Correlation Coefficient and ANOVA Table

- Correlation Coefficient
- Properties of the Correlation Coefficient
- Bivariate Normal Distribution
- Coefficient of Determination
- ANOVA Table

Lecture 5
January 22, 2019
Sections 6.1 – 6.5, 7.2

Correlation Coefficient

- **Correlation Coefficient**: a measure of the strength and direction of the linear relationship between two continuous variables

- Defined in two different ways:

\[
 r = \frac{SSXY}{\sqrt{SSX \cdot SSY}} \quad r = \frac{S_X}{S_Y} \hat{\beta}_1
\]

- \(SSXY = \sum_{i=1}^{n}(X_i - \bar{X})(Y_i - \bar{Y})\)
- \(SSX = \sum_{i=1}^{n}(X_i - \bar{X})^2\)
- \(SSY = \sum_{i=1}^{n}(Y_i - \bar{Y})^2\)

- \(S_X = \sqrt{\frac{1}{n-1} SSX}\)
- \(S_Y = \sqrt{\frac{1}{n-1} SSY}\)

Example: Correlation Coefficient

- **Scenario**: Use age of 30 subjects to describe their systolic blood pressure (SBP).

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>SE</th>
<th>StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic Blood Pressure</td>
<td>30</td>
<td>142.53</td>
<td>4.12</td>
<td>22.56</td>
</tr>
<tr>
<td>Age</td>
<td>30</td>
<td>45.13</td>
<td>2.79</td>
<td>15.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T-Value</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>98.7</td>
<td>10.0</td>
<td>9.87</td>
<td>0.000</td>
</tr>
<tr>
<td>Age</td>
<td>0.971</td>
<td>0.210</td>
<td>4.62</td>
<td>0.000</td>
</tr>
</tbody>
</table>

- **Question**: What is the correlation between age and SBP?
- **Answer**:

- **Question**: What does the correlation mean?
- **Answer**: There is a ____________________________

![Graph](image-url)
Example: Correlation Coefficient

• **Scenario:** Use age of 29 subjects to describe their systolic blood pressure (SBP) without the outlier.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>SE</th>
<th>StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic Blood Pressure</td>
<td>29</td>
<td>139.86</td>
<td>2.05</td>
<td>15.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T-Value</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>89.08</td>
<td>5.33</td>
<td>17.56</td>
<td>0.000</td>
</tr>
</tbody>
</table>

• **Question:** What is the correlation between age and SBP?

• **Answer:**

<table>
<thead>
<tr>
<th>Correlation Coefficient</th>
</tr>
</thead>
</table>

• **Takeaway:** One outlier can

<table>
<thead>
<tr>
<th>Takeaway</th>
</tr>
</thead>
</table>

Properties of the Correlation Coefficient

• The correlation coefficient r has the following properties:
 1. Ranges from -1 to 1
 2. Dimensionless: r is independent of the unit of measurement of X and Y
 3. Follows the same sign as the slope of the regression line: If $\hat{\beta}_1$ is positive, then r is positive, and vice versa

 Note: Proofs of properties 1 and 2 require some knowledge of probability theory, covariance, and expectation.

Example: Correlation Same Sign as Slope

• **Task:** Prove that the sign of the correlation is always dictated by the sign of the slope.

• **Answer:**

 - Correlation is
 - Standard deviations S_X and S_Y are always
 - If ______, then __________. Conversely, if ______, then __________.
\(r \) as a Measure of Association

1. The more positive \(r \) is, the more positive the linear association is between \(X \) and \(Y \)
2. The more negative \(r \) is, the more negative the linear association is between \(X \) and \(Y \)
3. If \(r \) is close to 0, then there is little (if any) linear association between \(X \) and \(Y \)

Population Correlation Coefficient

• **Population Correlation Coefficient**: \(\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} \)

 where \(\sigma_{XY} \) is the population covariance describing the average amount by which two variable covary

 • \(r \) is calculated from a sample so \(r \) is a statistic estimating the true unknown population correlation \(\rho_{XY} \)

 • Just as inference was performed on the slope and intercept, inference can be done on the correlation by:
 • Testing \(r \) against some hypothesized correlation
 • Finding a confidence interval of plausible correlations
 • Comparing two population correlations

Five different methods of doing inference with the correlation covered next class.

Univariate Normal Distribution

• **Univariate Normal Distribution**: Given mean \(\mu \) and standard deviation \(\sigma \), the curve is defined by the function:

\[
f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

where \(f(x) \) is the height of the function at \(X = x \)
Bivariate Normal Distribution

- **Bivariate Normal Distribution**: Given means μ_X and μ_Y and standard deviations σ_X and σ_Y, the distribution is defined by:

$$f(x, y) = \frac{1}{\sqrt{2\pi\sigma_X\sigma_Y(1-\rho^2)}} e^{-z}$$

where $z = \frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_X}{\sigma_X} \right)^2 - 2\rho \left(\frac{x-\mu_X}{\sigma_X} \right) \left(\frac{y-\mu_Y}{\sigma_Y} \right) + \left(\frac{y-\mu_Y}{\sigma_Y} \right)^2 \right]$.

Conditional Distribution of Y at X

- **Conditional Distribution of Y and X**: Found by taking a cross-section of the bivariate normal distribution parallel to the YZ-plane at a specified value of X.

- The mean of Y at X is given by:

$$\mu_{Y|X} = \mu_Y + \rho_{XY} \frac{\sigma_Y}{\sigma_X} (X - \mu_X)$$

- The variance of Y at X is given by:

$$\sigma_{Y|X}^2 = \sigma_Y^2 (1 - \rho_{XY}^2)$$

Why is the bivariate normal distribution important?

- Mean of the conditional distribution can be rearranged to an equivalent expression for the regression line by substituting in the statistics:

$$\hat{\mu}_{Y|X} = \bar{Y} + r \frac{S_Y}{S_X} (X - \bar{X}) = \bar{Y} + \hat{\beta}_1 (X - \bar{X})$$

- Variance of the conditional distribution can be rearranged to find the **coefficient of determination** (or r^2):

$$\sigma_{Y|X}^2 = \sigma_Y^2 (1 - \rho_{XY}^2) = \frac{\sigma_Y^2 - \sigma_{Y|X}^2}{\sigma_{Y}^2}$$

$$\rho_{XY}^2 = \frac{\sigma_{Y|X}^2}{\sigma_Y^2}$$
Sums of Squares

Total Sum of Squares: Measures squared distance each response is from the sample mean of the responses
- Assumes we use \bar{Y} as the naïve prediction for each response instead of considering the relationship Y has with X

$$SSY = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Sum of Squares Due to Error: Measures squared distance each response is from the predicted value on the regression line
- Assumes X is being used to predict Y

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y})^2$$

Coefficient of Determination

Coefficient of Determination: Measure of the amount of variability in Y being explained by changes in X

$$r^2 = \frac{SSY - SSE}{SSY}$$

Example: Calculating r^2

Scenario: Use age of 30 subjects to describe their systolic blood pressure (SBP). Given $SSY = 14,787$ and $SSE = 8393$

Question: What is the coefficient of determination?

Answer:

Question: What does the coefficient of determination mean?

Answer:

- The remaining _______ is due to _________ not being considered in this regression such as ________________________________
Example: No Linear Relationship

Scenario: Use age of 29 subjects to describe their systolic blood pressure (SBP) without the outlier.

Question: What happens when there is no linear relationship between X and Y?

Answer:
- No linear relationship means ________________________________
- The best prediction for every observation is ____________________
- The total sum of squares is always ________________________________
- The sum of squares due to error is:

- The coefficient of determination is:

Example: Perfect Linear Relationship

Question: What happens when there is a perfect linear relationship between X and Y?

Answer:
- X ___________________ Y every time
- Every observation lies ________________________________
- For every point, __________ so every observation has a __________
- The sum of squares due to error is ________________________________
- The coefficient of determination is:

Example: Calculating r^2

Scenario:

Question: What is the coefficient of determination?

Answer: ________________________________

Takeaway: By removing the outlier, the model is able to __________

- It does not have to try to understand why ________________________________

- ________________________________

- ________________________________

- ________________________________
ANOVA Table for Straight Line Regression

- **Analysis of Variance (ANOVA) Table**: an overall summary of the results of a regression analysis
 - Derived from the fact that the table contains many estimates for sources of variation that can be used to answer three important questions
 1. Is the true slope β_1 equal to zero?
 2. What is the strength of the straight line relationship?
 3. Is the straight line model appropriate?

Types of Variation

- **Explained Variation**: differences in the responses due to the relationship between the predictors and response
 - Sum of squares due to regression (SSR)
- **Unexplained Variation**: differences in the responses due to natural variability in the population
 - Sum of squares due to error (SSE)

ANOVA Table for Simple Linear Regression

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS (Sum of Squares)</th>
<th>MS (Mean Square)</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>SSR</td>
<td>$MSR = \frac{SSR}{1}$</td>
<td>$F = \frac{MSE}{MSR}$</td>
</tr>
<tr>
<td>Error</td>
<td>$n-2$</td>
<td>SSE</td>
<td>$MSE = \frac{SSE}{n-2}$</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$n-1$</td>
<td>SSY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fundamental Equation of Regression Analysis

$$SSY = SSR + SSE$$

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Total Unexplained Variation = Regression Variation + Residual Variation

$$MSE = S_{\hat{Y}|X}^2$$

Square of residual sum of squares
F-Distribution and ANOVA Table Test Statistic

- **F-Distribution**: continuous probability distribution that has the following properties:
 - Unimodal and right-skewed
 - Always non-negative
 - Two parameters for degrees of freedom
 - One for numerator and one for denominator
 - Used to compare the ratio of two sources of variability

- **Test Statistic**:
 \[F_{1,n-2} = \frac{MSR}{MSE} = \frac{SSR/1}{SSE/(n - 2)} \]

Example: Using the ANOVA Table

- **Scenario**: Use age of 30 subjects to describe their systolic blood pressure (SBP).

<table>
<thead>
<tr>
<th>Analysis of Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Regression</td>
</tr>
<tr>
<td>Error</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

- **Task**: Use the ANOVA table to determine if the predictor helps predict the response.

- **Hypotheses**:

- **Test Statistic**:

- **Critical Values**:

- **P-Value**:

- **Conclusion**:

Example: Comparing ANOVA Table and Test for Slope

- **Scenario**: Use age of 30 subjects to describe their systolic blood pressure (SBP).

<table>
<thead>
<tr>
<th>Analysis of Variance</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>DF</td>
</tr>
<tr>
<td>Regression</td>
<td>1</td>
</tr>
<tr>
<td>Error</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
</tr>
</tbody>
</table>

- **Question**: What is the relationship between the test statistic from the ANOVA table and the test statistic for testing the slope?

- **Answer**: Test statistic from the ANOVA table is the ________ of the test statistic found from testing the slope in simple linear regression
 - ________