Sampling Distribution of the Sample Mean

- ➤ Law of Large Numbers
- Central Limit Theorem
- Mean, Standard Error, and Shape
- Sampling Distribution Probabilities
- Looking Ahead to Inference

MOTIVATION: SAMPLING DISTRIBUTION

- Scenario: SAT scores are normally distributed with population mean $\mu = 1000$ and population standard deviation $\sigma = 217$. Ask 1 random college freshman what their SAT score was.
- Question: Should we be surprised if their score was greater than 1100?
- Answer: _____
 - 1100 is ______ standard deviation _____ the mean
 - Scores in this range are _____

Calculation:

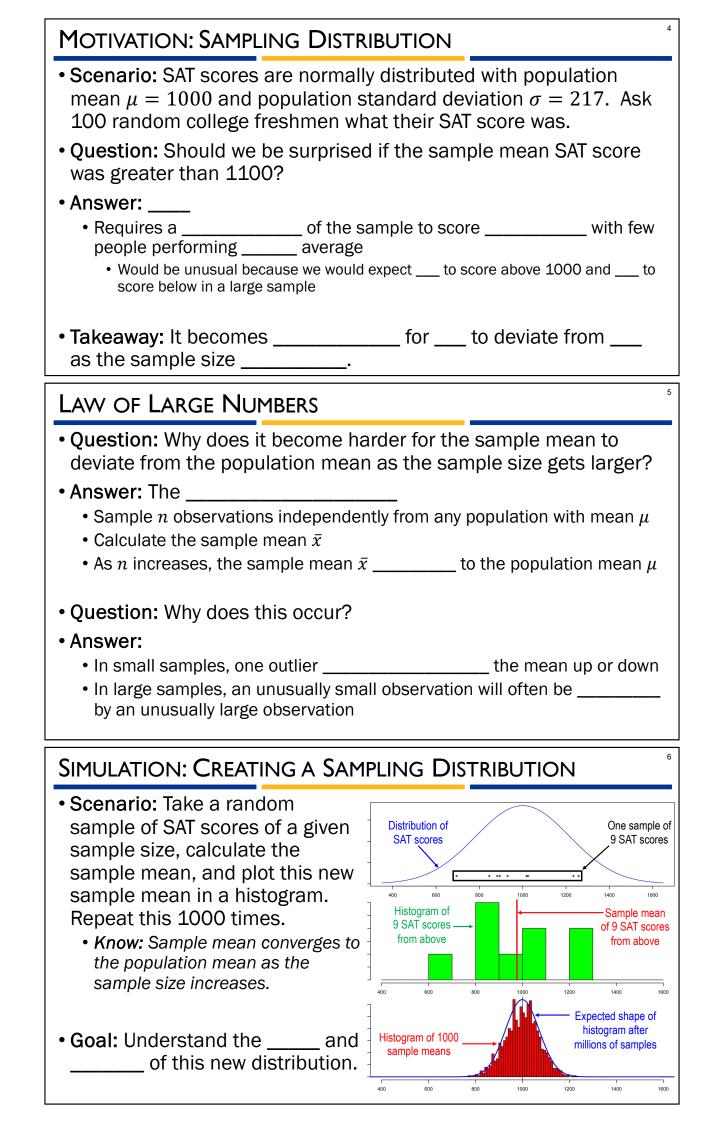
$$P(X > 1100) = P\left(Z > \frac{1100 - 1000}{217}\right) = P(Z > ___) = ___$$

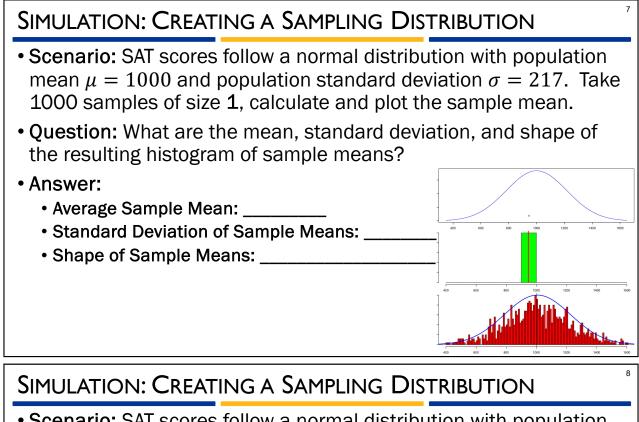
MOTIVATION: SAMPLING DISTRIBUTION

- Scenario: SAT scores are normally distributed with population mean $\mu = 1000$ and population standard deviation $\sigma = 217$. Ask 9 random college freshmen what their SAT score was.
- Question: Should we be surprised if the sample mean SAT score was greater than 1100?

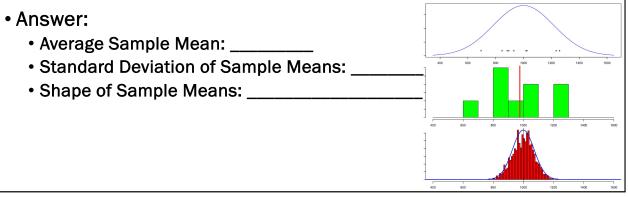
• Answer: _

- Requires each of the 9 to do _____ well with _____ outliers
- Example Data: 880, 910, 970, 1000, 1070, 1130, 1270, 1320, 1350
- Question: Why can't we find this exact probability yet?
- Answer: Sampled ______ observation
 - Don't yet know how to handle working with the _____ of a sample





- Scenario: SAT scores follow a normal distribution with population mean $\mu = 1000$ and population standard deviation $\sigma = 217$. Take 1000 samples of size 9, calculate and plot the sample mean.
- Question: What are the mean, standard deviation, and shape of the resulting histogram of sample means?



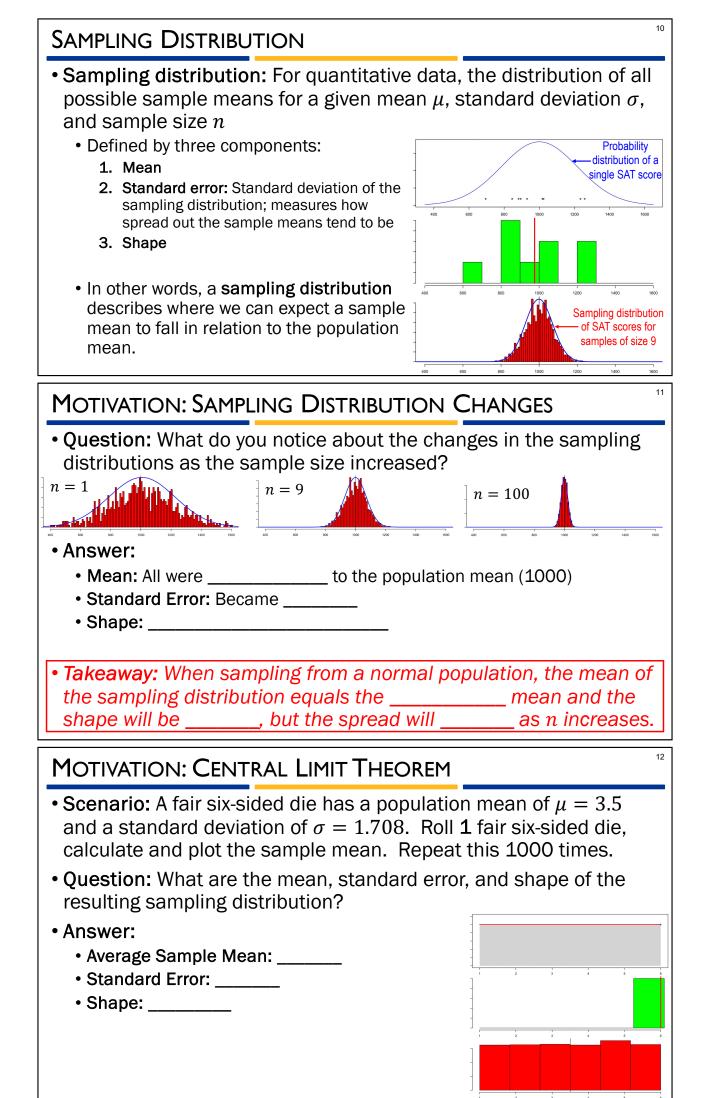
SIMULATION: CREATING A SAMPLING DISTRIBUTION

- Scenario: SAT scores follow a normal distribution with population mean $\mu = 1000$ and population standard deviation $\sigma = 217$. Take 1000 samples of size 100, calculate and plot the sample mean.
- Question: What are the mean, standard deviation, and shape of the resulting histogram of sample means?

• Answer:

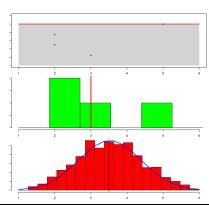
- Average Sample Mean: _____
- Standard Deviation of Sample Means: _____
- Shape of Sample Means: ____
- Question: What are the red distributions?

• Answer: _



MOTIVATION: CENTRAL LIMIT THEOREM

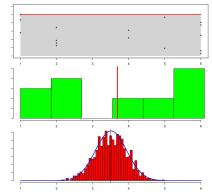
- Scenario: A fair six-sided die has a population mean of $\mu = 3.5$ and a standard deviation of $\sigma = 1.708$. Roll 4 fair six-sided dice, calculate and plot the sample mean. Repeat this 1000 times.
- Question: What are the mean, standard error, and shape of the resulting sampling distribution?
- Answer:
 - Average Sample Mean: _____
 - Standard Error: _____
 - Shape: _____
 - Sampling distribution still is not "_____" enough to be considered normal given how many samples were taken
 - Looks too much like a _____

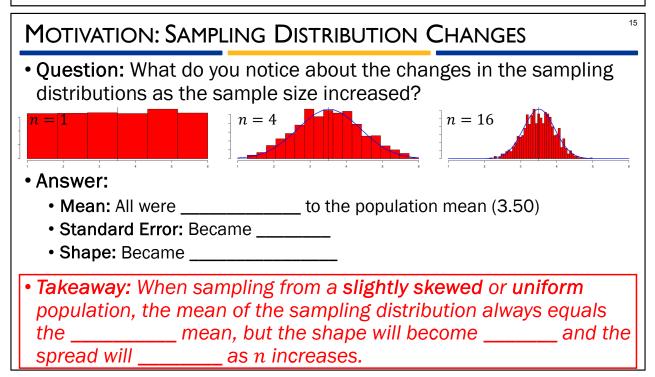


MOTIVATION: CENTRAL LIMIT THEOREM

- Scenario: A fair six-sided die has a population mean of $\mu = 3.5$ and a standard deviation of $\sigma = 1.708$. Roll 16 fair six-sided dice, calculate and plot the sample mean. Repeat this 1000 times.
- Question: What are the mean, standard error, and shape of the resulting sampling distribution?
- Answer:
 - Average Sample Mean: _____
 - Standard Error: _____
 - Shape: _____

Curve takes on more of a ______





13

CENTRAL LIMIT THEOREM

• **Central Limit Theorem:** The sampling distribution of the sample mean approaches a normal distribution as the sample size increases regardless of the shape of the original population.

- **Rules of Thumb:** Take a random sample of size n from some distribution X of quantitative data. Then the distribution of the sample mean \overline{X} is normal if any of the following are true:
 - 1. The original distribution of X is normal (unimodal and approximately symmetric), regardless of the sample size.
 - 2. The distribution of X is either uniform or unimodal and only slightly skewed and $n \ge 15$.
 - 3. The distribution of X is severely skewed and $n \ge 30$.

MEAN AND STANDARD ERROR OF SAMPLE MEAN

- Sample *n* observations from **any** population with quantitative data that has mean μ and standard deviation σ . Then:
 - **1.** Mean: $\mu_{\bar{X}} = \mu$
 - Mean of the sampling distribution of $ar{X}$ equals the population mean
 - 2. Standard Error: $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$
 - Standard error equals the standard deviation of the original population divided by the square root of the sample size
- If the Central Limit Theorem holds, (i.e. the shape of the sampling distribution is normal), then the sample mean is standardized as:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Example: Determining Sampling Distribution

- Scenario: SAT scores are normally distributed with population mean $\mu = 1000$ and population standard deviation $\sigma = 217$. Ask 9 random college freshmen what their SAT score was.
- Question: What is the sampling distribution of the sample mean?

Z

X 783

-3

-2

855 34 927 67

-1

0

1

1000 1072.33 1144.66 1217

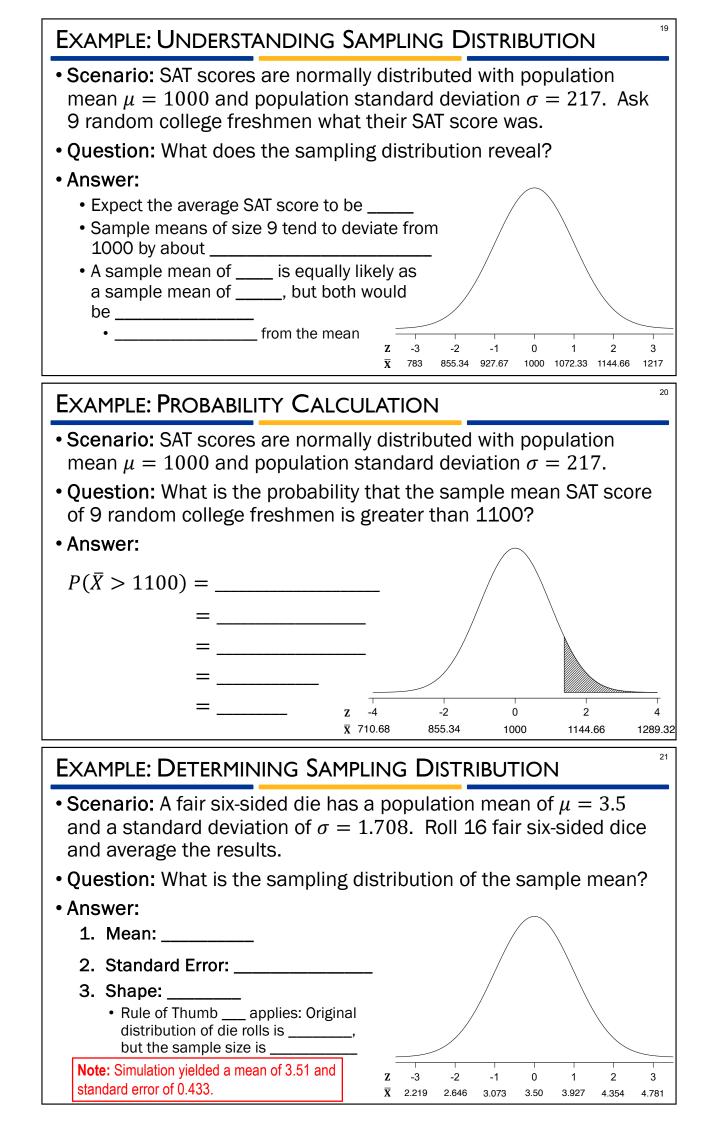
2

3

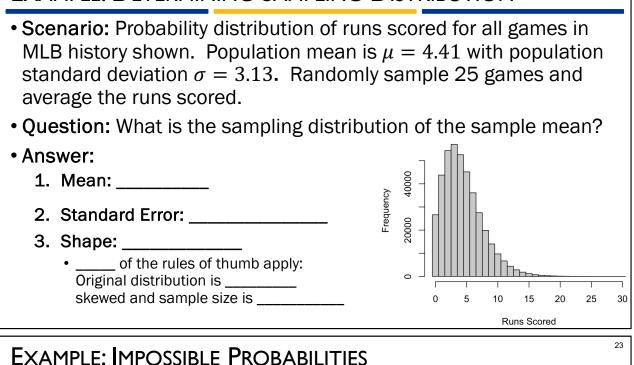
- Answer:
 - 1. Mean: _____
 - 2. Standard Error: ____
 - 3. Shape: _
 - Rule of Thumb ____ applies: _____ distribution of SAT scores is normal so the sampling distribution is _____

Note: Simulation yielded a mean of 999.176 and standard error of 71.895.

17



EXAMPLE: DETERMINING SAMPLING DISTRIBUTION



- Question: What is the probability that the average number of runs scored in a sample of size 25 is less than 3?
- Answer: ______ the probability
 - While we know the mean and standard deviation, we do not know the
 (_____) of the sampling distribution
- Question: What would need to happen to be able to compute probabilities for runs scored?
- Answer: Need to sample _____
 - Allows us to apply Rule of Thumb ____: Shape of sampling distribution is _____ of the shape of original population

LOOKING AHEAD TO INFERENCE

- Scenario: Suppose we want to learn about the average SAT score for only incoming freshmen at Pitt. This will likely be higher than the national mean of 1000.
- Question: How can we determine if Pitt students score higher than 1000 on average if we don't know their population mean?

• Answer:

- Make a _____ about the true population mean
- Take a ______ of incoming Pitt freshman
- Create a ______ and find summary statistics (mean, standard deviation) to determine if the shape of the sample mean is ______
- Compare the ______ with our guess for the population mean to see if our guess is ______

2

24