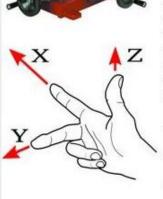
10 DAMN GOOD X2 MINI MILL IMPROVEMENTS GUARANTEED TO GIVE YOUR MACHINE A PERFORMANCE BOOST! (with video links to help you get started)

by Sergio Lares


cnc-minimill.com

1st Edition

December 2016

(Last Update: 7/8/2017)

ω, opt [Hz] 104	ωw [Hz] 42	rpm 2500	head ,1b 40	columm,1b 20			
Coordinate s	Position [inch]	Z p ⊕ 8	Y p ‡ 2.5	X p ↔ 6			
Applied Forces	P[lbf]	Z ® 1	Y ↓	X ↔ 50			
Moments	M, lbf-in	6	6	850			
Column	L1, in, Column		17				
	lxx, in ⁴		2.5				
L1	lyy, in⁴		7.5				
	lp, in⁴		10				
Head	L2, in, Head		6.125				
	lxx, in ⁴		14				
L2	lyy, in ⁴		20				
	lp, in ⁴		34				
Overhang	L3, in, Over han		5.5				
	lxx, in*		4				
L3	lyy, in ⁴		6				
	lp, in ⁴		10				
Modulus	30E+6	Esteel, psi	12.0E+6	Ecast, psi			
Shear	13E+6	Gsteel, psi	7.0E+6	Goast, psi			

δh	δν	6 ₂	Linear	
2.81E-03	5.46E-05	4.56E-07	[inch]	
9x*L	0 у°L	θz·L	Rotation	Static
9.45E-04	1.66Е-05	2.13E-05	[inch]	
θx	0 у	θz	Rotation	Machine
1.40E-04	2.87Е-06	1.25E-06	[rad]	Errors
↔	\$	€	Machine	
δx,t	δy,t	5z,t	√δ [in]	
3.75E-03	3.80E-05	2.17E-05	3.75E-03	
↔ Ex,p 3.77E-03	\$ Ey,p -1.08E-03	€ Ez,p 3.55E-04	Position √Ep (in) 3.94E-03	Position Errors

About the X2 Mini Mill

- > The mini mill is an economical entry-level milling machine that has found homes in several muggy garages across the US and worldwide.
- > The mini mill has evolved thru the years; e.g., to stay competitive, mini mill vendors offer subtle features such as machine color, spindle power, and spindle taper—R8 or 3MT.
- > For the price package, the mini mill deserves a shutout for the value it provides: machine weight, garage friendly, and an R8 spindle. In fact, tooling for an R8 spindle is ubiquitous in the US—and that is very convenient—and that is probably the best feature of the machine.

How to Use This Guide

- > This PDF is meant to be a digestible, compact solutions guide that exposes and gives you solutions to the top 10 mini mills design flaws of the X2 Mini Mill.
- > Just as the mini mill is a great entry level milling machine—this guide is a great entry level reference guide to the Chinese Mini Mill (the X2 Mini Mill machine).
- > Read the guide from top to bottom. Print the guide and highlight your own scribbles, sketches and notes. Things change rapidly, so I expect to update this reference guide as needed. Be wise and make sure to sign-up, or check CNC-MINIMILL.COM for the most current updates things are about to change!

Feel Free to Send this Reference Guide to Your Mini Machinist Friends!


This reference guide suggest disassembly of the Mini Mill; use this guide at your own discretion.

10 DAMN GOOD X2 MINI MILL IMPROVEMENTS GUARANTEED TO GIVE YOUR MACHINE A PERFORMANCE BOOST!

1. Backlash—X, Y and Z axis	6. Z-axis Head Drop
2. Dovetail and Gibs	7. Spindle Runout
3. Spindle Bearings	8. Spindle Head Assembly (tramming needed)
4. Spindle Motor Can Run Hot	9. Circuit Board – Spindle Controller

5. Plastic Gears—Transmission Box 10. Flimsy, Rubbery Column Flex

Data Validation Analysis

cnc-minimill.com - Sergio Lares

1. Backlash—X, Y and Z

The three major backlash errors sources—the X, Y and Z axis; the largest backlash error being the Z-axis—the gear/pinion rack. Mathematically speaking, small errors amplify; e.g., the mill head length (6") that tilts 1.5 degrees has an error of: Error= $(6")*(1.5°)*(2\pi)/(360°) = 0.026"$

Axis	Specification	Backlash	Comments/Solutions/Notes
Z	Gear rackGibsDovetail	0.010" to 0.050"+	 Shimming the gear rack may reduce backlash by 0.010" or better. The flimsy column, dovetail mating, gib adjustment, X/Y ACME screws,
X and Y	Acme ScrewPitch: 16 TPI	0.003" to 0.005"+ [Fwd/Bkwd]	 gear rack and pinion on the Z axis contribute to overall machine error. Carefully tighten brass screw nut on X and Y axis—but don't expect to eliminate all the backlash—best backlash reduction is about ~0.003". Screw and brass nut wear will increase backlash errors. Use anti-backlash spring loaded compensation mechanism. Thermal and machine assembly contribute to overall machine errors.

2. Dovetail

The dovetails are not a precision fit—you may experience a *tight-loose* fit on each axis.

Axis	Components	Error [thousands]	Comments/Solutions/Notes
	• Dovetail	Variable—error	Preferably surface grind the gibs; remove all the burrs
X	• Gibs	amplifies as travel increases; small errors	on the gibs—and in the male and female dovetails.
Υ		amplify big.	 Adjust gib screws carefully; too tight produces high friction in dovetails.
Z		<u>Example</u> :	
		4" travel at 0.25° tilt	 Hone mating dovetails (male & female) until a smooth
		has an error of:	fit is achieved. Use high-spot blue to actually see the
		Error= $(4'')*(0.25°)*$ $(2 \pi)/(360°)=$	high spots on the gibs and dovetails.
		0.004"	

3. Spindle Bearings

The mini mill uses deep groove bearings—but for milling—angular contact or taper bearings are much better in combo loading (radial & axial).

Spindle Taper	Stock Deep Groove Bearings	Angular Bearing Upgrade	New Bearing Break-in (recommended process)
R8	 6206-2RS; 30 mm X 62mm X 16 mm, Top Bearing. 6007-2RS; 35mm X 62mm X 14 mm, 	 7206 Angular; 30mm X 62mm X 16mm, Top. 7007B Angular; 35mm X 62mm X 	Watch for high temperature—shouldn't be hot to the touch! New Bearing Break-in Process: > 5-10 mins @ 500 rpm > 5-10 mins @ 1,000 rpm
MT3	 Bottom Bearing. 6007-2RS (or ZZ), Top Bearing. 6206-2RS (or ZZ), Bottom Bearing. Bearing Seals: 2RS, rubber; ZZ, metal. 	 14mm, Bottom. Angular Contact Quantity: 2 Type: 7206B-2RS Preload by nut—but not too tight! 	 > 5-10 mins @ 1,500 rpm > 5-10 mins @ 2,000 rpm > 5-10 mins @ 2,500 rpm > 20-30 mins at *top speed. *top speed depends on belt pulley or plastic gear mini mill. After break-in period—you should be ready to mill.

4. Spindle Motor Can Run Hot

The mini mill spindle motor can run hot—this seems to be more of a luck of the draw.

Spind Tape		Upgrade	Comments/Solutions/Notes
	 Advertised as 500 watt 	 Upgrade DC motor to brushless 	 If your motor is not running hot to the touch—ignore this section.
R8	Motor power varios by	Treadmill motor	 Motor temperature increases if the mill is used for hours, or if you are
MT3	varies by vendor and mini mill machine	also an optionReplace stock	cutting heavy passes—this is normal and expected—but overheating is not!
	model	DC motor ?	 Check motor brushes, fuses, switches potentiometer; they may need to be replaced.

5. Plastic Gears— Transmission Box

The mini mill spindle is driven by plastic gears that will easily break—this is not a maybe—this is a when will they will break flaw!

Spindle Taper	Part in Question	Solution	Comments/Solutions/Notes
R8 MT3	 Plastic gears that drive the spindle have the tendency to easily strip—this is only a matter of time until they strip—guaranteed to fail! 	 Replace plastic gears with metal You may have to custom make your own gears Upgrade to a belt drive pulley system 	The plastic gears create a lot of annoying noise!

6. Head Drop

The Z-axis (spindle head) will drop—and this is a very dangerous and annoying design flaw.

Spindle Taper	Part in Question	Solution	Comments/Solutions/Notes
R8 MT3	The Z-axis head will drop on your work when you are milling/drilling.	 Lock the z-axis Pneumatic (air) spring upgrade kit Counterweight 	 If you plan to upgrade your minimil to CNC—locking the Z-axis is obviously not a good idea. Some vendors sell the air spring vs the torsion spring minimil design. Counterweights and air spring kits helpbut removing the torsion spring will make it harder to move the Z-axis.

7. Spindle Runout

A stock spindle runout of 0.001" (no load) or better can be expected; however, higher rpm may lead to higher runout.

Spindle Taper		Component	Solution	Comments/Solutions/Notes
R8 MT3	•	Spindle taper .001, or better Non-concentric bearing bores. Spindle Bearing Housing bores can either be too tight, or too	 Grind/mill the bearing seats if they are not within bearing tolerance. Clean spindle taper –watch for chips. 	 Personally I've measured 0.0026" at 6,000 rpm—this doesn't include other stack up errors such as the flimsy, rubbery column (0.016")! The spindle tapers are not hardened! The spindles tapers are relatively soft and will nick easy, especially if chips get stuck to the spindle taper. Bottom line: Keep the spindle taper clean!
		loose—this is not good!		

8. Spindle Head Assembly Alignment

When you mill or drill—the hole alignment and mill finish may be crappy as heck!

Spindle Taper	Component	Solution	Comments/Solutions/Notes
R8 MT3	Z-axis – Spindle Head Aliment assembly.	 Tram the milling head—this is a must do! Adjust the gibs and dovetail fit—but not too tight—aim for a smooth running fit. 	 If you are not familiar with tramming the mill head, ask a professional machinist—anybody experienced at trimming a mill. Tramming the Mini Mill Head https://www.youtube.com/watch?v=a7e qZi6znms

9. Circuit Board – Spindle Motor

The cheap spindle circuit board will crap-out on you for no reason!

Spindle Taper	Component	Solution	Comments/Solutions/Notes
R8	 Circuit board that controls the spindle motor. 	 Replace it with a higher quality controller such as a treadmill controller 	 Careful wiring the circuit board – you don't want to eliminate the E-stop— and you don't want to short your new circuit board!
MT3			• USA (120 VAC) version

10. Flimsy, Rubbery Mini Mill Column

All Mini Mills Suffer From a Bad Back—a Crippled Back!

Spindle Taper	Component	Solution	Comments/Solutions/Notes
R8 MT3	The Z-axis flimsy rubbery mini mill column	Column Back Brace (quick fix)	 A back brace will help a little bit, but won't solve the flimsy, rubbery nasty problem. A Bad Back (Bad Mini Mill Column) handicaps surface finish, tolerance, concentricity—too much vibration and flex.

Useful Mini Mill Videos

(videos links to help you get started)

Content	Video		
How to tram the X2 Mini Mill Head	https://www.youtube.com/watch?v=a7egZi6znms		
Introduction to the X2 Mini Mill	https://www.youtube.com/watch?v=8XWCHPO8kZ4&t=1s https://www.youtube.com/watch?v=YuqTzOpDCEA		

About MEngineer

> I'm a mechanical engineer with a mechanical passion for Mechanisms, Re:design and Re:innovation.

> I am Bi-literate in English and Spanish, which means that I'll be publishing information in both English and Spanish.

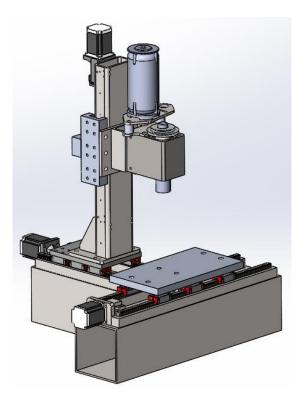
> By using ingenuity—you too can solve complex problems and arrive to elegant MacGyver type of hack solutions. Go hack your Mini Mill today!


-Sergio Lares; know as "Gadget Man".

This is a mathematical modeling of the X2 Mini Mill Machine – this is what I use to design, predict and optimize a machine.

INPUTS: The math model account for forces, deflections (machine flex), natural frequencies and position of cutting (predicts how much error [by flex] the machine will have at a certain point.

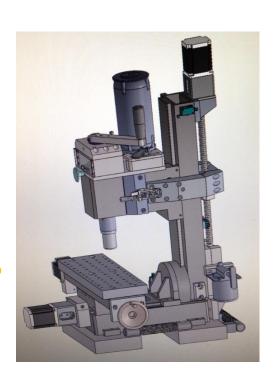
FUTURE WORK: I will also be factoring temperature, which is usually the largest error source in machines; e.g., CNC machines and lathes.



ω, opt [Hz] 104	ωw [Hz] 42	rpm 2500	head ,1b 40	columm,1b			
Coordinate s	Position [inch]	Z p ⊕ 8	Y p ‡ 2.5	X p ↔ 6			
Applied Forces	P[lbf]	Z ® 1	Y 1	X ↔ 50			
Moments	M, lbf-in	6	6	850			
La	L1, in, Column	17 L1, in, Colum					
	lxx, in4		2.5 7.5 10				
	lyy, in⁴						
	lp, in⁴						
Head Lz	L2, in, Head		6.125 14 20				
	lxx, in4						
	lyy, in ⁴						
	lp, in ⁴	34					
Overhang	L3, in, Over han		5.5				
L3	box, in*		4				
	lyy, in4	6					
	lp, in⁴	10					
Modulus	30E+6	Esteel, psi	12.0E+6	Ecast, psi			
Shear	13E+6	Gsteel, psi	7.0E+6	Goast, psi			

δh 2.81E-03	δν 5.46E-05	€ z 4.56E-07	Linear [inch]		
6x°L 9.45E-04	θy'L 1.66E-05	θz·L 2.13E-05	Rotation [inch]	Static Machine Errors	
€x 1.40E-04	0 у 2.87Е-06	θz 1.25E-06	Rotation [rad]		
↔ 6x,t 3.75E-03	\$ δy,t 3.80E-05	€ δz,t 2.17E-05	Machine √δ [in] 3.75E-03		
↔ Ex,p 3.77E-03	\$ Ey,p -1.08E-03	€ Ez,p 3.55E-04	Position √Ep [in] 3.94E-03	Position Errors	

PLEASE TELL US WHAT YOU WOULD LIKE TO SEE IN FUTURE UPDATES



Ideas to consider:

- 1. Would you like to see more videos (on what)?
- 2. Math analysis examples (deflection, forces and errors)?
- 3. How to convert your X2 CNC Mini Mill into CNC?
- 4. CNC (and/or manual) project to do over a weekend?
- 5. CNC X2 Mini Mill Conversion Kits?
- 6. 5-axis CNC Mini Milling?
- 7. Automatic Tool Changes for Desktop CNC Mini Milling?

Please email suggestions at: sircigars@yahoo.com

