

AW-CM389NF

IEEE 802.11 2X2 MIMO ac/a/b/g/n Wireless LAN + Bluetooth NGFF Module

<u>Datasheet</u>

Version 1.2

Inspired by wireless

Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

Document release	Date	Modification	Initials	Approved
Version0.1	2013/08/13	Initial version	Kai Wu	Chihhao Liao
Version0.2	2013/10/08	1. Update Pin Map 2. Update Interface Configuration straps	Alex Yu	Chihhao Liao
Version0.3	2013/11/07	 Update Pin Map Update Pin Definition Update Dimension 	Alex Yu	Chihhao Liao
Version0.4	2013/11/19	 Update "2 Electrical Characteristic" Update "3-1 SDIO Interface" Update "4 Pin Definition" Update "5 Mechanical Information" Add "2-2.1 The interface pins power supply" 	Alex Yu	Chihhao Liao
Version0.5	2013/12/03	Add "4 Pin Definition's Notes"	Alex Yu	Chihhao Liao
Version0.6	2013/12/05	Update "4 Pin Definition's Notes"	Alex Yu	Chihhao Liao
Version0.7	2013/12/11	1. Update "1-2 Block Diagram" 2. Update "5-2 Module Footprint"	Alex Yu	Chihhao Liao
Version0.8	2014/03/20	 Update "1-4 Bluetooth Standard" Update "5-1 Mechanical Information" Update "2-3 Clock Specification" Update "5-2 Module Footprint" Add "7. Shipping Information" 	Alex Yu	Chihhao Liao
Version0.9	2014/04/14	1. Update "1-4 Specifications Table" 2. Update "5-1 Mechanical Information"	Alex Yu	Chihhao Liao
Version 1.0	2015/01/24	 Update" Interface supports and combinations" Update "1-4 Specifications Table" Update "4. Pin Definitions" 	Alex Yu	Chihhao Liao
Version 1.1	2015/10/21	 Update" Interface supports and combinations Modify operating temperature Support BT4.2 	Peter Chen	Chihhao Liao
Version 1.2	2016/08/15	Remove NFC	Peter Chen	Daniel Lee

Inspired by wireless

Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and

1. General Description 1-1. Product Overview and Functional Description

AzureWave Technologies, Inc. introduces the IEEE 802.11ac/a/b/g/n 2X2 MIMO WLAN & Bluetooth NGFF module --- AW-CM389NF. The module is targeted to mobile devices including Notebook, TV, Tablet and Gaming Device which need small package module, low power consumption, multiple interfaces and OS support. By using AW-CM389NF, the customers can easily enable the Wi-Fi, and BT embedded applications with the benefits of high design flexibility, short development cycle, and quick time-to-market.

Compliance with the IEEE 802.11ac/a/b/g/n standard, the AW-CM389NF uses Direct Sequence Spread Spectrum (DSSS), Orthogonal Frequency Division Multiplexing (OFDM), DBPSK, DQPSK, CCK and QAM baseband modulation technologies. A high level of integration and full implementation of the power management functions specified in the IEEE 802.11 standard minimize the system power requirements by using AW-CM389NF. In addition to the support of WPA/WPA2 and WEP 64-bit and 128-bit encryption, the AW-CM389NF also supports the IEEE 802.11i security standard through the implementation of Advanced Encryption Standard (AES)/Counter Mode CBC-MAC Protocol (CCMP), Wired Equivalent Privacy (WEP) with Temporal Key Integrity Protocol (TKIP), Advanced Encryption Standard (AES)/Cipher-Based Message Authentication Code (CMAC), and WLAN Authentication and Privacy Infrastructure (WAPI) security mechanisms.

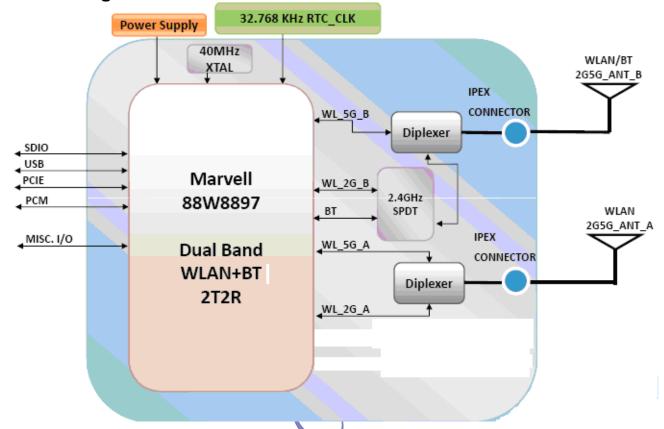
For the video, voice and multimedia applications the AW-CM389NF support **802.11e Quality of Service** (**QoS**). The device also supports **802.11h Dynamic Frequency Selection (DFS)** for detecting radar pulses when operating in the 5GHz range.

For Bluetooth operation, AW-CM389NF is Bluetooth 4.2 (supports Low Energy).

AW-CM389NF supports **SDIO**, **PCIE**, **USB**, and high speed **UART interfaces** for WLAN and Bluetooth to the host processor.

AW-CM389NF is suitable for multiple mobile processors for different applications with the support cellular phone co-existence.

AW-CM389NF module adopts Marvell's latest highly-integrated dual-band WLAN & Bluetooth SoC---88W8897. All the other components are implemented by all means to reach the mechanical specification required.


Inspired by wireless

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

1-2. Block Diagram

Note: Interface supports and combinations as shown below:

Scenario	WLAN	ВТ	BT_AMPS	Firmware Download I/F	Firmware Download Mode	Configuration*
1	SDIO	SDIO	¢	SDIO	Serial	CON[3:0]=b'0001
2	SDIO	SDIO	SDIO	SDIO	Serial	CON[3:0]=b'0111
3	PCIe	UART		PCIe + UART	Parallel	CON[3:0]=b'1111
4	PCle	UART		PCIe or UART	Serial	CON[3:0]=b'1100
5	PCle	USB	USB	PCle	Serial	CON[3:0]=b'1110

Configuration	Pin No	Pin Name
CON[3]	13	CONFIG_HOST[3]
CON[2]	10	CONFIG_HOST[2]
CON[1]	9	CONFIG_HOST[1]
CON[0]	8	CONFIG_HOST[0]

Inspired by wireless

Confidential

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
 - Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

1-3. Key feature:

- Small footprint: 12mm(L) x 16mm(W) x 1.4 mm(H)
- SDIO3.0, G-SPI, USB interfaces support for WLAN
- High speed UART, PCM/Inter-IC Sound(I2S) and SDIO3.0, USB for Bluetooth
- Bluetooth 4.2 complaint with Bluetooth 2.1 + Enhanced Data Rate (EDR)
- Audio Codec interface support
- Cellular phone co-existence support
- Multiple power saving modes for low power consumption
- IEEE 802.11i for advanced security
- Quality of Service (QoS) support for multimedia applications
- Drip-in WLAN Linux drivers are Android ready and validated on Android based systems.
- Support for Linux kernel versions up to 2.6.32.
- Support for BlueZ v4.47 Bluetooth profiles stack used in Android Éclair
- Simultaneous AP-STA
- Support China WAPI
- Lead-free design

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

1-4. Specifications Table

lodel Name	AW-CM389NF
roduct Description	2x2 MIMO Wireless LAN + Bluetooth Combo Module
/LAN Standard	IEEE 802.11 a/b/g/n/ac, Wi-Fi compliant
luetooth Standard	Bluetooth 4.2 complaint with Bluetooth 2.1+Enhanced Data Rate (EDR
lost Interface	USB 2.0 for WLAN and Bluetooth
lajor Chipset	Marvell 88W8897
imension	12mm x 16mm x 1.4mm
/eight ·	TBD
lackage	LGA
operating Conditions	
oltage	3.3V+- 10%
emperature	Operating: -30 ~ 85°C ; Storage: -40 ~ 85°C
lectrical Specifications	
	2.4 GHz ISM radio band / 5 GHz Unlicensed National Information Infrastructure (U-NII) band
lumber of Channels	802.11a: USA, Taiwan – 12/4 Most European Countries –19 Japan – 4 802.11b: USA, Canada and Taiwan – 11 Most European Countries – 13 France – 4 802.11g: USA, Canada and Taiwan – 11 Most European Countries – 13 Japan – 13 802.11n(HT20): Channel 1~13(2412~2472) 802.11n(HT40): Channel 1~7(2422~2452)
Iodulation	DSSS, OFDM, DBPSK, DQPSK, CCK, 16-QAM, 64-QAM and 256-QAM WLAN GFSK (1Mbps), Π/4 DQPSK (2Mbps) and 8DPSK (3Mbps) for Bluetooth WLAN G band: 11b:16dBm +/- 2dBm(11M) 11g:14dBm +/- 2dBm (54M) 11n:HT20 13dBm +/- 2dBm(MCS7) HT40 11dBm +/- 2dBm(MCS7)
Putput Power	WLAN A band: 11a: 13dBm +/- 2dBm(54M) 11n:HT20 12dBm +/- 2dBm(MCS7) HT40 10dBm +/- 2dBm(MCS7) 11ac: 8dBm +/- 2dBm(MCS9) Bluetooth: Class 2
	Main Connector: WLAN Aux Connector: WLAN + BT
red by wireless	Main Connector: WLAN Aux Connector: WLAN + BI

Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and

Receive Sensitivity	WLAN G band : 11b:-83dBm (11M) 11g:-72dBm (54M) 11n:HT20 -68dBm (MCS7) HT40 -65dBm (MCS7) WLAN A band: 11a: -67dBm (54M) 11n:HT20 -67dBm (MCS7) HT40 -64dBm(MCS7) 11ac: -54dBm(MCS9) Bluetooth: DH1:-70dBm
	3DH5:-70dBm
Medium Access Protocol	CSMA/CA with ACK
Data Rates	WLAN 802.11b: 1, 2, 5.5, 11Mbps 802.11a/g: 6, 9, 12, 18, 24, 36, 48, 54Mbps 802.11n: up to 150Mbps-single 802.11n: up to 300Mbps-2x2 MIMO 802.11ac:up to 192.6Mbps (20MHz channel) 802.11ac:up to 400Mbps (40MHz channel) 802.11ac:up to 866.7Mbps (80MHz channel) Bluetooth Bluetooth
Power Consumption	TBD
Operating Range	Open Space: ~300m ;Indoor: ~100m for WLAN Minimum 10 m indoor for Bluetooth The transmission speed may vary according to the environment)
Security	 WAPI WEP 64-bit and 128-bit encryption with H/W TKIP processing WPA/WPA2 (Wi-Fi Protected Access) AES-CCMP hardware implementation as part of 802.11i security standard
Operating System Compatibility	Linux(Android), Windows, More information please contact Azurewave FAE.
Co-Existence	Bluetooth and cell phone(GSM/DCS/WCDMA/UMTS/3G) co-existence

AUX

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

2. Electrical Characteristic 2-1. Absolute Maximum Ratings

Symbol	Parameter	Condition	Min	Тур	Max	Units
				1.8	2.2	
Pin73/ VIO	Host I/O power supply			2.5	3.0	V
				3.3	4.0	
Pin44/ VIO_SD	SDIO power supply			1.8	2.2	V
FII144/ VIO_3D				3.3	4.0	V
Pin5/ 3.3V	LDO VBAT input			3.3	5.0	V
Pin72/ 3V3_USB	LDO USB VBAT input			3.3	4.0	V
Pin4/ 3.3V	LDO RF VBAT input			3.3	4.0	V

2-2. Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Units
	1.8V/2.5V/3.3V digital		1.62	1.8	1.98	
Pin73/ VIO	° °	(2.25	2.5	2.75	V
	I/O power supply		2.97	3.3	3.63	
	1.8V/3.3V digital I/O		1.62	1.8	1.98	V
Pin44/ VIO_SD	SDIO power supply	$\sim -$	2.97	3.3	3.63	v
Pin5/ 3.3V	LDO VBAT input	$\langle \rangle$	2.7	3.3	5.0	V
Pin72/ 3V3_USB	LDO USB VBAT input	Y	2.97	3.3	3.63	V
Pin4/ 3.3V	LDO RF VBAT input		2.97	3.3	3.63	V

2-2.1 The interface pins power supply

The SDIO host interface pins are powered from the chip VIO_SD (pin 44) 1.8V/3.3V voltage supply.

- SDIO Defauld Speed, High Speed Modes (3.3V)
- SDR12, SDR25, SDR50 Modes (up to 100MHz) (1.8V)
- SDR104 Mode (208MHz) (1.8V)

The PCL Express host interface pins are powered from the module's chip LDO 1.8V voltage supply internal.

The USB2.0 host interface pins are powered from the 3V3_USB (pin 72) 3.3V voltage supply.

The UART Tx and Rx pins are powered from the VIO (pin 73) voltage supply.

The GPIO pins are powered from the VIO (pin 73) voltage supply (GPIO [9:8] from 3.3V voltage internal).

The clocked serial pins are powered from the module's chip LDO 1.8V voltage supply internal.

The audio pins are powered from the chip VIO (pin 73) voltage supply.

Inspired by wireless

Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

2-3. Clock Specifications

2-3.1 External Sleep Clock Timing

External Sleep Clock is necessary for two reasons:

1. Auto frequency Detection.

This is where the internal logic will bin the Ref clock source to figure out what is the reference clock

frequency is. This is done so no strapping is needed for telling 8897 what the ref clock input is.

2. Allow low current modes for BT to enter sleep modes such as sniff modes.

The AW-CM389NF external sleep clock pin is powered from the 3.3V voltage supply.

Symbol	Parameter	Min	Тур	Max	Units
CLK	Clock Frequency Range	32 or 32.768 - 50ppm	32 or 32.768	32 or 32.768 +50ppm	KHz
T _{HIGH}	Clock high time	40			ns
T _{LOW}	Clock low time	40	🔨		ns
T _{RISE}	Clock rise time			5	ns
T _{FALL}	Clock fall time			5	ns

2-4. Reset Configuration

The AW-CM389NF is reset to its default operating state under the following conditions:

- Power-on reset (POR)
- Software/Firmware reset
- External pin reset (RESETn)

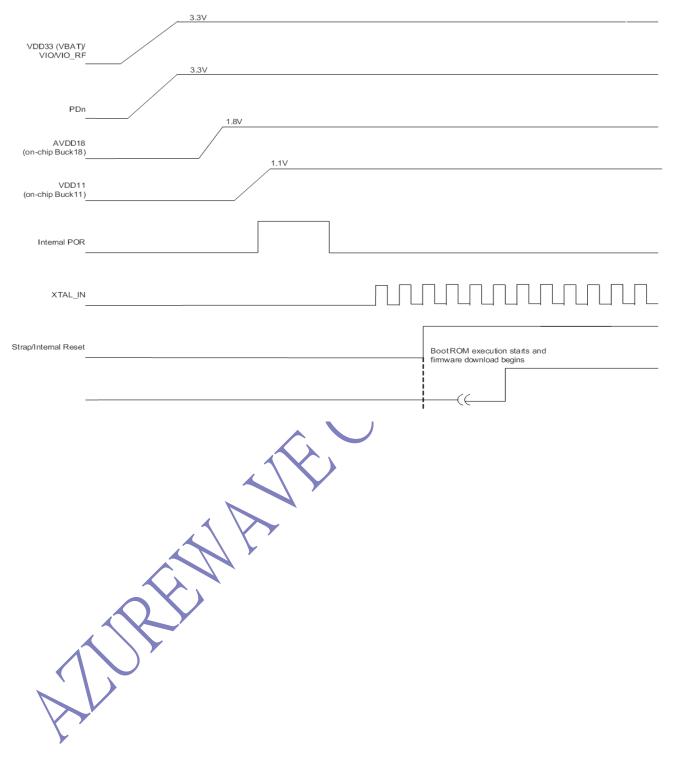
2-4-1. Internal Reset

The AW-CM389NF device is reset, and the internal CPU begins the boot sequence when any of the following internal reset events occur:

- Device receives power and VDDL supplies rise (triggers internal POR circuit)
- External pin (PDn) assertion will generate POR

2-4-2. External Reset

The AW-CM389NF is reset when PDn pin is asserted low and the internal CPU begins the boot sequence when the PDn pin transitions from low to high.


Inspired by wireless

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

2-5. Power up Timing Sequence

Inspired by wireless

Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

3. Host Interfaces

3-1. SDIO Interface

The AW-CM389NF supports a SDIO device interface that conforms to the industry standard SDIO Full-Speed card specification and allows a host controller using the SDIO bus protocol to access the Wireless module device.

The AW-CM389NF acts as the device on the SDIO bus. The host unit can access registers of the SDIO interface directly and can access shared memory in the device through the use of BARs and a DMA engine.

The SDIO device interface main features include:

Supports SDIO 3.0 Standard

On-chip memory used for CIS

Supports SPI, 1-bit SDIO, and 4-bit SDIO transfer modes

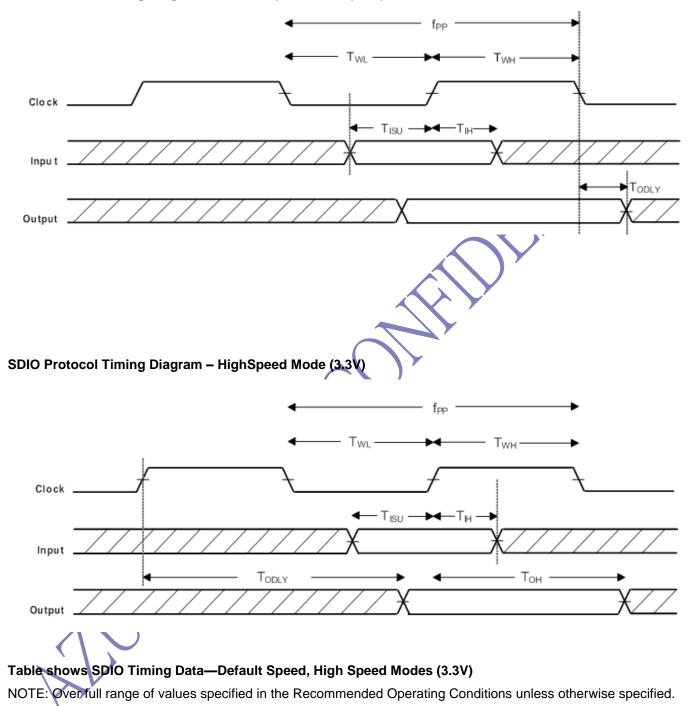
Special interrupt register for information exchange

Allows card to interrupt host

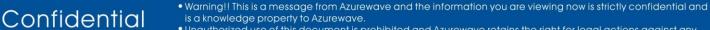
3-1-1. SDIO Interface Signal Description

	Signal	Туре	
Pin Name	Name		Description
SD_CLK	CLK	I/O	SDIO 1-bit mode: Clock SDIO SPI mode: Clock
SD_CMD	CMD	I/O	SDIO 1-bit mode: Command line SDIO SPI mode: Data input
SD_DAT[3]	DAT3	1/0	SDIO 4-bit mode: Data line bit [3] SDIO 1-bit mode: Not used SDIO SPI mode: Chip select (active low)
SD_DAT[2]	DAT2	7/0	SDIO 4-bit mode: Data line bit [2] or Read Wait (optional) SDIO 1-bit mode: Read Wait (optional) SDIO SPII mode: Reserved
SD_DAT[1]	DAT1	I/O	SDIO 4-bit mode: Data line bit [1] SDIO 1-bit mode: Interrupt SDIO SPI mode: Interrupt
SD_DAT[0]	DAT0	I/O	SDIO 4-bit mode: Data line bit [0] SDIO 1-bit mode: Data line SDIO SPI mode: Data output

Inspired by wireless



• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

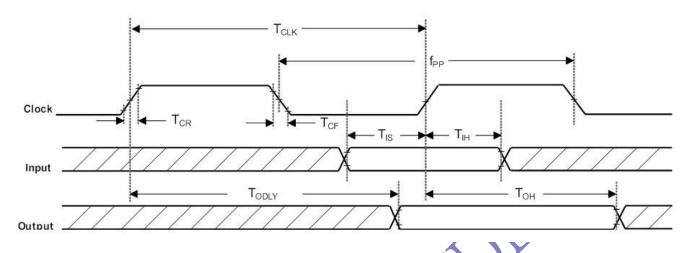


3-1-2. Default Speed, High Speed Modes (3.3V)

SDIO Protocol Timing Diagram – Default Speed Mode (3.3V)

Inspired by wireless

Sy mbol	Parameter	Con dit io n	Min	Тур	Ma x	Units
f _{PP}	Clock Frequency	Default Speed	0		25	MHz
		High Speed	0		50	MHz
T _{WL}	Clock Low Time	Default Speed	10			ns
		High Speed	7			ns
т _{wн}	Clock High Time	Default Speed	10			ns
		High Speed	7			ns
T _{ISU}	Input Setup Time	Default Speed	5			ns
		High Speed	6			ns
т _{IH}	Input Hold Time	Default Speed	5			ns
		High Speed	2			ns
T _{ODLY}	Output Delay Time	Default Speed			14	ns
	CL ≤ 40 pF (1 card)	High Speed		-1	4	ns
тон	Output Hold Time	High Speed	2.5			ns


Inspired by wireless

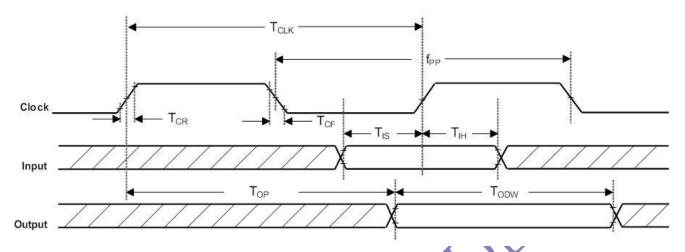
• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

3-1-3. SDR12, SDR25, SDR50 Modes (up to 100MHz) (1.8V)

SDIO Protocol Timing Diagram – SDR12, SDR25, SDR50 Modes (up to 100MHz) (1.8V)

Table shows SDIO Timing Data—SDR12,SDR25,SDR50 Modes (up to 100MHz) (1.8V)

Symbol	Parameter	Condit ion	Min	Тур	Max	Units
f _{PP}	Clock frequency	SDR12/25/50	25	55	100	MHz
T _{IS}	Input setup time	SDR12/25/50	3			ns
тн	Input hold time	SDR12/25/50	0.8		3 <u></u>	ns
T _{CLK}	Clock time	SDR12/25/50	10	05570	40	ns
T _{CR} , T _{CF}	Rise time, fall time T _{CR} , T _{CF} < 2 ns (max) at 100 MHz C _{CARD} = 10 pF	SDR12/25/50	-		0.2*T _{CLK}	ns
T _{ODLY}	Output delay time C _L ≤ 30 pF	SDR12/25/50			7.5	ns
Т _{ОН}	Output hold time $C_L = 15 \text{ pF}$	SDR12/25/50	1.5	-	1 4 2	ns



- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-1-4. SDR104 Modes (208MHz) (1.8V)

SDIO Protocol Timing Diagram – SDR104 Mode (208MHz)

Table shows SDIO Timing Data—SDR104 Mode (208MHz)

Symbol	Parameter	Condit ion	Min	Тур	Max	Units			
f _{PP}	Clock frequency	SDR104	0	1421	208	MHz			
T _{IS}	Input setup time	SDR104	1.4			ns			
т _н	Input hold time	SDR104	0.8			ns			
T _{CLK}	Clock time	SDR104	4.8	-		ns			
T _{CR} , T _{CF}	Rise time, fall time T _{CR} , T _{CF} < 0.96 ns (max) at 208 MHz C _{CARD} = 10 pF	SDR104			0.2*T _{CLK}	ns			
T _{OP}	Card output phase	SDR104	0	-	10	ns			
TODW	Output timing of variable data window	SDR104	2.88		223	ns			

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-2. PCI Express Interface

3-2-1 Differential Tx Output Electricals

Symbol	Paramete r	Min	Тур	Max	Unit s
UI	Unit interval Each UI is 400 ps ±300 PPM. UI does not account for SSC dictated variations.	399.98	400	400.12	ps
V _{Tx_DIFFpp}	Differential peak-to-peak output voltage $V_{Tx_DIFFpp} = 2^{*} V_{TX-D+} - V_{TX-D} $	0.800		1.2	V
VTx_DE_RATIO	De-emphasized differential output voltage (ratio)	-3.0	-3.5	-4.0	db
T _{RX_EYE}	Minimum Tx eye wid th	0.75			UI
T _{RX_EYE_MEDIAN_} MAX_JIT	Maximum time between jitter median and maximum deviation from median			0.125	UI
T _{TX_RISE} , T _{TX_FALL}	D+/D- Tx output rise/fall time	0.125			UI
VTX_CM_DC_ACTIV E_IDLE_DELTA	Absolute delta of DC common mode voltage during L0 and electrical idle	0-	-	100	mν
V _{Tx_CM_DC_LINE_} DE LTA	Absolute delta of DC common mode voltage between D+ and D-	0-	-	25	mV
VTx_IDLE_D IFF p	Electrical idle differential peak output voltage	0		20	mV
VTX_RCV_DETECT	Voltage change allowed during receiver detection			600	mV
V _{Tx_DC_CM}	TxDC common mode voltage			3.6	V
ITX_SHORT	Tx short circuit current limit			90	mA
T _{TX_IDLE_MIN}	Minimum time spent in electrical idle	50			UI
T _{TX_IDLE_SET_TO_}	Maximum time to transition to a valid electrical idle after sending an electrical idle ordered set			20	UI
T _{Tx_IDLE_TO_DIFF_} DATA	Maximum time to transition to valid Tx specifications after leaving an electrical idle condition			20	UI
RL _{Tx_DIFF}	Differential return loss	10			dB
RL _{Tx_CM}	Common mode return loss	6			dB
C _{Tx}	AC coupling capacitor	75		200	nF
T _{Crosstalk}	Crosstalk random timeout	0		1	ms

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and
- is a knowledge property to Azurewave. Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-2-2 Differential Rx Output Electricals

Sy m bol	Paramet er	Min	Тур	Max	Unit s
UI	Unit interval Each UI is 400 ps ±300 ppm. UI does not account for SSC dictated variations.	399.98	400	400.12	ps
V_{Rx_DIFFpp}	Differential peak-to-peak voltage $V_{Rx_{DIFFpp}} = 2^* V_{RX-D+} - V_{RX-D-} $	0.175		1.2	V
T _{Rx_EYE}	Minimum receiver eye width	0.4			UI
T _{RX_EYE_MEDIAN_MAX_} JIT	Maximum time between jitter median and maximum deviation from median			0.3	UI
V _{Rx_CM_ACp}	AC peak common mode input voltage			150	mV
RL _{Rx_DIFF}	Differential return loss	10			dB
RL _{Rx_CM}	Common mode return loss	6			dB
Z _{Rx_DIFF_DC}	DC differential input impedance	80	100	120	Ω
Z _{Rx_DC}	DC input impedance	40	50	60	Ω
Z _{Rx_HIGH_IMP_DC_POS}	Powered down DC input impedance positive	50			k
Z _{Rx_HIGH_IMP_DC_NEG}	Powered down DC input impedance negative	1			kΩ
V _{Rx_IDLE_DET_} DIFFpp	Electrical idle detect threshold	65		175	mV
T _{Rx_IDLE_DET_} DIFF_ENTERTIME	Unexpected electrical idle enter detect threshold integration time			10	ms
L _{Rx_SKEW}	Total skew		-2	0	ns

3-3. USB Interface

The USB device interface is compliant with the Universal Serial Bus Specification, Revision 2.0, April 27, 2000. A USB host uses the USB cable bus and the USB 2.0 device interface to communicate with the chip.

The main features of the USB device interface include:

High/full speed operation (480/12 Mbps)

Suspend/host resume/device resume (remote wake-up)

Built-in DMA engine that reduces interrupt loads on the embedded processor and reduces the system bus bandwidth requirement for serving the USB device operation

The USB 2.0 device interface is designed with 3.3V signal level pads.

Inspired by wireless

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

3-3-1. USB 2.0 Device Interface Description

Table shows the signal mapping between the AW-CM389NF and the USB Specification, Revision 2.0.

Pin Name	USB 2.0 Specification Pin Name	Description
Pin72/ 3V3_USB	VBUS	USB Bus Power Supply On-board regulator regulates voltage from VBUS level to voltage levels used by USB PHY.
	GND	USB Bus Ground Common ground on SoC device.
Pin70/ USB_DP	D+	USB Bus Data Positive. One of the differential data pair.
Pin69/ USB_DN	D-	USB Bus Data Negative. One of the differential data pair.

3-3-2. USB 2.0 Device Functional Description

The device controller uses internal Scatter/Gather DMA engine to transfer the transmit packet from internal SRAM to USB and the receive packet from USB to internal SRAM. The Device IN Endpoint DMA (DIEPDMAn) and Device OUT Endpoint DMA (DOEPDMAn) registers are used by the DMA engine to access the base descriptor. The application is interrupted after the programmed transfer size extracted from the descriptors is transmitted or received. By using registers, interrupts, and special data structures, the device controller can communicate with the device controller driver (application/software) about bus states, host request, and data transfer status. The device controller driver also has all of the routines to respond to the device framework commands issued by a USB host, so it controls the attachment, configuration, operation, and detachment of the device.

3-4. High-Speed UART Interface

The AW-CM389NF supports a high-speed Universal Asynchronous Receiver/Transmitter (UART) interface, compliant to the industry standard 16550 specification. High-speed baud rates are supported to provide the physical transport between the device and the host for exchanging Bluetooth data. Table shows the rates supported.

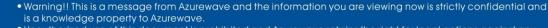
The UART interface features include:

FIFO mode permanently selected for transmit and receive operations

Two pins for transmit and receive operations

Two flow control pins

Interrupt triggers for low-power, high throughput operation


The UART interface operation includes:

Upload boot code to the internal CPU (for debug purposes)

Support diagnostic tests

Inspired by wireless

Confidential

Support data input/output operations for peripheral devices connected through a standard UART interface

UART Baud Rates Supported

Baud Rate					
1200	38400	460800	1500000	3000000	
2400	57600	500000	1843200	3250000	
4800	76800	921600	2000000	3692300	
9600	115200	1000000	2100000	4000000	
19200	230400	1382400	2764800		

3-4-1. UART Interface Signal Description

Table shows the standard UART signal names on the device.

Signal Name	16550 Standard Pin Name	Description
Data Bus		
UART_SIN	SIN	Serial data input from modem, data set, or peripheral device
UART_SOUT	SOUT	Serial data output from modem, data set, or peripheral device
Modem Control		
UART_RTSN	RTS	Request To Send output to modem, data set, or peripheral device (active low)
UART_CTSN	CTS	Clear To Send input from modem, data set, or peripheral device (active low)

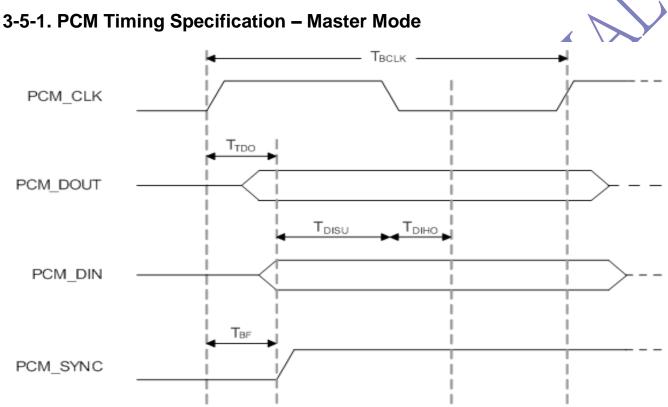
3-4-2. UART Interface Functional Description

3-3-2-1. Booting from UART

When booting from the UART, the AW-CM389NF device has the following requirements:

System Requirement	Description
Number of data bits	8 bits
Stop bits	1 bit
Parity	No parity
Baud Rate	115200

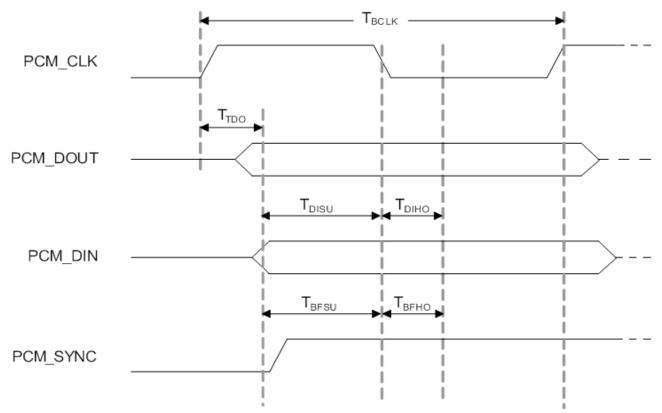
- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.



3-4-2-2. UART as Test Port

Test diagnostic programs may be uploaded to the CPU through the UART interface. During execution, the diagnostic program transmits performance and status information through the UART by performing a write to the PBU address space designated to the UART.

3-5. PCM Interface


		•				
Sy mbol	Parameter	Con diti on	Min	Тур	Max	Unit s
FBCLK				2/2.048		MHz
Duty Cycle _{BCLK}			0.4	0.5	0.6	
T _{BCLK} rise/fall				3		ns
T _{DO}					15	ns
T _{DIS U}			20			ns
TDHO			15			ns
T _{BF}					15	ns

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-5-2. PCM Timing Specification – Slave Mode

N 1

Symbol	Parameter	C ond ition	Min	Тур	Max	Unit s
F _{BCLK}				2/2.048		MHz
Duty Cycle _{BCLK}			0.4	0.5	0.6	
T _{BCLK} rise/fall				3		ns
T _{DO}					30	ns
T _{DISU}			15			ns
т _{ыно}			10			ns
T _{BFSU}			15			ns
T _{BFHO}			10			ns

Pr

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

4 Pin Definition

	Definition		
Pin No	Definition	Basic Description	Туре
1	TMS	JTAG controller select	
2	ТСК	JTAG test clock	
3	TDI	JTAG test data(input)	I
4	3.3V	3.3V Analog RF Power Supply	I
5	3.3V	3.3V VBAT system power supply input	I
6	GND	System Ground Pin	
7	TDO	JTAG test data(output)	0
8	CONFIG_HOST[0]	Configuration: CONFIG_HOST[0]	
9	CONFIG_HOST[1]	Configuration: CONFIG_HOST[1]	
10	CONFIG_HOST[2]	Configuration: CONFIG_HOST[2]	
11	GPIO[1]/LTE_SOUT	UART_LTE_SOUT (output)	I
12	GPIO[2]/LTE_SIN	UART_LTE_SIN (input)	I
13	CONFIG_HOST[3]	Configuration: CONFIG_HOST[3]	
14	GPIO[10]	GPIO[10] (input/output)	
15	NC	No Connect	
16	NC	No Connect	
17	GND	System Ground Pin	
18	NC	No Connect	
19	NC	No Connect	
20	GND	System Ground Pin	
21	NC	No Connect	
22	NC	No Connect	
23	GND	System Ground Pin	
24	NC	No Connect	
25	NC	No Connect	
26	GND	System Ground Pin	
27	SLP_CLK	Sleep Clock Input Used for WLAN and Bluetooth low- power modes. External sleep clock of 32.768 KHz must be used for auto reference clock calibration and for WLAN/Bluetooth low power operation.	I

Inspired by wireless

Confidential

Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

Pin No	Definition	Basic Description	Туре
28	GPIO[13]/BT IRQ(O)	GPIO[13] (input/output)	I/O
29	PCIE_WAKEn	PCIe wake signal (output) (active low)	0
30	PCIE_CLKREQn	PCIe clock request (input/output) (active low)	I/O
31	GPIO[12]/PCIE_PERSTn	PCIe host indication to reset the device (input) (active low)	I.
32	GND	System Ground Pin	
33	PCIE_RCLK_N	PCI Express Differential Clock Input—Negative	I
34	PCIE_RCLK_P	PCI Express Differential Clock Input—Positive	I
35	GND	System Ground Pin	
36	PCIE_TX_N	PCI Express Transmit Data—Negative	0
37	PCIE_TX_P	PCI Express Transmit Data—Positive	0
38	GND	System Ground Pin	
39	PCIE_RX_N	PCI Express Receive Data—Negative	I.
40	PCIE_RX_P	PCI Express Receive Data—Positive	I.
41	GND	System Ground Pin	
42	GPIO[0]/CLK_REQ	GPIO[0] (input/output)	0
43	GPIO[11]	GPIO[11] (input/output)	
44	VIO_SD	1.8V/3.3V Digital I/O SDIO Power Supply	I.
45	PDn	Full Power Down (input) (active low)	I.
46	GPIO[3]/WLAN IRQ(O)	GPIO[3] (input/output)	I.
47	SD_DAT[3]	SDIO Data line Bit[3]	I/O
48	SD_DAT[2]	SDIO Data line Bit[2]	I/O
49	SD_DAT[1]	SDIO Data line Bit[1]	I/O
50	SD_DAT[0]	SDIO Data line Bit[0]	I/O
51	SD_CMD	SDIO Command/response (input/output)	I/O
52	SD_CLK	SDIO Clock input	I.
53	NC	No Connect	
54	GPIO[6]	UART_CTSn (input)	I.
55	GPIO[4]	UART_SOUT (output)	0
56	GPIO[5]	UART_SIN (input)	I.
57	GPIO[7]	UART_RTSn (output)	0
58	GPIO[22]/PCM_SYNC	GPIO[22] (input/output)	I/O

Inspired by wireless

Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and

Pin No	Definition	Basic Description	Туре
59	GPIO[19]/PCM_IN	GPIO[19] (input/output)	I
60	GPIO[20]/PCM_OUT	GPIO[20] (input/output)	0
61	GPIO[21]/PCM_CLK	GPIO[21] (input/output)	I/O
62	GND	System Ground Pin	
63	GPIO[14]	GPIO[14] (input/output)	I/O
64	GPIO[8]/WLAN_LED	LED_OUT_WLAN (output)	0
65	GPIO[9]/BT_LED	LED_OUT_BT (output)	0
66	NC	No Connect	
67	NC	No Connect	
68	GND	System Ground Pin	
69	USB_DN	USB Serial Differential Data Negative	I/O
70	USB_DP	USB Serial Differential Data Positive	I/O
71	GND	System Ground Pin	
72	3V3_USB	3.3V USB Power Supply	I
73	VIO	Digital I/O Power Supply	I
74	GND	System Ground Pin	
75	GND	System Ground Pin	
76	GND	System Ground Pin	
77	GND	System Ground Pin	
78	GND	System Ground Pin	
79	GND	System Ground Pin	
80	GND	System Ground Pin	
81	GND	System Ground Pin	
82	GND	System Ground Pin	
83	GND	System Ground Pin	
84	GND	System Ground Pin	
85	GND	System Ground Pin	
86	GND	System Ground Pin	
87	GND	System Ground Pin	
88	GND	System Ground Pin	
89	GND	System Ground Pin	

Inspired by wireless

Confidential

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and
- is a knowledge property to Azurewave. Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

Pin No	Definition	Basic Description	Туре
90	GND	System Ground Pin	
91	GND	System Ground Pin	
92	GND	System Ground Pin	
93	GND	System Ground Pin	
94	GND	System Ground Pin	
95	GND	System Ground Pin	
96	GND	System Ground Pin	
G1	GND	System Ground Pin	
G2	GND	System Ground Pin	
G3	GND	System Ground Pin	
G4	GND	System Ground Pin	
G5	GND	System Ground Pin	
G6	GND	System Ground Pin	
G7	GND	System Ground Pin	
G8	GND	System Ground Pin	
G9	GND	System Ground Pin	
G10	GND	System Ground Pin	
G11	GND	System Ground Pin	
G12	GND	System Ground Pin	
G13	GND	System Ground Pin	
G14	GND	System Ground Pin	
G15	GND	System Ground Pin	
G16	GND	System Ground Pin	
G17	GND	System Ground Pin	
G18	GND	System Ground Pin	
G19	GND	System Ground Pin	
G20	GND	System Ground Pin	
G21	GND	System Ground Pin	
G22	GND	System Ground Pin	
G23	GND	System Ground Pin	
G24	GND	System Ground Pin	

Inspired by wireless

Confidential

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and
- is a knowledge property to Azurewave. Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

Pin No	Definition	Basic Description	Туре
G25	GND	System Ground Pin	
G26	GND	System Ground Pin	
G27	GND	System Ground Pin	
G28	GND	System Ground Pin	
G29	GND	System Ground Pin	
G30	GND	System Ground Pin	
G31	GND	System Ground Pin	
G32	GND	System Ground Pin	
G33	GND	System Ground Pin	
G34	GND	System Ground Pin	
G35	GND	System Ground Pin	
G36	GND	System Ground Pin	

Notes:

- 1. SDIO signals should have 50 ohm impedances.
- 2. For SDIO interface, 33ohm inline resistor may be needed to help with signal integrity.
- 3. For GPIO[8] ,it's internal pull up to VIO-RF(3.3V).
- 4. For GPIO[9] ,it's internal pull up to VIO-RF(3.3V
- 5. For PDn pin ,please pull up resistor(51k ohm) to host or VBAT(3V3).
- 6. For SDIO interface, the pull up value is between 10K to 100K ohm according to the SDIO v3.0 SPEC.
- 7. PCIE Impedance targets: Single-ended Z of 60 ohms +- 15%. Differential Impedance of ~100 ohm +- 20%.
- 8. USB Impedance targets: D+/D are differential and should have 90ohms impedance.
- 9. For GPIO[3] pin please pull up resistor(10k ohm) to VIO.

Inspired by wireless

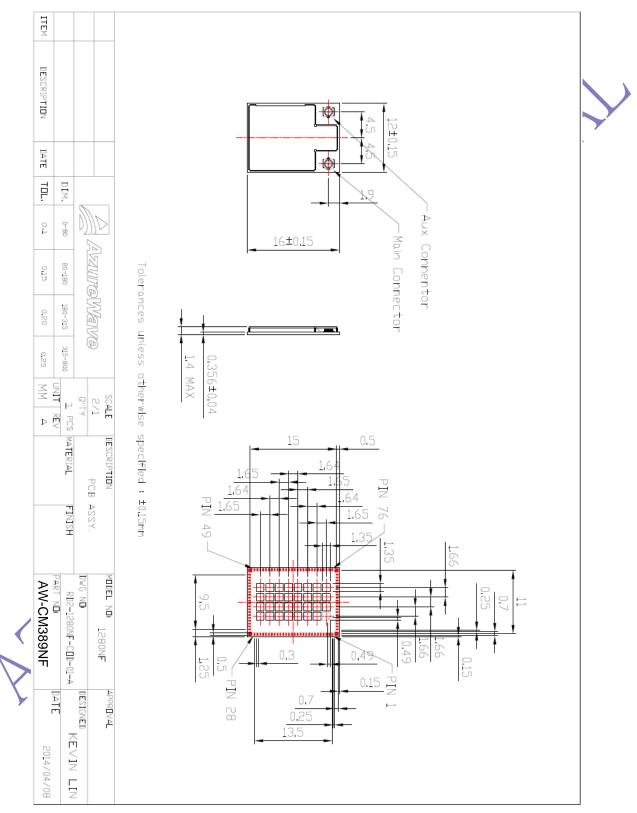
• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

4-1 Pin Map

	AW-CM389NF Top View Pin Map																					
		96	95	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80	79	78	77	
	gnd(g1)	GND	GND	GND	GND	QND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND(G4)
1*	TMS																					GND 76
2	TCK																					GND 75
3	TDI																					GND 74
4	3.3VRF		- Ç	35 GN	D			G	13 GI	ID.	[G	21 GM	ND)	1		G	29 GN	ND.	Ī	VIO 73
5	3.3VBAT																					3.3VUSB 72
6	GND																				GND 71	
7	TDO		Ĵ,	36 GN	D			G	14 GI	ND.	[G	22 GM	ND)			G	30 GN	ND)	I	USB_D+ 70
8	CONFIG_HOST[0]																					USB_D- 69
9	CONFIG_HOST[1]					•															•	GND 68
10	CONFIG_HOST[2]		3	37 GN	0			G	15 GI	ND.	[G	23 GI	ND)			G	31 GI	ND)	I	NC 67
11	GPIO[1] LTE_SOUT(0)																					NC 66
12	GPI0[2]LTE_SIN(I)																				•	GPIO[9]LED_BT 65
13	CONFIG_HOST[3]		Ĵ,	38.GN	D)			G	16 GI	ND.			G	24 GI	ND.			G	32 GI	ŴD.		GPIO[8]LED_WLAN 64
14	GPI0[10]																					GPIO[14] 63
15	NC										L										l	GND 62
16	NG		- â	39 GN	D:			G	17 Gł	ND:	[G	25 GM	ND:	1		G	33 GN	ŇD.	I	GPIO[21]/PCM_CLK 61
17	GND				-										-							GPIO[20]/PCM_OUT 60
18	NC										L										1	GPIO[19]/PCM_IN 59
19	NC		G	10 GI	ND:			G	18 GI	ND:	I		G	26 GM	ND:	1		G	34 GN	ŴD'	I	GPIO[22]/PCM_SYNC 58
20	GND									÷.										<u> </u>		GPIO[7]/UART RTSn 57
21	NC										L										1	GPIO(5)/UART SIN 56
22	NC		Ĝ	i11 GI	ND:			G	19 GI	ND:	[G	27 GM	ND.	1		G	35 GN	ND.	I	GPIO[4]/UART SOUT 55
23	GND																					GPIO[6]/UART CTSn 54
24	NC										ļ										Ļ	NC 53
25	NC		G	12 GI	ND:			G	20 Gł	ND.	[G	28 GM	ND)	1		G	36 GN	ND.	Ī	SDIO CLK 52
26	GND																					SDIO CMD 51
27	SLPCLK																				1	SDIO DATO 50
28	GPIO[13]/BT IRQ(O)																					SDIO DAT1 49
	GND(G2)	PCIE_WAKEn	PCIE_CLKREQN	GPIO[12]POIE_F	GND	POIE_ROLK_N	POIE_ROLK_P	GND	POIE_TX_N		GND		POIERX	GND	GPIO[0]CLK_R EQ	GPIO[11]	VIO_SD	PDn	GPIO(3)WLAN IRQ(0)	SDIO DAT3	SDIO DAT2	GND(G3)
		29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	

AW-CM389NF Ton View Pin Man

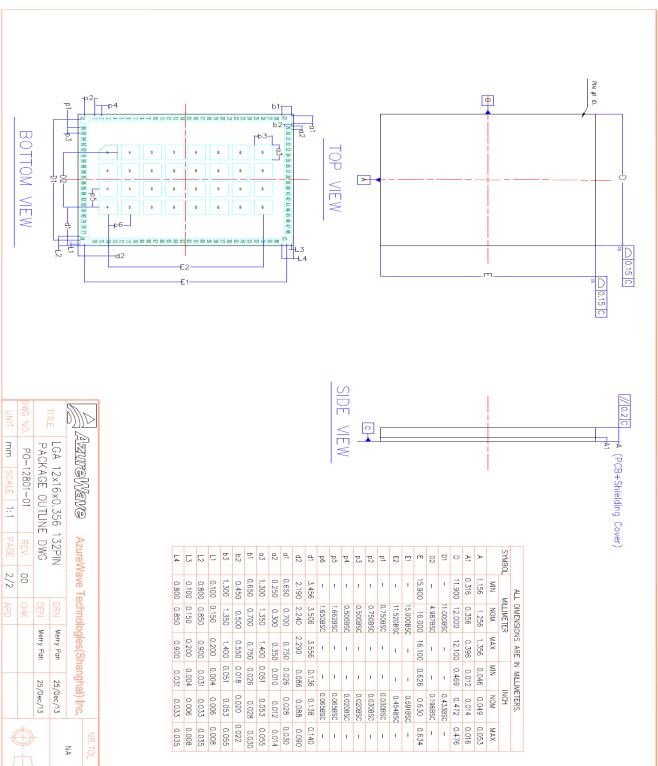
Inspired by wireless


Confidential

Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

5. Mechanical Information

5-1. Package Outline Drawing


Inspired by wireless

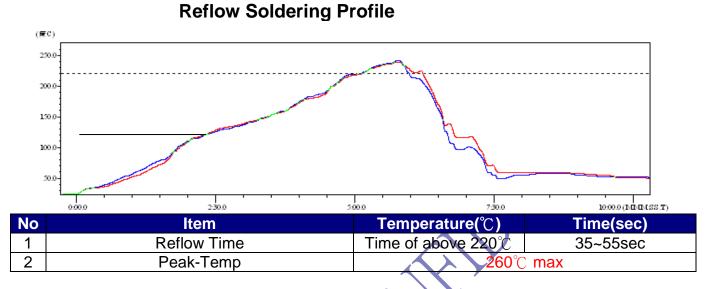
Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

5-2. Module Footprint

AW-CM389NF PCB Layout Footprint

Inspired by wireless


Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

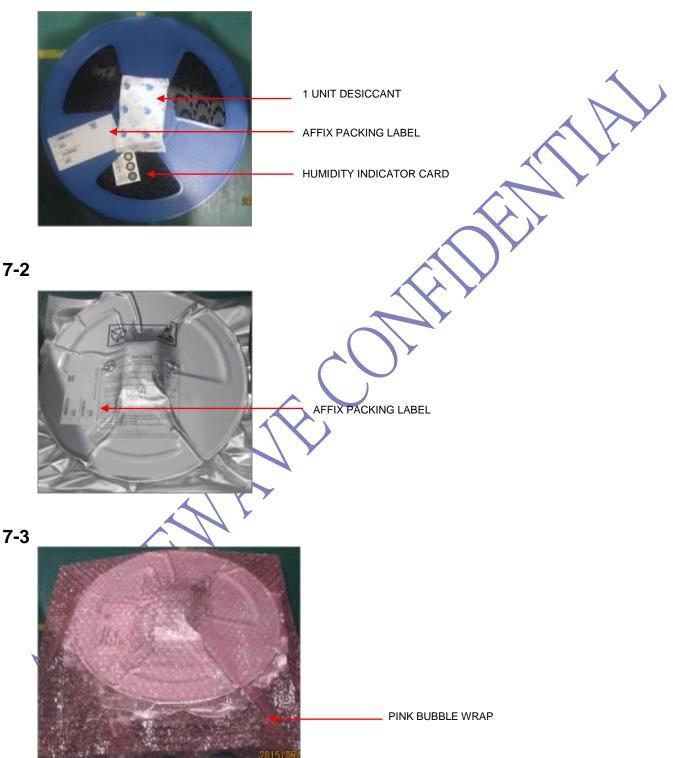
6. Package Information

6-1. Recommended Reflow Profile

Note:

- 1. Recommend to supply N_2 for reflow oven
- 2. N₂ atmosphere during reflow (O₂<300ppm)

Inspired by wireless


Confidential

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

7. Shipping Information

7-1

Inspired by wireless

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

7-4

1 carton = 5 boxes = 5 * 1,500pcs=7,500pcs

Inspired by wireless

Confidential

• Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.