

AW-CB295NF

IEEE 802.11a/b/g/n/ac Wireless LAN 2T2R and Bluetooth 4.2 Combo Module (M.2 2230)

<u>Datasheet</u> AZUreWave

Rev. 10

B1

(Standard)

Revision History

Revision	Date	Description	Initials	Approved
Version 0.1	2016/9/19	Initial Version	N.C. Chen	Chihhao Liao
Version 0.2	2016/11/01	Update Specifications Table Output power Receive Sensitivity	N.C. Chen	Chihhao Liao
Version 0.3	2017/02/21	Update Specifications Table Bluetooth Receive Sensitivity	N.C. Chen	Chihhao Liao
Version 0.4	2017/04/17	Update Specifications Table WLAN Receive Sensitivity ESD Specifications	N.C. Chen	Chihhao Liao
Version 0.5	2017/07/05	Update Specifications Table	N.C. Chen	Chihhao Liao
Version 0.6	2017/09/15	Update Mechanical Information	N.C. Chen	Chihhao Liao
Version 0.7	2017/09/25	Update General Description	N.C. Chen	Chihhao Liao
Version 0.8	2017/10/11	Add 5.5 PCIe PERST# Timing Sequence	N.C. Chen	Chihhao Liao
Version 0.9	2017/12/15	Changed document format Add power off sequence	N.C. Chen	Chihhao Liao
Version 10	2018/6/06	Update power off sequence	N.C. Chen	Chihhao Liao

Table of Contents

Revision History	2
Table of Contents	3
1.Introduction	4
1.1 Product Overview	4
1.2 Features	5
1.2.1 WLAN	5
1.2.2 Bluetooth	6
1.3 Block Diagram	6
1.4 Specifications Table	7
1.4.1 General	7
1.4.2 WLAN	7
1.4.3 Bluetooth	9
1.4.4 Operating Conditions	9
2. Pin Definition	
2.1 Pin Map	11
2.2 Pin Table	12
3. Electrical Characteristics	
3.1 Absolute Maximum Ratings	14
3.2 Recommended Operating Conditions	14
3.3 Digital IO Pin DC Characteristics	14
3.4 LED Mode Behavior	15
3.5 Power up Timing Sequence	15
3.6 Power Consumption ⁽²⁾	21
3.6.1 WLAN	21
3.6.2 Bluetooth	21
4. Mechanical Information	22
4.1 Mechanical Drawing	22
4.2 PCB Footprint	23
5. Packaging Information	24

1. Introduction

1.1 Product Overview

AzureWave Technologies, Inc. introduces the pioneer of the IEEE 802.11 a/b/g/n/ac WIFI with Bluetooth 4.2 combo M.2 module --- AW-CB295NF. The AW-CB295NF IEEE 802.11 a/b/g/n/ac PCIE WIFI with Bluetooth 4.2 combo M.2 module is a highly integrated single-chip MIMO (Multiple In, Multiple Out) wireless local area network (WLAN) solution to let users enjoy the digital content through the latest wireless technology without using the extra cables and cords. It combines a WLAN MAC, a 2T2R capable WLAN baseband, and RF in s single chip. It enables a high performance, cost effective, low power, compact solution that easily fits onto the PCI Express and USB M.2 module.

The AW-CB295NF baseband implements Multi-user Multiple Input, Multiple Output (MU-MIMO) Orthogonal Frequency Division Multiplexing (OFDM) with two transmit and two receive paths (2T2R). Features include two spatial stream transmissions, short Guard Interval (GI) of 400ns, spatial spreading, and support for variant channel bandwidth. Moreover, AW-CB295NF provides one spatial stream space-time block code (STBC), Transmit Beamforming (TxBF) and Low Density Parity Check (LDPC) to extend the range of transmission. At the receiver, extended range and good minimum sensitivity is achieved by having receiver diversity up to 2 antennas. As the recipient, the AW-CB295NF also supports explicit sounding packet feedback that helps senders with beamforming capability.

For legacy compatibility, Direct Sequence Spread Spectrum (DSSS), Complementary Code Keying (CCK) and OFDM baseband processing are included to support all IEEE 802.11b, 802.11g and 802.11a data rates. Differential phase shift keying modulation schemes, DBPSK and DQPSK with data scrambling capability are available, and CCK provides support for legacy data rates, with long or short preamble. The high speed FFT/IFFT paths, combined with BPSK, QPSK, 16QAM, 64QAM and 256QAM modulation of the individual subcarriers, and rate compatible coding rate of 1/2, 2/3, 3/4, and 5/6, provide up to 866.7Mbps for IEEE 802.11ac MIMO OFDM.

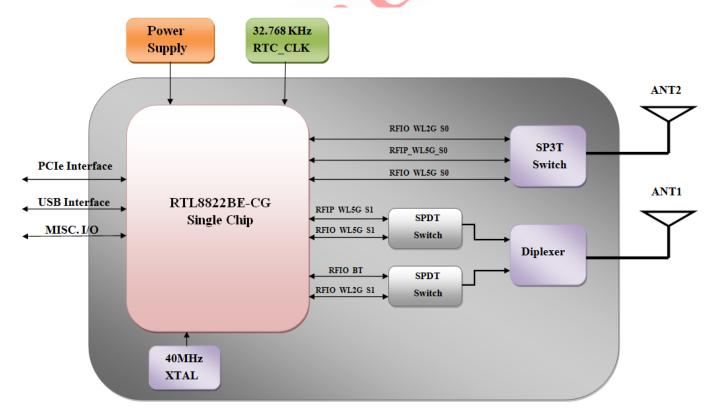
The RTL8822BE-CG builds in an enhanced signal detector, an adaptive frequency domain equalizer, and a soft-decision Viterbi decoder to alleviate severe multi-path effects and mutual interference in the reception of multiple streams. For better detection quality, receive diversity with Maximal-Ratio-Combine (MRC) applying up to two receive paths, and Maximum-Likelihood Detection (MLD) are implemented. Robust interference detection and suppression are provided to protect against Bluetooth, cordless phone, and microwave oven interference.

Receive vector diversity for multi-stream application is implemented for efficient utilization of the MIMO channel. Efficient IQ-imbalance, DC offset, phase noise, frequency offset, and timing offset compensations are provided for the radio frequency front-end.

1.2 Features

1.2.1 WLAN

- Support 802.11ac 2x2, Wave-2 compliant with MU-MIMO
- Complete 802.11n MIMO solution for 2.4GHz and 5Ghz band
- Maximum PHY data rate up to 173.3 Mbps using 20MHz bandwidth, 400Mbps using 40MHz bandwidth, and 866.7Mbps using 80MHz bandwidth.
- Backward compatible with 802.11a/b/g devices while operating at 802.11n data rates
- Backward compatible with 802.11a/n devices while operating at 802.11ac data rates.
- Complies with PCI Express Base Specification Revision 1.1
- PCIe LTR/L1.Off state supported
- IEEE 802.11a/b/g/n/ac compatible WLAN
- IEEE 802.11e QoS Enhancement (WMM)
- IEEE 802.11i (WPA, WPA2). Open, shared key, and pair-wise key authentication services
- IEEE 802.11h DFS, TPC, Spectrum Measurement
- WAPI (Wireless Authentication Privacy Infrastructure) certified.
- Cisco Compatible Extensions (CCX) for WLAN devices
- Frame aggregation for increased MAC efficiency (A-MSDU, A-MPDU)
- Low latency immediate Block Acknowledgement (BA)
- Multiple BSSID feature allows the RTL8822BE-CG to assume multiple MAC identities when used as a wireless bridge
- WiFi Direct supports wireless peer to peer applications.
- Supports Wake-On-WLAN via Magic Packet and Wake-up frame
- Transmit Beamforming
- Support S3/S4 AES/TKIP group key update
- Support Network List Offload
- CCA on secondary through RTS/CTS handshake.
- Support TCP/UDP/IP checksum offload
- Support LDPC
- Support STBC
- OFDM receive diversity with MRC using up to 2 receive paths. Switch diversity used for DSSS/CCK
- Fast receiver Automatic Gain Control (AGC)
- Maximum data rate 54Mbps in 802.11g, 300Mbps in 802.11n and 866.7bps in 802.11ac



1.2.2 Bluetooth

- Compatible with Bluetooth v2.1 and v3.0+EDR
- Support Bluetooth 4.1 system
- Support Bluetooth 4.2 LE Secure Connection by upper layer software upgrade
- Integrated MCU to execute Bluetooth protocol stack
- Supports all packet types in basic rate and enhanced data rate
- Supports piconets in a scatterrnet
- Supports Secure Simple Pairing
- Supports Low Power Mode (Sniff/Sniff Sub-rating)
- Enhanced BT/WIFI Coexistence Control to improve transmission quality in different profiles
- Dual Mode support: Simultaneous LE and BR/EDR
- Supports multiple Low Energy states
- Fast AGC control to improve receiving dynamic range
- fidentia Supports AFH to dynamically detect channel quality to improve transmission quality
- ntegrated internal Class 1, Class 2, and Class 3 PA
- Supports Bluetooth Low Energy
- Integrated 32K oscillator for power management

1.3 Block Diagram

A simplified block diagram of the AW-CB295NF module is depicted in the figure below

1.4 Specifications Table

1.4.1 General

Features	Description
Product Description	Wireless LAN & Bluetooth Combo M.2 Module
Major Chipset	RTL8822BE-CG
Host Interface	Wi-Fi : PCI-E , Bluetooth : USB
Di i	22mm x30mm x 2.33mm(Max)
Dimension	(Tolerance remarked in mechanical drawing)
Package	M.2 2230 (AE Key)
	I-PEX MHF4 Connector Receptacle (20449)
Antenna	1 : WiFi/Bluetooth → Tx/Rx
	2 : WiFi → TX/RX
Weight	2.3g

1.4.2 WLAN

Features	Description
WLAN Standard	IEEE 802.11 a/b/g/n/ac
WLAN VID/PID	10EC / B822
WLAN SVID/SPID	1A3B / 2951
Frequency Rage	WLAN: 2.4 GHz : 2.412 ~ 2.484 GHz 5 GHz: 4.915 ~5.925Ghz
Modulation	DSSS, OFDM, DBPSK, DQPSK, CCK, 16-QAM, 64-QAM for WLAN
Number of Channels	2.4GHz: USA, NORTH AMERICA, Canada and Taiwan – 1 ~ 11 China, Australia, Most European Countries – 1 ~ 13 Japan – 1 ~ 14(CH14 only for 802.11b) 802.11g: USA, Canada and Taiwan – 1 ~ 11 China, Australia, Most European Countries – 1 ~ 13

5GHz:

USA, EUROPE – 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 149, 153, 157, 161, 165

2.4G

2.46				
	Min	Тур	Max	Unit
11b (11Mbps) @EVM<35%	14	16	18	dBm
11g (54Mbps) @EVM≦-27 dB	12	14	16	dBm
11n (HT20 MCS7) @EVM≦-28 dB	11	13	15	dBm
11n (HT40 MCS7) @EVM≦-28 dB	11	13	15	dBm

Output Power (Board Level Limit)*

5G

50				
	Min	Тур	Max	Unit
11a (54Mbps) @EVM ≦-27 dB	11	13	15	dBm
11n (HT20 MCS7) @EVM≦-28 dB	10	12	14	dBm
11n (HT40 MCS7) @EVM≦-28 dB	10	12	14	dBm
11ac (VHT20 MCS8) @EVM≦-30 dB	9	11	13	dBm
11ac (VHT40 MCS9) @EVM≦-32 dB	8	10	12	dBm
11ac (VHT80 MCS9) @EVM≦-32 dB	8	10	12	dBm

2.4G

		Min	Тур	Max	Unit
11b (1	I1Mbps)		-80	-77	dBm
11g (5	54Mbps)		-69	-66	dBm
11n (l	HT20 MCS7)		-68	-65	dBm
11n (l	HT40 MCS7)		-65	-62	dBm

Receiver Sensitivity

5G

	Min	Тур	Max	Unit
11a (54Mbps)	-	-68	ı	dBm
11n (HT20 MCS7)	-	-67	-	dBm
11n (HT40 MCS7)	-	-64	-	dBm
11ac (VHT80 MCS9)	-	-54	-	dBm

	802.11b: 1, 2, 5.5, 11Mbps		
	802.11a/g: 6, 9, 12, 18, 24, 36, 48, 54Mbps		
	802.11n: up to 150Mbps-single		
Data Rate	802.11n: up to 300Mbps-2x2 MIMO		
	802.11ac:up to 192.6Mbps (20MHz channel)		
	802.11ac:up to 400Mbps (40MHz channel)		
	802.11ac:up to 866.7Mbps (80MHz channel)		
	◆ WAPI		
	♦ WEP 64-bit and 128-bit encryption with H/W TKIP processing		
Security	♦ WPA/WPA2 (Wi-Fi Protected Access)		
	◆ AES-CCMP hardware implementation as part of 802.11i security		
	standard		

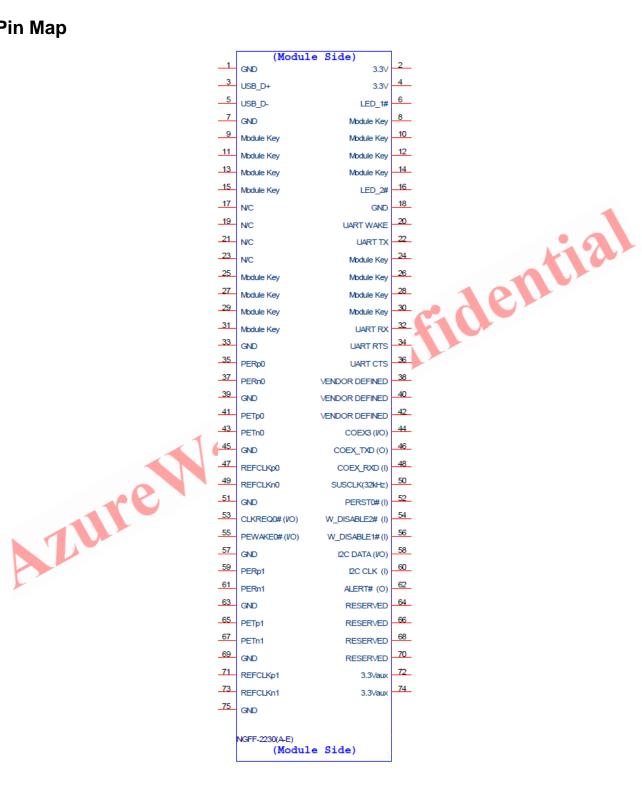
^{*} If you have any certification questions about output power please contact FAE directly.

1.4.3 Bluetooth

Features	Description
Bluetooth Standard	Bluetooth 2.1+Enhanced Data Rate (EDR) + BT4.2
Bluetooth VID/PID	13D3 / 3531
Frequency Rage	2402~2480MHz
Modulation	GFSK (1Mbps), Π/4 DQPSK (2Mbps) and 8DPSK (3Mbps) for Bluetooth
Output Power	0~6 dBm
Receiver Sensitivity	BER < 0.1% (Anritsu 8852B Tx -70 Bm)

1.4.4 Operating Conditions

Features	Description
Operating Conditions	
Voltage	power supply for host:3.3V
Operating Temperature	0~70 °C
Operating Humidity	< 60 %


/izureviave redifficiegles, inc.			
Storage Temperature	-40~85 °C		
Storage Humidity	< 85%		
ESD Protection			
Human Body Model	>1.5KV		
Changed Device Model			

AZUre Wave Confidential

2. Pin Definition

2.1 Pin Map

2.2 Pin Table

1 GND Ground. 2 3.3V 3.3V power supply 3 USB_D_P USB Differential signal 4 3.3V 3.3V power supply 5 USB_D_N USB Differential signal 6 LED_WLAN_L Active low signal. The indicators via LED. 7 GND Ground.	Input VCC Outpu	3.3V t/
3 USB_D_P USB Differential signal 4 3.3V 3.3V power supply 5 USB_D_N USB Differential signal 6 LED_WLAN_L Active low signal. The indicators via LED.	Output Input VCC Output Input Input Input Output Input Output Output GND Output GND	3.3V t/
4 3.3V 3.3V power supply 5 USB_D_N USB Differential signal 6 LED_WLAN_L Active low signal. The indicators via LED.	Input VCC Outpu Input e signal is used to provide status Outpu GND e signal is used to provide status	3.3V t/
4 3.3V 3.3V power supply 5 USB_D_N USB Differential signal 6 LED_WLAN_L Active low signal. The indicators via LED.	Input VCC Outpu Input e signal is used to provide status Outpu GND e signal is used to provide status	t/
5 USB_D_N USB Differential signal 6 LED_WLAN_L Active low signal. The indicators via LED.	Outpu Input e signal is used to provide status Outpu GND e signal is used to provide status	t/
6 LED_WLAN_L indicators via LED.	Input e signal is used to provide status Outpu GND e signal is used to provide status	
6 LED_WLAN_L indicators via LED.	Input e signal is used to provide status Outpu GND e signal is used to provide status	t 3.3V
6 LED_WLAN_L indicators via LED.	Outpu GND e signal is used to provide status	t 3.3V
	e signal is used to provide status	
I GIVD GIOUIIU.	e signal is used to provide status	
	Outpu	
16 LED_BT_L indicators via LED.		t 3.3V
17 NC Floating Pin, No conne	ect to anything. Floating	ng
18 GND Ground.	GND	
19 NC Floating Pin, No conne	ect to anything. Floating	ng
20 NC Floating Pin, No conne	ect to anything. Floating	ng
21 NC Floating Pin, No conne	ect to anything. Floating	ng
22 NC Floating Pin, No conne	ect to anything. Floating	ng
23 NC Floating Pin, No conne	ect to anything. Floating	ng
32 NC Floating Pin, No conne	ect to anything. Floating	ng
Ground.	GND	
34 NC Floating Pin, No conne	ect to anything. Floating	ng
PCIe Receive different	ial pair Input	
36 NC Floating Pin, No conne	ect to anything. Floating	ng
PCIe Receive different	ial pair Input	
38 NC Floating Pin, No conne	ect to anything. Floating	ng
39 GND Ground.	GND	
40 NC Floating Pin, No conne	ect to anything. Floating	ng
PETp0 PCIe Transmit different	tial pair Outpu	t
42 NC Floating Pin, No conne	ect to anything. Floating	ng

Pin No	Definition	Basic Description	Voltage	Туре
43	PETn0	PCIe Transmit differential pair	Output	
44	NC	Floating Pin, No connect to anything.	Floating	
45	GND	Ground.	GND	
46	NC	Floating Pin, No connect to anything.	Floating	
47	REFCLKP	PCIe Differential reference clock source: 100MHz+/- 300ppm	Input	
48	NC	Floating Pin, No connect to anything.	Floating	
49	REFCLKN	PCIe Differential reference clock source: 100MHz+/- 300ppm	Input	
50	SUSCLK	32.768KHz clock input	input	
51	GND	Ground.	GND	
52	PERST0	PCIe Reset signal: active low. When PERST# is asserted at power-on state, AW-CB295NF returns to a pre-defined reset state and is ready for initialization and configuration after the de-assertion of the PERST#	Input	3.3V
53	CLKREQn	Reference clock request signal.	Output	3.3V
54	BT_DISABLE	BT disable control.	Input	3.3V
55	PEWAKE0	Power management event: open drain, active low. Used to reactivate the PCle slot's main power rails and reference clocks.	Output Open-Drain	3.3V
56	W_DISABLE	WLAN disable control.	Input	3.3V
57	GND	Ground.	GND	
58	NC	Floating Pin, No connect to anything.	Floating	
59	NC	Floating Pin, No connect to anything.	Floating	
60	NC	Floating Pin, No connect to anything.	Floating	
61	NC	Floating Pin, No connect to anything.	Floating	
62	NC	Floating Pin, No connect to anything.	Floating	
63	GND	Ground.	GND	
64	NC	Floating Pin, No connect to anything.	Floating	
65	NC	Floating Pin, No connect to anything.	Floating	
66	NC	Floating Pin, No connect to anything.	Floating	
67	NC	Floating Pin, No connect to anything.	Floating	

Pin No	Definition	Basic Description	Voltage	Туре		
68	NC	Floating Pin, No connect to anything.	Floating			
69	GND	Ground.	GND			
70	NC	Floating Pin, No connect to anything.	Floating			
71	NC	Floating Pin, No connect to anything.	Floating			
72	72 3.3V 3.3V power supply					
73	NC	Floating Pin, No connect to anything.	Floating			
74	3.3V	3.3V power supply	VCC	3.3V		
75	GND	Ground.	GND			
3. Electrical Characteristics						
3. Electrical Characteristics						
3.1 Absolute Maximum Ratings						

3. Electrical Characteristics

3.1 Absolute Maximum Ratings

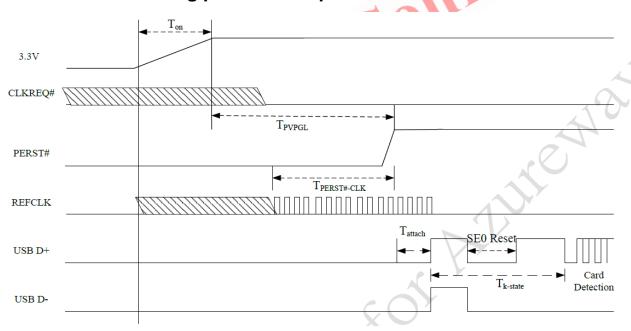
Symbol	Parameter	Minimum	Typical	Maximum	Unit
V _{dd33}	I/O voltage	3.0	3.3	3.6	V

3.2 Recommended Operating Conditions

V_{dd33}	I/O voltage	3.0	3.3	3.6	V
V_{dd33}	I/O voltage	3.0	3.3	3.6	V

3.3 Digital IO Pin DC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Unit
V _{IH}	Input high voltage	2.0	3.3	3.6	V
V_{IL}	Input low voltage		0	0.9	V
V _{OH}	Output high voltage	2.97		3.3	V
V _{OL}	Output low voltage	0		0.33	V



3.4 LED Mode Behavior

State	Definition	Interpretation		
OFF	The LED is emitting no light.	Radio is incapable of transmitting. This state is indicated when the card is not powered, the W_Disable# signal is asserted to disable the radio, or when the radio is disabled by software.		
ON	The LED is emitting light.	Radio is capable of transmitting. The LED should remain ON even if the radio is bit actually transmitting. For example, the LED remains ON during temporary radio disablements performed by the Mini Card of its own volition to do scanning, switching radios/bands, power-management, etc. If the card is in a state wherein it is possible that radio can begin transmitting without the system user performing any action, this LED should remain ON.		

3.5 Power up Timing Sequence

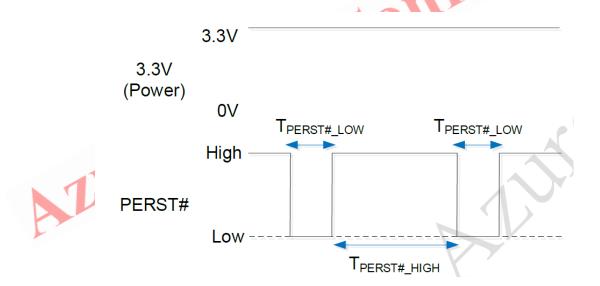
3.5.1. PCle Bus during power on sequence

T_{on}: The main power ramp up duration.

TPVPGL: Power valid PERST# input inactive.

TPERST#-CLK: Reference clock stable before PERST# inactive.

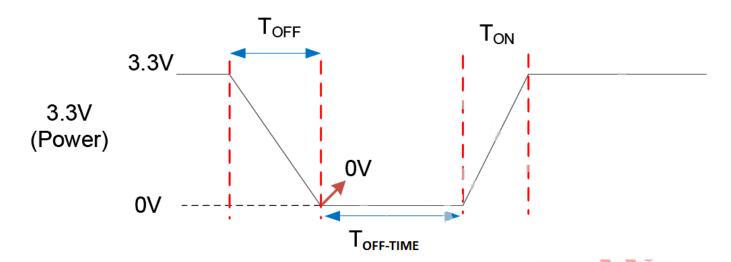
Tattach: The interval to turn on BT after PERST# de-asserted.


T_{k-state}: the duration from resister attached to USB host starting card detection procedure.

The typical timing range

Symbol	Unit	Min	Typical	Max
Ton	ms	0.5	1.5	5
TPVPGL	ms	Implementation specific; recommended		
TPERST#-CLK	us	100		
Tattach	ms	0.5	2	5
T _{k-state}	ms	50	250	1-1

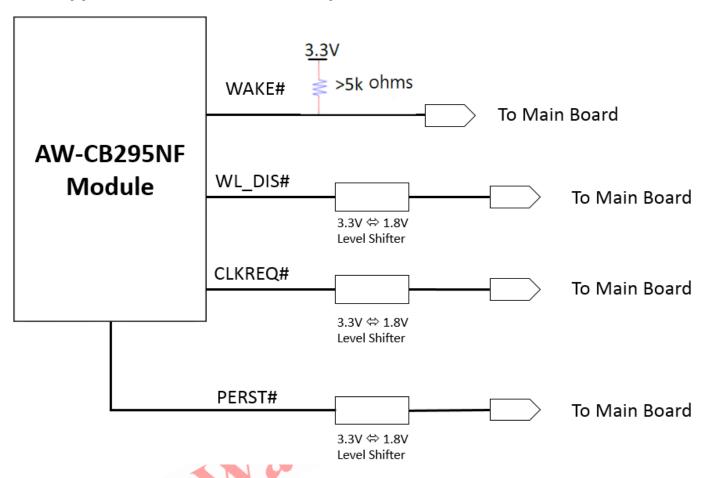
3.5.2 PCIe PERST# Timing Sequence



PCIE PERST# Timing Parameters

	Min	Typical	Max	Unit	Description
T PERST#_LOW	6	10	Х	ms	PERST# low duration
T PERST#_HIGH	400	500	Х	ms	PERST# high duration

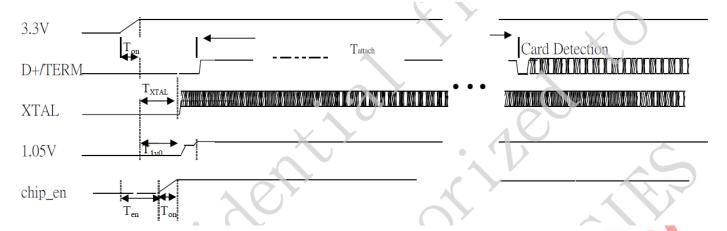
3.5.3 Power off Sequence



Power off Timing Timing Parameters

Symbol	Unit	Min	Typical	Max
Toff	ms	5	20	50
Toff-time	Ms	500		
Ton	Ms	0.5	1.5	5
AZN	re			

3.5.4 Application circuit for 1.8V I/O platform



3.5.5 PCle platform power rail requirements

3.3V Power range	3.3V Ripple	3.3V Note	Rise t	ime
olov i olivoi ruingo	olo i imppio		Min	Max
+/- 0.165V	300mVpp@ switching frequency > 1MHz		1ms	5ms

3.5.6 USB Power on Sequence

Ton: The main power/chip_en ramp up duration.

T_{attach}: USB attach state. The duration from resistor attached to USB host starting card detection procedure.

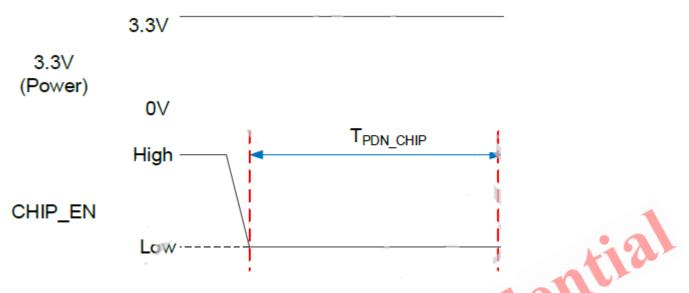
Txtal: XTAL starts.

Ten: Interval between the rising point of 3.3V and chip_en.

Power on Flow Description

After the main 3.3V ramp up, the internal power on reset is released by the power ready detection circuit and the power management unit is enabled. The power management unit enables the internal regulator and clock circuits.

The power management unit also enables the USB circuits.


USB analog circuits attach resisters to indicate the insertion of the USB device.

	Unit	Min	Typical	Max
Ton	ms	1	1.5	5
Txtal	ms	-	1.5	8
Tattach	ms	100	250	-
T1v0	Ms	-	3	11
Ten	ms	0	0	5

USB Power on timing parameters

3.5.7 USB Power off Sequence

	Min	Typical	Max	Unit	Description
T _{PDN_CHIP}	100	100	Х	ms	CHIP_EN keep low duration

3.5.8 Platform State Transitions

3.3V Power range	3.3V Ripple	3.3V Noise	Rise time	
olev i eller rallige		0.01 110.00	Min	Max
+/-0.165V	300mVpp@ sv	vitching frequency > 1MHz	1ms	5ms

USB Platform power rail requirements

3.6 Power Consumption

3.6.1 WLAN

Static Test

Mode		Disable	e ASPM	L1 Mode		
		2.4G	5G	2.4G	5G	
WLAN RF OFF		32.5		6.7		
No connection with	AVG	40.6		15.3		
wireless AP	MAX	255.1		209.4		
Connection AP	AVG	88.1	58.4	67.5	39	
Connection AP	MAX	162.5	166.5	154.3	123.7	

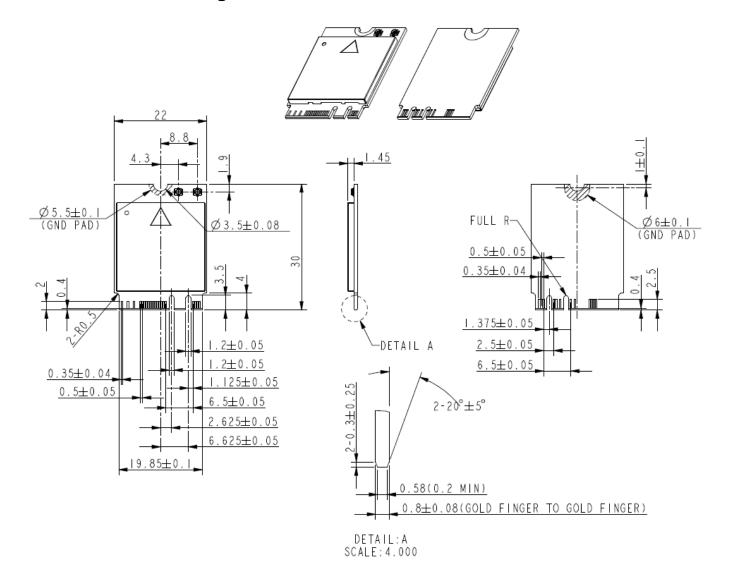
Unit: mA

Dynamic Test

Band	Mode	BW (MHz)	Link Speed	Transmit		Receive	
(GHz)				Max.	Avg.	Max.	Avg.
2.4	802.11b	20	11M	270.0	257.9	168.1	162.7
	802.11n	20	144.5M	444.6	433.3	193.2	184.5
		40	300M	455.1	432.8	208.2	197.3
5	802.11n	20	144.5M	504.4	483.7	188.2	177.3
		40	300M	513.7	492.3	200.4	195.3
	802.11ac	20	173.5M	492.8	473.0	196.6	188.0
		40	400M	512.1	485.6	219.6	208.4
		80	867.0M	467.8	424.0	265.3	247.5

Unit: mA

3.6.2 Bluetooth						
No.	Mode	Voltage=3.3 V				
NO.		Max.	Avg.			
1	Bluetooth RF Off	11.5	7.3			
2	No Connection with any BT device	27.0	11.8			
3	Connect BT Device	35.5	22.7			
4	Transmit by BER 2.1	59.0	55.7			
5	Receiver by BER 2.1	48.8	46.2			


Unit: mA

^{*} The power consumption is based on Azurewave test environment, these data for reference only.

4. Mechanical Information

4.1 Mechanical Drawing

TOLERANCES UNLESS OTHERWISE SPECIFIED: ±0.15mm

4.2 PCB Footprint

AZurev

5. Packaging Information

AZUre Wave Confidential