Displaying and Summarizing Categorical Data

Lecture 4
January 19, 2018

Four Stages of Statistics

- Data Collection ✓
- Displaying and Summarizing Data
 - One Categorical
 - Two Categorical
 - One Quantitative
 - One Categorical and One Quantitative
 - Two Quantitative
- Probability
- Inference

Review: Terminology

- **Population**: any complete collection of people or objects that a statistician is interested in
- **Parameter**: value that describes a characteristic of a population
- **Sample**: set of units selected from a population that a statistician analyzes to better understand the population
- **Statistic**: value calculated from a sample that serves as an estimate of a parameter

Summarizing a Single Categorical Variable

- **Count**: number of observations in a category
- **Proportion**: count in a category divided by total number of observations
- **Percentage**: proportion as decimal times 100%

Note: Most common to work with proportions.

- Two types of proportions:
 - \(p \): Population proportion (parameter)
 - \(\hat{p} \): Sample proportion (statistic) “p-hat”
Summarizing a Single Categorical Variable

- **Frequency Table:** table of counts for each category
 - Counts must sum to total number observations
- **Relative Frequency Table:** table of proportions or percentages for each category
 - Counts must sum to 1 for proportions and 100% for percentages

Raw Data

- **Raw Data:** list of data directly from a source that has not been processed or summarized for use

 - To find counts in Excel:
 - Raw data usually listed in a single column
 - List category names in a separate column
 - Use “COUNTIF” function to find frequency for each category

 - To find proportions:
 - Divide each count by total number of observations

Example #1: Frequency Table

- **Scenario:** Random sample of students in business statistics asked what their major is
- **Task:** Generate the frequency table and relative frequency table.

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>Proportion</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marketing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Accounting</td>
<td>Category</td>
<td>Frequency</td>
<td>Formula</td>
<td>Proportion</td>
<td>Formula</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Finance</td>
<td>Accounting</td>
<td>=COUNTIF(A:A,C2)</td>
<td>=G2/SUM(D:D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Marketing</td>
<td>Finance</td>
<td>=COUNTIF(A:A,C3)</td>
<td>=G3/SUM(D:D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Economics</td>
<td>Economics</td>
<td>=COUNTIF(A:A,C4)</td>
<td>=G4/SUM(D:D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Finance</td>
<td>Marketing</td>
<td>=COUNTIF(A:A,C5)</td>
<td>=G5/SUM(D:D)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Excel: Raw Data - Example #1 Frequency Table
Displaying a Single Categorical Variable

- **Pie Chart**: shows proportions of categories of a categorical variable with size of slices corresponding to proportion for each category
 - Should be used when:
 - Responses cannot overlap into more than one category
 - Shows how the whole is divided into slices
- **Bar Graph**: displays counts (or proportions) of a categorical variable where the height of each bar is proportional to the count in the category
 - Can be used any time a pie chart can also be used
 - Should be used when:
 - There is overlap in responses between categories
 - Not all categories are included in the comparison

Example #2: Using Categorical Data

- **Scenario**: Survey of 796 college students found that 288 of them reported binge drinking at some point in the past month.
- **Question**: What type of variable is being studied?
 - **Answer**: ______________________________
- **Question**: How can this data be summarized?
 - **Answer**: ______________________________
 - ____________________ reported binge drinking

Example #3: Using Categorical Data

- **Scenario**: Survey of 796 college students found that 288 of them reported binge drinking at some point in the past month.
- **Question**: How should the proportion .362 be denoted?
 - **Answer**: ______________________________
 - _______ \(\rightarrow \) _______
- **Question**: How should the overall proportion of all college students who binge drink be denoted?
 - **Answer**: ______________________________
 - Actual value _______ \(\rightarrow \) Can’t ____________________

Example #4: Using Categorical Data

- **Scenario**: Survey of 796 college students found that 288 of them reported binge drinking at some point in the past month.
- **Question**: Why is a pie chart appropriate here?
 - **Answer**: ______________________________
- **Question**: Can we conclude that more than one-third of all college students binge drink?
 - **Answer**: _________
 - Good start, but not ____________________
 - Need ____________________
More Than Two Categories

- Most categorical variables we work with have exactly two categories.
- However, there are occasions when we have variables with three or more categories and need to display summaries.

- **Mode**: category with the highest proportion (or count)

Example #5: Mode

- **Scenario**: Survey of adults asks for their favorite color.
- **Question**: What is the mode?
- **Answer**: ____________
 - Category with ____________
 - Has ________________

Example #6: Problems with Pie Charts

- **Scenario**: Survey of adults asks for their favorite color.
- **Question**: What are the problems with using a pie chart?
- **Answer**: Difficult to...
 - ________________
 - ________________
 - ________________

Takeaway: Pie charts typically work well for ________________.

Example #7: Using the Pie Chart

- **Scenario**: Survey of adults asks for their favorite color with percentages added to enhance chart.
- **Question**: If 630 people responded that blue was their favorite color, how many chose red?
- **Answer**:
 - Find ________________:
 - Total ________________:

- **Blue** 42%
 - **Red** 10%
 - **Green** 14%
 - **Beige** 3%
 - **Brown** 3%
 - **Purple** 4%
 - **Yellow** 4%
 - **Beige** 2%
 - **Grey** 2%
 - **Other** 12%
 - **White** 2%
Example #8: Reading Bar Graph
- Scenario: Total number of monthly hits on 10 most popular websites that aren’t Google
- Question: What trends exist in the data?
- Answer: ____________________________
 - ____________________________
 - ____________________________
 - ____________________________
 - Steep drop-off after _______ and second large drop after ________

Example #9: Mode and Graph Types
- Scenario: Total number of monthly hits on 10 most popular websites that aren’t Google
- Question: Why would this data not be appropriate to use in a pie chart?
- Answer:
 1. Pie charts show ____________________________
 - This data only looks at ______________________
 2. Pie chart would only show proportion of hits ____________________________
 - Not proportion of ____________________________

Example #10: Determining Graph Type
- Scenario: For the holidays, 54% of shoppers bought a gift card for a store, 36% for a restaurant, and 25% for an online website
- Question: What type of graph would be most appropriate to use to display this data?
- Answer: ____________________________
 - Percentages sum to ____________________________
 - Some people must have bought gift cards ____________

Example #11: Data Collection
- Scenario: Three students perform studies on the proportion of people who wear glasses.
 - A: Observes 21 of 30 people (70%) on the morning bus ride downtown wearing glasses
 - B: Surveys 300 people downtown during the day and finds 200 (66.7%) who respond they wear glasses
 - C: Surveys 30 people downtown during the day and finds 21 (70%) who respond they wear glasses
- Question: What is the problem with collecting this data using an observational study?
- Answer: ____________________________
Example #12: Representative Sample

Question: Which sample is probably most representative of the general population?
- A: Observes 21 of 30 people (70%) on the morning bus ride downtown wearing glasses
- B: Surveys 300 people downtown during the day and finds 200 (66.7%) who respond they wear glasses
- C: Surveys 30 people downtown during the day and finds 21 (70%) who respond they wear glasses

Answer:
- A: Likely includes ___________________________; excludes __
- B and C: __
- ___ is better than ___ because the ________________________

Example #13: Role of Sample Size

Question: Is one student’s data more convincing that a majority of people wear glasses?
- A: Observes 21 of 30 people (70%) on the morning bus ride downtown wearing glasses
- B: Surveys 300 people downtown during the day and finds 200 (66.7%) who respond they wear glasses
- C: Surveys 30 people downtown during the day and finds 21 (70%) who respond they wear glasses

Answer:
- A: Likely __
- B: ___________ estimate of proportion; smaller __________________________
- C: ___________________________; sample size is ________

Median

Median: middle observation in a set of data
- Only defined for ordinal and quantitative data
- Order observations from smallest to largest
 - Odd number → Middle observation
 - Even number → Average of middle two observations

Example #14: Median

Scenario: English professor reveals letter grades on most recent paper for all students in the class

A A A B B B B C C C D D F

Question: What is the median?

Answer:
- ___ students → _____________ observation
- ___ observations on each side
Example #15: Median

• **Scenario:** Patients asked to rate the amount of pain they are in. Tables below compare patients with sprains with those with broken bones.

<table>
<thead>
<tr>
<th>Broken Bones</th>
<th>Percentage</th>
<th>Sprains</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little/no pain</td>
<td>10%</td>
<td>Little/no pain</td>
<td>20%</td>
</tr>
<tr>
<td>Moderate pain</td>
<td>45%</td>
<td>Moderate pain</td>
<td>35%</td>
</tr>
<tr>
<td>Severe pain</td>
<td>30%</td>
<td>Severe pain</td>
<td>40%</td>
</tr>
<tr>
<td>Acute pain</td>
<td>15%</td>
<td>Acute pain</td>
<td>5%</td>
</tr>
</tbody>
</table>

• **Question:** What can we say about the medians?
• **Answer:**
 -
 -

Summary

• **One Categorical Variable:**
 - **Numerical Summaries:** Count, proportion, percentage
 - Displayed in frequency distributions
 - **Graphical Displays:** Bar graph, pie chart
 - **Mode:** Category with highest proportion
 - **Median:** Middle observation in ordinal and quantitative data