ONE-FACTOR ANOVA AND MULTIPLE COMPARISONS

- ➤ F-Distribution
- Sources of Variation
- One-Factor ANOVA Test
- Multiple Comparisons

F-DISTRIBUTION

- F-distribution: continuous probability distribution that has the following properties:
 - Unimodal and right-skewed
 - Always non-negative
 - Two parameters for degrees of freedom
 - One for numerator and one for denominator
 - Used to compare the ratio of two sources of variability
 - Key Fact: Large F-statistics are evidence against the null hypothesis.

MOTIVATION: ONE-FACTOR ANOVA

- Scenario: Archaeologists want to analyze the skeletal remains of 8 males from each of three time periods (current era, Middle Ages, and Prehistoric Era)
- Question: Are the mean heights of the skeletal remains equal across all three eras?
- Answer: From the side-by-side boxplots:
 - Means appear to be _____
 - But there is a great amount of ______
 within each group
 - Sample size is _____
- Takeaway: Need an inferential technique that compares _____

ONE-FACTOR ANOVA: HYPOTHESES AND CONDITIONS

Step	Description			
Used for	Comparing the means of three or more populations			
Hypotheses	$H_0: \mu_1 = \mu_2 = \dots = \mu_k$ $H_A:$ At least two means are significantly different			
Conditions	 Sampling distributions of all sample means must be approximately normal The spreads of all samples must be approximately equal 			
	$\frac{s_L^2}{s_S^2}$ < 2 where s_L represents the largest sample standard deviation and s_S is the smallest sample standard deviation			

EXAMPLE: ONE-FACTOR AN	AVO			7
• Scenario: Archaeologists wan males from each of three time and Prehistoric Era)	t to analy e periods	yze the sk s (current	eletal rema era, Middle	ains of 8 e Ages,
• Question: Are the mean heigh across all three eras?	its of the	skeletal ı	remains ec	lual
• Hypotheses:				
• <i>H</i> ₀ :				
• <i>H_A</i> : At least	_ are			
EXAMPLE: ONE-FACTOR AN	NOVA ((CONT.)		8
• Question: Are the mean heigh	its of the	skeletal ı	remains ec	lual
across all three eras?	Statistic	Current	Middle Ages	Prehistoric
	Mean	69.10	66.85	65.05
 Conditions: 	Std. Dev.	2.842	2.644	2.056
Normality:		- 2		
 Sample size of 8 is, but I 	boxplots are			-
		- 88 -		
Equal Spread:		66 Heigh		
• Largest SD:		4 _		
Smallest SD:		<u>و</u>		-
• Ratio: = < 2		69 –	Current Middle A	ges Prehistoric
			Era	3
Grand Mean				9
• Grand mean: the mean of all	observat	tions, disr	egarding th	ne group
from which the observations v	were san	npled		8 p
 Used in the calculation of the b 	between g	roup variat	ion because	it helps
us understand how different th	ne sample	means are).	·
$_{=}$ $n_{1}\bar{x}_{1} +$	$n_2 \bar{x}_2 +$	$\cdots + n_k \bar{x}_k$		
$x = -\frac{n_1}{n_1}$	$+ n_2 + \cdots$	$\cdots + n_k$		
where				
• \bar{r}_{r} is the mean of the ob-	servatio	ns from ør	oun i	
x_l is the mean of the OD		is non gi		
an is the number of above		oomolad	from arow	$\sim i$
• n_i is the number of obse	ervations	sampled	from grou	p i

ANOVA TABLE AND CODE

• ANOVA table: summary of the sums of squares, degrees of freedom, mean squared terms and test statistic from an ANOVA

Source	DF	Sums of Squares	Mean Squares	Test Statistic
Between Group	k - 1	SST	$MST = \frac{SST}{k-1}$	$F = \frac{MST}{MSE}$
Within Group	n-k	SSE	$MSE = \frac{SSE}{n-k}$	
Total	n-1	SSY		

• To run a one-factor ANOVA in R and print the ANOVA table:

```
model = aov(height ~ era, data = heights)
summary(model)
```

EXAMPLE: TEST STATISTIC AND ANOVA TABLE

• ANOVA Table:SourceDFSums of SquaresMean SquaresTest StatisticP-ValueBetween GroupImage: Complex of the second s

- Test Statistic: F = _____
- **P-Value:** p = 0.0154
- Conclusion: ______ and conclude that the average heights of the skeletal remains for ______

- Multiple comparisons: procedure used to determine exactly which pairs of means are significantly different
 - Extension of ANOVA
 - Perform a hypothesis test interval for each pair of means, but...
 - ...make adjustment to the level of significance based on how many comparisons need to be made
 - Want the overall Type I error rate to be 5% in total
 - Level of significance for each individual test must be smaller than 5%
 - Many different techniques
 - Fisher's Least Significant Difference Method
 - Tukey's Method of Multiple Comparisons
 - Bonferroni Adjustment Method

BONFERRONI ADJUSTMENT METHOD

 Bonferroni adjustment method: a method of multiple comparisons where a test statistic is calculated for each pairwise comparison being done, but where the level of significance is adjusted according to how many comparisons are being made

18

- Hypotheses: $H_0: \mu_i = \mu_i$ vs. $H_A: \mu_i \neq \mu_i$ when comparing groups *i* and *j*
- Test Statistic:

$$t = \frac{\bar{x}_i - \bar{x}_j}{\sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}} \text{ which has } n - k \text{ df}$$

• **Decision:** If the overall level of significance is α and the number of comparisons being made is k, then each multiple comparisons test is made using a level of significance of $\frac{\alpha}{\nu}$.

EXAMPLE: FAILING TO REJECT ANOVA								25		
• Scenario: Suppose the heights for the current era were 1" shorter, resulting in summary statistics and test results shown below.										
	Stat	Current	Mid. Ages	Prehistoric		0.11.0	Df Sum	Sq Mean Sq F	value Pr(>F)	
	Mean	68.10	66.85	65.05		Residuals	2 37.	06 6.431	2.924 0.0758 .	
	SD	2.842	2.644	2.056] [Current	: Middle Ages		
	n	8	8	8		Middle Ages Prehistoric	0.335 0.025	- 0.170		
Question: What conclusions could we draw?										
Answer:										
• ANOVA: and cor				onclu	de			are		
significantly different										
Multiple Comparisons: Would							to perform	m the tests		
ANOVA already told us that										
All p-values are										