

UI Mockup

Setup Parameters Progress
Bluetooth Connected? (21 Backto Parameters
Left Foot 9 vy . .
= Stride Duration

Right Foot 9

nds)

s
1

Stride Duration (secon

T T T T T T T
%0 S0 190 150 2.00 250 100
Time in Walking (hours)

Department of Electrical and Computer Engineering 40

UI Mockup

>

Progress Patients

(::1 Back to Parameters

oo

Heel Strike B e Y

oo o ¥
) co act@exampie.corr
136% 132%
2 O
gy Jomooe 0 e
122% contact@example.cor L4
O 118%
O
B John Doe 10 <~/¥,
contact@example.corr L’\l
100% (ideal)
John Doe S
08121 0812 08723 10/02 B econ 0] 3/:7

Department of Electrical and Computer Engineering 41

Heat Map Generation

& e 20x60 Two Dimensional Array
e
P~ 1.09x 1.02x
\ e Points in between sensors 1.18x 1.14x 1.15x
. 1.30x 1.20x 1.15x
approximated by values taken at 134 199 128 128
/ sensors and center of gravity 1.41x 1.39x 1.37x 1.30x
O B e Populate 2d array with values /
v correlating to the data read at sensor
pd locations
X = o
= ot i
H |
Department of Electrical and Computer Engineering 42

JN\N1assAmhe
Gait Cycle

Input: Force for each sensor at time t
Output: Color representation of force distribution
over time

—)

Department of Electrical and Computer Engineering 43

Tracking Progress on App

= Parameters will be visually represented by graphs
= Show average vs calculated
- Example (time between steps):

¢ Average 510" Male
Time $ & & & ©
o o ¢ o o ¢ User results
1 2 3 4

5

Department of Electrical and Computer Engineering 44

CDR Deliverables

« Integrate accelerometers

= Determine optimal location on foot to place
Sensors

= Establish bluetooth communication between
mobile device and microcontroller

« Complete data processing algorithms
« Completed Android GUI

« End to end integration of final system

Department of Electrical and Computer Engineering 45

TMassAmbhe
Timeline

December/January ebruary Erch ril

Accelerometer Algorithms Completed algorithms
Accelerometer Integration Assemble insole Finalize Insole Design ‘
isual Analxtics Code Finalize App Design
Accelerometer Integration / Bluetooth CommunicationfPCB Design Finalize Anklet Design |

Department of Electrical and Computer Engineering 46

Thank You!

Questions?

Department of Electrical and Computer Engineering 47

