Fundamentals of Hypothesis Testing

- Upper One-Sided Test
- Lower One-Sided Test
- ➤ Two-Sided Test
- Relationship to Confidence Intervals
- Factors Leading to Smaller P-Values

MOTIVATION: HYPOTHESIS TESTING

- Scenario: SAT is designed to have normally distributed scores with population mean $\mu = 1000$ and standard deviation $\sigma = 217$.
- Question: How can we determine if 1000 is a plausible value for the average SAT score of Pitt students?
- Solution #1: Find an _____ of plausible values for what the mean SAT score of Pitt students could be
 - Calculate a ______
- Solution #2: Determine how ______ the sample mean would be under the ______ that the true population mean SAT score of Pitt students is _____
 - Pitt students is ______
 Perform a _______ an inferential procedure that tests whether a ______ for a parameter is plausible

NULL AND ALTERNATIVE HYPOTHESES• Null hypothesis: initial guess made about a parameter $H_0: \mu = \mu_0$
ParameterHypothesized value of
unknown parameter• Alternative hypothesis: the conclusion we come to if the collected
evidence indicated the null hypothesis may be false $H_A: \mu > \mu_0$
Upper one-sided
alternative $H_A: \mu < \mu_0$
Lower one-sided
alternative $H_A: \mu < \mu_0$
Upper one-sided
alternativeNote: μ_0 will be replaced with the hypothesized
value in both the null and alternative hypotheses.

EXAMPLE: NULL AND ALTERNATIVE HYPOTHESES			
• Scenario: SAT is designed to have normally distributed scores with population mean $\mu = 1000$ and standard deviation $\sigma = 217$. We want to determine if the average SAT score of Pitt students is higher than the national average.			
Question: What are the null and alternative hypotheses?			
Answer:			
Null Hypothesis: Interpretation: "Thethe national average of"			
Alternative Hypothesis: Interpretation: "The than the national average of"			
EXAMPLE: NEXT STEPS			
• Scenario: SAT is designed to have normally distributed scores with population mean $\mu = 1000$ and standard deviation $\sigma = 217$. A random sample of 25 Pitt students finds a sample mean SAT score of 1250.			
Question: What can we do with this data?			
 Answer: Three things Check if the shape of the sampling distribution is			
EXAMPLE: SAMPLING DISTRIBUTION			
• Scenario: SAT is designed to have normally distributed scores with population mean $\mu = 1000$ and standard deviation $\sigma = 217$. A random sample of 25 Pitt students finds a sample mean SAT score of 1250.			
• Question: What is the sampling distribution of the sample mean?			
Answer:			
 Mean: μ_{X̄} = In inference, use the – need to know how unusual the sample mean is relative to what we believe the mean could be 			
• Standard Error: $\sigma_{\bar{X}} = ___= __$			
Shape: Rule of Thumb # applies: Original population			

Test Statistic

- Test statistic: one criterion used to decide if a hypothesized value is a plausible value for the parameter
 - Measure of how different the statistic is from the hypothesized value of the parameter
 - Calculation changes depending on the type of test
- For testing a population mean, the test statistic is:

$$Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$$

Measures the number of standard errors that separate the sample mean and hypothesized mean

EXAMPLE: TEST STATISTIC

- Summary: Testing H_0 : $\mu = 1000$ vs. H_A : $\mu > 1000$. Sample mean of 25 SAT scores is $\bar{x} = 1250$ and we know $\sigma = 217$.
- Question: What is the test statistic?
- Answer:

P-VALUE

- **P-value:** the probability of obtaining data as extreme or more extreme than what was originally observed assuming the null hypothesis (H_0) is true
 - Calculated in different ways depending on the alternative hypothesis
 - Small p-values are evidence against H_0
 - Indicates the sample mean was unlikely if the hypothesized value is correct
 - Suggests the hypothesized value may not be correct
 - Large p-values are evidence supporting H_0
 - Indicates the sample mean is not terribly unusual if the hypothesized value is correct
 - Suggests that the hypothesized value could be plausible as the true parameter

7

EXAMPLE: INTERPRETING THE RESULTS				
• Hypotheses: $H_0: \mu = 1000$ vs. $H_A: \mu > 1000$.				
• Test Results: $\bar{x} = 1250$, $Z = 5.76$, and $p = 4.20 \times 10^{-9}$.				
 Question: What decision can we make regarding the average SAT score of Pitt students using a 5% level of significance? 				
• Answer: because <i>p</i> = • Result is				
 Question: What is our final conclusion about the mean SAT score? Answer: The true mean SAT score of Pitt students is 				
While we don't know the, we are confident it is some value from the				
ONE-SAMPLE Z-TEST FOR A POPULATION MEAN				
Step	Description			
Used for	Performing inference on a single unknown population mean when the population standard deviation (σ) is known			
Conditions	Shape of sampling distribution of sample mean must be normal Use a histogram, the sample size, and the Central Limit Theorem to verify			
Test Statistic	$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$ which follows a standard normal distribution			
Confidence Interval	$\bar{X} \pm Z \frac{\sigma}{\sqrt{n}}$			

HYPOTHESIS TESTING PROCEDURE

• We will cover 8 hypothesis tests this semester. Each is customized to the variable situation, but all follow the same procedure:

15

Step	Description
	Determine the appropriate test to use
1	Determine the null and alternative hypotheses
	Collect the data
2	Ensure the conditions for performing the test hold
3	Calculate the test statistic
4	Calculate the p-value
5	Calculate a confidence interval that matches the level of significance
6	Write a conclusion using the above results

Example: Two-Sided Test (Cont.)				
<pre>• Values: > screws = read.table("screws.cs > mean(screws\$length) [1] 50.06 > nrow(screws) [1] 40</pre>	sv", header = TRUE, sep = ",")			
 Test Statistic: Z = = _ P-Value: p = = = 99% Confidence Interval: 				
 Conclusions: because the p-value () isthe level of significance (α = 0.01) 50 is afor the mean screw length of We arethat the true mean screw length is We arethat the true mean screw length is We arethat the true mean screw length is When failing to reject H₀, we neverthe null hypothesis. We don't know what the true mean – only that the hypothesized value be the true value. 				
RELATIONSHIP BETWEEN HYP	POTHESIS TESTS AND C.I.'S			
 Confidence interval: provides a range of plausible values for an unknown parameter Hypothesis test: determines if a hypothesized value is plausible 				
Confidence Interval Result	Interpretation of Hypothesized Value			
C.I. contains hypothesized value	Hypothesized value is a estimate of the parameter			
C.I. lies entirely above hypothesized value	True parameter is significantly than the hypothesized value			
C.I. lies entirely below hypothesized value	True parameter is significantly than the hypothesized value			
Note: Minor contradictions can occur v intervals are two-sided. This is infreque	with one-sided tests because confidence ent enough that we won't worry about it.			

EXAMPLE: RELATIONSHIP BETWEEN HYPOTHESIS TESTS AND C.I.'S • Question: Are the hypothesis tests and confidence intervals from the three examples consistent? Answer: **SAT Scores Male Heights Screw Length Hypotheses** $H_0: \mu = 50$ $H_0: \mu = 1000$ $H_0: \mu = 72$ $H_A: \mu < 72$ $H_A: \mu > 1000$ $H_A: \mu \neq 50$ Lev. of Sig. $\alpha = 0.10$ $\alpha = 0.05$ $\alpha = 0.01$ P-Value $p = 4.20 \times 10^{-9}$ p = 0.0150p = 0.4902(69 29. 71.63) (116/ 1325) Conf. Int. (49.84, 50.28)

Consistent?	(1164, 1335) : Test rejected H ₀ and C.I. is entirely	(69.29, 71.63) : Test rejected H_0 and C.I. is entirely
BENEFITS	and Drawback	(s of Smaller P

BENEFIT LER P-VALUES

 Recall: We normally like to have narrower confidence intervals as they provide a more precise estimate of the parameter.

- Question: Do we always want to attain a smaller p-value?
- Answer:
 - Pitt SAT Scores: Wanted a _____ p-value to show that Pitt students scored _____ than the national average
 - Male Height: P-value really _____ nothing _____ was coming from the result as we were just seeing if the average height was less than 72 inches
 - Screw Length: Wanted a _____ p-value to show that the machine was _____ and making screws the _____ length

FACTORS LEADING TO SMALLER P-VALUES

23

: Test failed to reject

 H_0 and C.I.

• Question: How can we get a smaller p-value in a hypothesis test?

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

Answer: Need the test statistic to be _____

- _ difference between sample mean and hypothesized mean more easily attained by choosing a different _____
- _____ standard deviation Not always _____
- _____ sample size Usually the best option, but must be done