ANOVA Table and Correlation Coefficient

- ➢ F-Distribution
- > ANOVA Table
- Correlation Coefficient
- > Properties of the Correlation Coefficient
- Coefficient of Determination

Lecture 5 Sections 6.1 – 6.5, 7.2

F-Distribution

- **F-Distribution:** continuous probability distribution that has the following properties:
 - Unimodal, right-skewed, and non-negative
 - Two parameters for degrees of freedom • One for numerator and one for denominator
 - Used to compare two sources of variability
 - To find the critical value, intersect the numerator and denominator degrees of freedom in the F-table (or use Minitab)

- In this course:
 - All tests are upper one-sided
 - Use a 5% level of significance A different table exists for each α

Example: F-Distribution

• **Question:** What is the critical value for an upper one-sided F-test with 2 and 15 degrees of freedom using $\alpha = .05$?

• Answer: _

Sums of Squares

- **Total Sum of Squares:** measures squared distance each response is from the sample mean of the responses
 - Assumes we use \overline{Y} as the naïve prediction for each response instead of considering the relationship *Y* has with *X*

$$SSY = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

- **Sum of Squares Due to Error:** measures squared distance each response is from its predicted value on the regression line
 - Assumes X is being used to predict Y

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y})^2$$

ANOVA Table for Straight Line Regression

- Analysis of Variance (ANOVA) Table: an overall summary of the results of a regression analysis
 - Derived from the fact that the table contains many estimates for sources of variation that can be used to answer three important questions
 - 1. Is the true slope β_1 _____?
 - 2. What is the ______ of the straight line relationship?
 - 3. Is the straight line model _____?

ANOVA Table for Simple Linear Regression

Source	DF	Sum of Squares	Mean Square	F-Statistic
Regression	1	SSR	$MSR = \frac{SSR}{1}$	$F = \frac{MSR}{MSE}$
Error	<i>n</i> – 2	SSE	$MSE = \frac{SSE}{n-2}$	MISL
Total	n - 1	SSY		

Fundamental Equation of Regression Analysis SSY = SSR + SSE

 $MSE = S_{Y|X}^2$ Square of residual sum of squares

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
Total Uneveloped Variation – Regression Variation

Total Unexplained Variation = Regression Variation + Residual Variation

Example: Using the ANOVA Table

• Scenario: Use ACT score of 29 college freshmen (without outlier) to describe freshman year GPA.

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	1	3.459	3.4589	12.50	0.001
Error	27	7.474	0.2768		
Total	28	10.933			

- **Task:** Use the ANOVA table to determine if ACT score is a significant predictor of GPA.
- **Hypotheses:** *H*₀: ______ vs. *H*_A: ______
- Test Statistic: _____
- Critical Value: _____; P-Value: _____
- Conclusion: ______ and conclude ______

Example: Comparing ANOVA Table and Test for Slope

• Scenario: Use ACT score of 29 college freshmen (without outlier) to describe freshman year GPA.

Source	DF	Adj SS	Adj MS	F-Value	P-Value	Term	Coef	SE Coef	T-Value	P-Value
Regression	1	3.459	3.4589	12.50	0.001	Constant	0.987	0.570	1.731	0.095
Error	27	7.474	0.2768			ACT	0.0822	0.0232	3.535	0.001
Total	28	10.933								

- **Question:** What is the relationship between the test statistic from the ANOVA table and the test statistic for testing the slope?
- Answer: Test statistic from the ______ is the _____ of the test statistic found from ______
 - •_____

3. Follows the same sign as the slope of the regression line: If $\hat{\beta}_1$ is

positive, then r is positive, and vice versa

<u>Note</u>: Proofs of properties 1 and 2 require some knowledge of probability theory, covariance, and expectation.

• Can be calculated in three different ways:

$$r = \frac{SSXY}{\sqrt{SSX \cdot SSY}}$$
 $r = \frac{S_{XY}}{S_X S_Y}$ $r = \frac{S_X}{S_Y} \hat{\beta}_1$

Example: Calculating Correlation Coefficient

- Scenario: Record stopping distance for a car at 5 different speeds.
- Question: What is the correlation between ACT score and GPA?

Speed	Stop. Dist.	$X_i - \overline{X}$	$Y_i - \overline{Y}$	$(X_i - \overline{X})(Y_i - \overline{Y})$	$(X_i - \overline{X})^2$	$(Y_i - \overline{Y})^2$
20	64					
30	118					
40	153					
50	231					
60	319					
$\overline{X} = 40$	$\bar{Y} = 177$					
• Answer:						

$$r^2 = \frac{SSY - SSE}{SSY}$$

• The remainder of the variability $1 - r^2$ is due to other factors not being analyzed in the relationship between *X* and *Y*

Example: Calcula	ating r^2
	core of 30 college freshmen to describe their Given $SSY = 15.191$ and $SSE = 13.240$.
• Question: What is th	ne coefficient of determination?
• Answer:	
• Question: What doe	s the coefficient of determination mean?
• Answer:	is explained by
• The remaining this regression such	 is due to other factors not being considered in asetc.
Example: Calcula	ating r^2
• Scenario: Use ACT set to describe freshmar	core of 29 college freshmen (without outlier) 1 year GPA.
• Question: What is th	ne coefficient of determination?
• Answer:	
• Takeaway: By	, the model is able to explain
• It does not have to tr	ry to understand why one student's GPA is so
	·