INFERENCE FOR A POPULATION MEAN

- ➤ t-Distribution
- Critical Values using t
- \succ Testing a Population Mean When σ is Unknown
- \succ Effect of Knowing σ
- Inference for a Population Mean Using R

REVIEW: SAMPLING DISTRIBUTIONS

• If σ is known and \overline{X} is approximately normal, then \overline{X} is standardized:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

• Because it is a parameter, σ is usually _____. Instead, we estimate σ using the _____. However:

$$Z \neq \frac{\bar{X} - \mu}{s / \sqrt{n}}$$

• Instead...

$$t = \frac{\bar{X} - \mu}{s / \sqrt{n}}$$

where t stands for the _____

T-DISTRIBUTION

- t-Distribution: continuous probability distribution similar to the standard normal in that it is:
 - Symmetric and bell-shaped
 - Centered at 0

but differs from the standard normal because it:

- Is a family of distributions whose shape changes depending on the degrees of freedom
- Has fatter tails and is shorter in the middle

-2

T-DISTRIBUTION TABLE

-2

MOTIVATION: ONE-SAMPLE T-TEST

• Scenario: Recent study found that college students are more likely to drop out if they work at a part-time job more than 20 hours per week. A professor surveys her students who have jobs to find out how many hours they worked at their job last week.

- Question: Is there sufficient evidence to conclude that college students are working more than 20 hours per week on average?
- Observations:
 - Doing inference on a _____ (average hours worked per week)
 - Population standard deviation is _____
 - Because ____ is unknown, the _____ for a population mean is ______
 - Can calculate the _____ standard deviation __ and use the _____

ONE-SAMPLE T-TEST	
Step	Description
Used for	Performing inference on a single unknown population mean when the population standard deviation (σ) is unknown
Conditions	Shape of sampling distribution of sample mean must be normal Population standard deviation unknown
Test Statistic	$t=rac{ar{x}-\mu_0}{s/\sqrt{n}}$ with $n-1$ degrees of freedom
Confidence Interval	$ar{X} \pm t_{n-1} rac{s}{\sqrt{n}}$ with $n-1$ degrees of freedom

Note: Everything about this test is identical to the one-sample Z-test except the distribution and knowledge of the standard deviation. If you know the population standard deviation, use the one-sample Z-test.

EXAMPLE: ONE-SAMPLE T-TEST

• Question: Is there sufficient evidence to conclude that college students are working more than 20 hours per week on average using a 5% level of significance?

10

12

EXAMPLE: ONE-SAMPLE T-TEST (CONT.)		
• Summary: > mean(hours\$hours) > sd(hours\$hours) > nrow(hours) [1] 24.2 [1] 9.480808 [1] 15		
• Test Statistic: <i>t</i> = =		
Interpretation: If college students actually work on average, then is standard errors the mean.		
• Degrees of Freedom: $df = ___=$		
• P-Value: $p = $ in a t-distribution $t = \frac{t}{\overline{X} + \frac{4}{1021}}$ $t = \frac{2}{15.10}$ $t = \frac{2}{20}$ $t = \frac{4}{29.79}$		
EXAMPLE: ONE-SAMPLE T-TEST (CONT.)		
• Summary: > mean(hours\$hours) > sd(hours\$hours) > nrow(hours) [1] 24.2 [1] 9.480808 [1] 15		
• 95% Confidence Interval: = =		
 Conclusions: and conclude that college students are hours per week at jobs. <i>p</i> = We are that the average number of hours that all college students work at jobs is This is consistent with the hypothesis test because 		
EXAMPLE: EFFECT OF KNOWING σ		
 Scenario: Suppose we had known that σ = 9.48. Question: What would have been different about the test? Answer: Would have used 		
 Test Statistic: Z = = Value does, but distribution P-Value: p = area in the tail from using 		
 Confidence Interval:		

