BASIC PROBABILITY RULES

- Methods of Assigning Probability
- Multiplication Rule for Independent Events
- Addition Rule for Disjoint Events
- General Addition Rule
- Complement Rule
- ➤ Law of Large Numbers

Terminology

- Random phenomenon: any process that leads to one of several potential results where the result cannot be predicted, but whose results have a regular distribution after many repetitions
 - Examples: Rolling a die, flipping a coin, selecting a card from a full deck
- Trial: an attempt of a random phenomenon
- Outcome: potential result of a random phenomenon
 - Examples: Rolling a 4, flipping heads, selecting the 7 of spades
- Event: any combination of outcomes, typically denoted by a capital letter or word
 - Examples: Rolling an even number (2, 4, or 6), selecting any spade

SAMPLE SPACE

- Sample space: set of all possible outcomes of a trial
 - Denoted by S
 - If there are a countable number of outcomes, use **set notation** (list outcomes in a set of braces)
 - If there are an infinite number of outcomes, use **interval notation** (denote upper and lower bounds inside parentheses/brackets)
- Requirements of sample spaces:
 - 1. Exhaustive: Includes all possible outcomes
 - 2. Disjoint: Two outcomes cannot occur simultaneously on the same trial

EXAMPLE: SAMPLE SPACE
 Question: What is the sample space in each of the experiments? 1. Roll two dice and add the results S = or S =
 2. Measure the amount of time (in minutes) it takes a student to complete an exam during a MWF class at Pitt S =
 3. Flip two coins and look at the order of the results S =
 4. Flip two coins and count how many heads occurred • S =
Probability
 Probability: the chance that an event occurs Denoted by P(A), where A is the event being studied
 Every probability must satisfy two rules:
• Rule #1: A probability is a number between 0 and 1; that is, for any event $A, 0 \le P(A) \le 1$.
• Rule #2: The probability of the set of all possible outcomes in the sample space must be 1; that is, $P(S) = 1$.
Example: Requirements of Probabilities

• Scenario: There are 5	0 marbles in a bag	g of four different colors:
blue, red, green, and	yellow. Select one	marble from the bag.

- Question: What is the sample space?
- Answer: _____
- Question: What must be true about the blue, red, green, and yellow marbles?
- Answer:
 - Each color must have a probability of being selected ______

•_____=1

Methods of Assigning Probability
 Classical approach: assigns same probability to each possible outcome Used often in fair games of chance
 Empirical approach: long-run frequency with which an outcome occurs Take total number of observations for an outcome and divide by total
 Subjective approach: degree of belief that we have in the occurrence of an event
 Used when classical approach is unreasonable and no information exists to calculate proportions
EXAMPLE: METHODS OF ASSIGNING PROBABILITY
 Task: Identify the method used to assign probability in each of these scenarios. Scenario #1: Probability of rolling 4 on a fair die is ¹/₆. Method: approach: Fair die has sides, each outcome is Scenario #2: Probability that a basketball player makes his next free throw is 0.90 because he made 18 of his last 20 shots. Method: approach:
 • Scenario #3: The probability the Pitt wins the National Championship in football is 0.05. • Method: approach:, but outcomes are not
Union and Intersection
 Union: occurs when either event A or event B occurs Look for the word "or" Probabilities get added - larger value because we only need at least of two events to occur Includes situations when both events occur
 Intersection: occurs when both event A and event B occur Look for the word "and" Probabilities usually get multiplied – smaller value because it is harder for two events to both occur Probability of an intersection is called a joint probability

Example: Union and Intersection
 Scenario: Flip two coins and record if they land on heads or tails Question: Which of the following events are unions? Which are intersections? I. Both flips are heads II. At least one flip is heads III. Neither flip is heads
 Answer: Union:
INDEPENDENT EVENTS
 Independent events: two events are independent if the outcome of one trial does not influence or impact the outcome of another Question: Which of these pairs of events are independent? Selecting a card from a deck, not replacing it, and drawing a 2nd card Flipping a coin two times in a row
• Answer: I. Not replacing the card makes all other cards on the second II. Coins have: First coin flip has on the second III. Your grade in Calc 1 is of your Calc 2 grade
Multiplication Rule for Independent Events
 Multiplication Rule for Independent Events: If A and B are independent, then P(A and B) = P(A) × P(B).
• Scenario: In the United States, 44% have type O blood, 42% of people have Type A blood, 11% have Type B blood, and 3% have Type AB blood. Suppose two people are selected randomly.
 Question: What is the probability both people have Type A blood? Answer: Blood types are

COMPLEMENT
 Complement: set of all outcomes not included in an original event A, and denoted by A^c
 Question: What is the complement of each of these events? 1. Rolling a sum of less than 8 on two fair dice A^c =
 2. Taking at least 40 minutes to complete an exam in a MWF class • B^c = 3. Elipping heads more than once on two fair coins
• $C^c = $
COMPLEMENT RULE
 Complement Rule: The probability that an event occurs is 1 minus the probability that it does not occur; that is, P(A) = 1 - P(A^c) Scenario: A hotel asks its customers to rate the cleanliness of its
rooms on a 5-point scale. The probabilities are displayed below.
Rating Poor Fair Average Good Excellent
Probability 0.08 0.12 0.18 0.25 0.37
Probability0.080.120.180.250.37• Question: What is the probability a rating was at least "fair"?
Probability0.080.120.180.250.37• Question: What is the probability a rating was at least "fair"?• Answer: • "At least fair" is the same as • $P(At least "fair") = = =$
Probability0.080.120.180.250.37• Question: What is the probability a rating was at least "fair"?• Answer: • "At least fair" is the same as • $P(At least "fair") = = =• P(At least "fair") = = =EXAMPLE: COMPLEMENT RULE$
Probability0.080.120.180.250.37• Question: What is the probability a rating was at least "fair"?• Answer: • "At least fair" is the same as • $P(At least "fair") = = =• P(At least "fair") = =• EXAMPLE: COMPLEMENT RULE• Scenario: Flip four coins and record each result. 16 possiblecombinations, each with probability of \frac{1}{16} of occurring.$
Probability0.080.120.180.250.37• Question: What is the probability a rating was at least "fair"?• Answer: • "At least fair" is the same as • $P(At least "fair") = = =• P(At least "fair") = = =EXAMPLE: COMPLEMENT RULE• Scenario: Flip four coins and record each result. 16 possiblecombinations, each with probability of \frac{1}{16} of occurring.HHHH HHHT HHTH HHTH HTHH THHH HHTT HTTH TTTTHHHH HHHT HHTH TTHHT TTTH THTT TTTT$
Probability0.080.120.180.250.37• Question: What is the probability a rating was at least "fair"?• Answer: • "At least fair" is the same as • $P(At least "fair") = = =• P(At least "fair") = = =• Scenario: Flip four coins and record each result. 16 possiblecombinations, each with probability of \frac{1}{16} of occurring.• HHHH• HHHH• HHHH• HHHH• HHHH• THH• Question: What is the probability of flipping heads at least once?$
Probability 0.08 0.12 0.18 0.25 0.37 • Question: What is the probability a rating was at least "fair"? • Answer: • "At least fair" is the same as