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F-DISTRIBUTION

• F-distribution: continuous probability distribution that has the 
following properties:
• Unimodal and right-skewed

• Always non-negative

• Two parameters for degrees of freedom
• One for numerator and one for denominator

• Used to compare the ratio of two sources            
of variability

• Key Fact: Large F-statistics are evidence      
against the null hypothesis.
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MOTIVATION: ONE-FACTOR ANOVA

• Scenario: Archaeologists want to analyze the skeletal remains of 8 
males from each of three time periods (current era, Middle Ages, 
and Prehistoric Era)

• Question: Are the mean heights of the skeletal remains equal 
across all three eras?

• Answer: From the side-by-side boxplots:
• Means appear to be _________________

• But there is a great amount of __________      
within each group

• Sample size is ______________

• Takeaway: Need an inferential technique      
that compares ______________________
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ONE-FACTOR ANALYSIS OF VARIANCE (ANOVA)

• One-factor analysis of variance (ANOVA): statistical technique used 
to compare the means of three or more populations
• Uses two sources of variability to compare means

• Between group variation: measures that amount of variability between 
the sample means of individual groups
• “How different are the sample means from one another?”

• Within group variation: measures the amount of variability that exists 
within the samples
• “How different are the individual observations from one another within each 

group?”
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COMPARING TYPES OF VARIATION

Small between group variation
• Means are _______________ (20, 30, and 40)

Large within group variation
• Observations within groups are __________

• Range for each sample is about ___

Large between group variation
• Means are __________ (20, 40, and 60)

Small within group variation
• Observations within groups are _______________

• Range for each sample is about ___
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ONE-FACTOR ANOVA: HYPOTHESES AND CONDITIONS

Step Description

Used for Comparing the means of three or more populations

Hypotheses 𝐻!: 𝜇" = 𝜇# = ⋯ = 𝜇$  

𝐻%: At least two means are significantly different

Conditions 1. Sampling distributions of all sample means must be 

approximately normal

2. The spreads of all samples must be approximately equal

&!
"

&
#
"
< 2 where 𝑠' represents the largest sample standard 

deviation and 𝑠( is the smallest sample standard deviation
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EXAMPLE: ONE-FACTOR ANOVA

• Scenario: Archaeologists want to analyze the skeletal remains of 8 
males from each of three time periods (current era, Middle Ages, 
and Prehistoric Era)

• Question: Are the mean heights of the skeletal remains equal 
across all three eras?

• Hypotheses:
• 𝐻!: _________________

• 𝐻%: At least ________________ are ____________________
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EXAMPLE: ONE-FACTOR ANOVA (CONT.)

• Question: Are the mean heights of the skeletal remains equal 
across all three eras?

• Conditions:
• Normality: __________

• Sample size of 8 is ______, but boxplots are all      
___________________

• Equal Spread: __________
• Largest SD: __________

• Smallest SD: __________

• Ratio: ___________ = _______ < 2 

Statistic Current Middle Ages Prehistoric

Mean 69.10 66.85 65.05

Std. Dev. 2.842 2.644 2.056
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GRAND MEAN

• Grand mean: the mean of all observations, disregarding the group 
from which the observations were sampled
• Used in the calculation of the between group variation because it helps 

us understand how different the sample means are.

�̿� =
𝑛!�̅�! + 𝑛"�̅�" +⋯+ 𝑛#�̅�#

𝑛! + 𝑛" +⋯+ 𝑛#
   

   where

• �̅�$ is the mean of the observations from group 𝑖

• 𝑛$ is the number of observations sampled from group 𝑖
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SOURCES OF VARIATION

• Between Group Variation: How different are the sample means?

𝑆𝑆𝑇 = 𝑛! �̅�! − �̿�
" + 𝑛" �̅�" − �̿�

" +⋯+ 𝑛# �̅�# − �̿�
"

•Within Group Variation: How different are the observations within 
each group?

𝑆𝑆𝐸 = 𝑛! − 1 𝑠!
" + 𝑛" − 1 𝑠"

" +⋯+ 𝑛# − 1 𝑠#
"

• Total Variation: 𝑆𝑆𝑌 = 𝑆𝑆𝑇 + 𝑆𝑆𝐸

Sample Size Sample Variance

Sample Size Sample Mean
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EXAMPLE: SOURCES OF VARIATION

• Grand mean: 

�̿� =
8 69.1 + 8 66.85 + 8(65.05)

8 + 8 + 8
= _____

• Between group variation:

𝑆𝑆𝑇 = 8 69.1 − 67 # + 8 66.85 − 67 # + 8 65.05 − 67 #

        = ___________________________

        = __________

•Within group variation: 

𝑆𝑆𝐸 = 8 − 1 2.842 # + 8 − 1 2.644 # + 8 − 1 2.056 #

        = ___________________________

        = ____________

Stat Current Mid. Ages Prehistoric

Mean 69.10 66.85 65.05

SD 2.842 2.644 2.056

𝑛 8 8 8
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ONE-FACTOR ANOVA:  TEST STATISTIC AND CONCLUSION

Step Description

Mean Squared 

Treatment
𝑀𝑆𝑇 =

𝑆𝑆𝑇

𝑘 − 1

Mean Squared 

Error
𝑀𝑆𝐸 =

𝑆𝑆𝐸

𝑛 − 𝑘

Test Statistic

 
𝐹$*",,*$ =

𝑀𝑆𝑇

𝑀𝑆𝐸

Conclusion If 𝑯𝟎 is not rejected: None of the means are significantly different

If 𝑯𝟎 is rejected: At least two means are significantly different

(“Average between group error per group”)

(“Average within group error per observation”)

(“Ratio of average between group variation to 

average within group variation”)
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COMPARING SOURCES OF VARIATION WITH F-STATISTIC

Small between group variation
• Means are close together à _________

Large within group variation
• Observations within groups are far apart à _________

F-statistic 
𝑴𝑺𝑻

𝑴𝑺𝑬
 will be _______

• Evidence supporting __________________

Large between group variation
• Means are far apart à _________

Small within group variation
• Observations within groups are close together à _________

F-statistic 
𝑴𝑺𝑻

𝑴𝑺𝑬
 will be _______

• Evidence supporting ____________________________
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ANOVA TABLE AND CODE

• ANOVA table: summary of the sums of squares, degrees of 
freedom, mean squared terms and test statistic from an ANOVA

• To run a one-factor ANOVA in R and print the ANOVA table:

model = aov(height ~ era, data = heights)

summary(model)

Source DF Sums of Squares Mean Squares Test Statistic

Between Group 𝑘 − 1 𝑆𝑆𝑇 𝑀𝑆𝑇 =
𝑆𝑆𝑇

𝑘 − 1
𝐹 =

𝑀𝑆𝑇

𝑀𝑆𝐸

Within Group 𝑛 − 𝑘 𝑆𝑆𝐸 𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛 − 𝑘

Total 𝑛 − 1 𝑆𝑆𝑌
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EXAMPLE: TEST STATISTIC AND ANOVA TABLE

• ANOVA Table:

• Test Statistic: 𝐹 = ________

• P-Value: 𝑝 = 0.0154

• Conclusion: __________ and conclude that the average heights of 
the skeletal remains for ____________________________________ 
____________.

Source DF Sums of Squares Mean Squares Test Statistic P-Value

Between Group 2 65.88 32.94 5.122 0.0154

Within Group 21 135.06 6.43

Total 23 200.94
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DRAWBACK OF ANOVA

•When we reject 𝐻%, the only conclusion that can be drawn at that 
point is that at least two means are not equal.

• Problem: _________________ of rejecting 𝐻%
• Don’t know how many pairs of means differ or which pairs differ

• 𝜇! ≠ 𝜇", 𝜇! = 𝜇#, 𝜇" = 𝜇#

• 𝜇! = 𝜇", 𝜇! ≠ 𝜇#, 𝜇" = 𝜇#

• 𝜇! = 𝜇", 𝜇! = 𝜇#, 𝜇" ≠ 𝜇#

• 𝜇! ≠ 𝜇", 𝜇! ≠ 𝜇#, 𝜇" = 𝜇#

• 𝜇! ≠ 𝜇", 𝜇! = 𝜇#, 𝜇" ≠ 𝜇#
• 𝜇! = 𝜇", 𝜇! ≠ 𝜇#, 𝜇" ≠ 𝜇#

• 𝜇! ≠ 𝜇" ≠ 𝜇#

• Solution: ____________________ will tell us which scenario is true.

_____ pair of 

means not equal

_____ pairs of 

means not equal

________ are equal

Number of comparisons 

increases exponentially as 

the number of groups 

increases.
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MULTIPLE COMPARISONS

•Multiple comparisons: procedure used to determine exactly which 
pairs of means are significantly different
• Extension of ANOVA

• Perform a hypothesis test interval for each pair of means, but…

• …make adjustment to the level of significance based on how many 
comparisons need to be made
• Want the overall Type I error rate to be 5% in total

• Level of significance for each individual test must be smaller than 5%

• Many different techniques
• Fisher’s Least Significant Difference Method

• Tukey’s Method of Multiple Comparisons

• Bonferroni Adjustment Method
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BONFERRONI ADJUSTMENT METHOD

• Bonferroni adjustment method: a method of multiple comparisons 
where a test statistic is calculated for each pairwise comparison 
being done, but where the level of significance is adjusted 
according to how many comparisons are being made

• Hypotheses: 𝐻!: 𝜇2 = 𝜇3  vs. 𝐻%: 𝜇2 ≠ 𝜇3 when comparing groups 𝑖 and 𝑗

• Test Statistic: 

𝑡 =
�̅�2 − �̅�3

𝑀𝑆𝐸
1
𝑛2
+
1
𝑛3

• Decision: If the overall level of significance is 𝛼 and the number of 
comparisons being made is 𝑘, then each multiple comparisons test is 

made using a level of significance of 
4

$
.

which has 𝑛 − 𝑘 df
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EXAMPLE: PREPARING FOR MULTIPLE COMPARISONS

• Scenario: Archaeologists want to analyze the skeletal remains of 8 
males from each of three time periods (Prehistoric, Middle Ages, 
and current era)

• Question: How many comparisons do we need to make?

• Answer: ___
• ________ vs. ___________

• ________ vs. ___________

• ___________ vs. ___________

• Question: If we want to use an overall 5% level of significance, 
what should the level of significance be for each individual test?

• Answer: _______________ 
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OBTAINING P-VALUES USING R

• After running the one-way ANOVA test, multiple comparisons p-
values can be obtained:

pairwise.t.test(heights$height, heights$era,

 p.adjust = "none")

• R will output a table of p-values that contains the result of every 
comparison:

Tells R not to use a different method of multiple comparisons

Quantitative variable Categorical variable
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EXAMPLE: MULTIPLE COMPARISONS

• Task: Test if the average heights of the skeletal remains from the 
current era and Middle Ages are significantly different.

• Hypotheses: 𝐻%: __________ vs. 𝐻&: __________

• Test Statistic: 𝑡 = ________________ = ________ 
• P-Value: 𝑝 = ________

• Conclusion: _____________ and conclude that the mean heights 
for the current era and Middle Ages are ______________________.

Stat Current Mid. Ages Prehistoric

Mean 69.10 66.85 65.05

SD 2.842 2.644 2.056

𝑛 8 8 8

(because _______ > _______)
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EXAMPLE: MULTIPLE COMPARISONS

• Task: Test if the average heights of the skeletal remains from the 
current era and Prehistoric Era are significantly different.

• Hypotheses: 𝐻%: __________ vs. 𝐻&: __________

• Test Statistic: 𝑡 = ________________ = ________ 
• P-Value: 𝑝 = ________

• Conclusion: ________ and conclude that the mean heights for the 
current era and Prehistoric Era are ___________________.

Stat Current Mid. Ages Prehistoric

Mean 69.10 66.85 65.05

SD 2.842 2.644 2.056

𝑛 8 8 8

(because _______ < _______)
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EXAMPLE: MULTIPLE COMPARISONS

• Task: Test if the average heights of the skeletal remains from the 
Middle Ages and Prehistoric Era are significantly different.

• Hypotheses: 𝐻%: __________ vs. 𝐻&: __________

• Test Statistic: 𝑡 = ________________ = ________ 
• P-Value: 𝑝 = ________

• Conclusion: _____________ and conclude that the mean heights for 
the Middle Ages and Prehistoric Era are ______________________.

Stat Current Mid. Ages Prehistoric

Mean 69.10 66.85 65.05

SD 2.842 2.644 2.056

𝑛 8 8 8

(because _______ > _______)
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EXAMPLE: DIFFERENT SAMPLE SIZES

• Question: What would happen to the multiple comparisons tests if 
the observations were distributed differently?

• Answer: ______________ would be different in each comparison

Stat. Current Mid. Ages Prehistoric

SD 2.842 2.644 2.056

𝑛 8 8 8

MSE 6.43

Stat Current Mid. Ages Prehistoric

SD 2.842 2.644 2.056

𝑛 10 8 6

MSE 9 2.842 ! + 7 2.644 ! + 5 2.056 ! /21 = 6.80

Original Data Different Sample Sizes

All SE are 6.43
!

$
+
!

$
= ______ 

regardless of the comparison 

being made.

Current vs. Mid. Ages:      6.80
!

!%
+
!

$
= ______

Current vs. Prehistoric:     6.80
!

!%
+
!

&
= ______

Mid. Ages vs. Prehistoric: 6.80
!

$
+
!

&
= ______
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EXAMPLE: FAILING TO REJECT ANOVA

• Scenario: Suppose the heights for the current era were 1” shorter, 
resulting in summary statistics and test results shown below.

• Question: What conclusions could we draw?

• Answer:
• ANOVA: ______________ and conclude _____________________ are 

significantly different

• Multiple Comparisons: Would _________________ to perform the tests
• ANOVA already told us that ___________________________

• All p-values are __________________

Stat Current Mid. Ages Prehistoric

Mean 68.10 66.85 65.05

SD 2.842 2.644 2.056

𝑛 8 8 8
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