AppGameKit 2 Collision Using Arrays

Making use of other Applications

Although we need game software to help makes games for modern devices, we should not exclude
the use of other applications to aid the process as well. We can probably assume that most people
are award of the importance of applications like Adobe Photoshop, but what about Microsoft Excel?

For this example we are going to do just that as an aid to developing a simple maze game. Two
things we really need to consider at this point are the overall size and the size of individual cells
within the maze. To keep it simple and have less data to work with, I'm going to keep my maze
relatively simple and use large cell dimensions. The overall size will be 800 x 800 pixels with 50 x 50
pixel cells.

To begin with, we need a project. Create a folder called “AMazing” and a project of the same name.
Save the project to that folder.

SetErrorHode (2)

T g U S

— i Ll i L L L L A

SetWindowIitle | "AMazing™)

SetWindowSize | 8200, 200, O)

EEE-1s
L

= R
L -

SetVirtualResolution({ 200, 200)
SetOrientationfAllowed | 1, 1, 1, 1)
30, 0)

SetSyncRate| 30, 0
OzellewDefaultFont=s(1)

. = =
A L 1 L - —
e

do

Synci()
loop

Set the resolution to 800 x x800 and run the program to produce the media folder, the location we
will use for our sprites and background.

Now, launch Excel and create a new blank sheet. Our cell size allows for exactly 16 across and 16
down. Take 16 columns and 16 rows and change the cell height and width to 50 pixels. Put a border
of any colour on those cells to make them stand out from the rest. You should have something like
the image shown below.

To create the maze, just use the cell fill colour tool. Choose whichever colour you want and make a
maze similar to the one shown:

Spruce it up in Photoshop

We have our basic maze pattern, so we can make it look a bit better in Photoshop. Go back to Excel
and make a copy of Sheetl. On the copy sheet, remove the borders from the maze and the gridlines

from the whole sheet. (found under the View tab)

LoadImage (2001, "Maze.jpg™)

Using the mouse, highlight all the cells
belonging to the maze. Then on the home
tab click on the little arrow head pointing
down that is located beside the “Copy”
command.

Choose “Copy as Picture”, then check
“Bitmap” and click “OK”

Launch Photoshop, create a new file size
800 x 800 pixels and paste in your maze.

From here you can make your maze look as
nice as you like, but I'll leave that part to
you. When you’re finished, save it as a .jpg
called Maze, into the media folder created
earlier.

Add the following two lines just before the
“do” loop and run your program.

You should now see your completed maze on screen.

CreateSprite (201, 2001) Here’s my version: which is nicer??

This tutorial is not about Photoshop or sprite creation. So I'll leave it to you to create your player.

Just make sure it fits into a

AMazing

50 x 50 cell size.

I’'m going with this basket
ball:

Save it to the media folder
and call it “Player” Make it
a .jpg or a .png if you need
to maintain transparency
like my example.

Load the image and create
a sprite like before; also
create two integer
variables to store the X and

Y co-ordinates of the player when it is moving around the screen and draw it on screen so that it is
constantly having its location updated — so inside the “do” loop. Your code should now look
something look this:

PlayerX as integer = 0
PlayerY as integer a0

LoadImage (2001, "Maze.jpg™)
CreateSprite (201, 2001)

LoadImage (2002, "Plaver.png™)
Createlprite [202, 2002)
SetSpritePosition (202, PlayerX, PlayerY)

do
SetSpritePosition (202, PlavyerX, PlayerY)

Sync()
loop

The “Y” location of my player has been set to 50, which places the ball nicely at the start position of
my maze. Check out the screenshot below:

We’ll now make the ball move up -> down -> left -> right by responding to key presses. You will have
done this before in earlier tutorials, so go ahead and add the code to make the ball move by 10
pixels in all directions. Don’t worry about going through walls or off the screen at this point.

To refresh your memory, here is the code that will complete the movement described:

do
if GetRawEeyState(| 37) = 1
PlayerX = PlayerX - 10
endif

if GetRawEeyState(| 38) = 1
BlayerY = Player¥ - 10
endif

if GetRawEeyState(| 3%) = 1
BFlayerX = PlayerX + 10
endif

if GetRawEeyState| 40) = 1
Playery = PlayeryY + 10
endif

SetSpritePosition(202, PlayerX, FPlayerY)

Synci)
loop

| said at the beginning that we would keep this simple. So, with that in mind change the code so that
the ball moves 50 pixels at a time. That will make it easier for the player to line the ball up with the
paths through the maze. However, the speed is now 5 times faster and needs to be slowed down.
We could change the frame rate, but that would ultimately affect any other sprites we might create.
We will just allow the ball to move

if Frame Counter = 0 once every 5 frames rather than
if GetRawKeyState(37) = 1 every frame by including our own
FlayerX = PlayerX - 50 delay code
endif
Create a variable called
if GetRawrHeyState(38) = 1 Frame_Counter and set it to zero.
_Flayer‘f = Player¥ - 30 Amend the code so that it now looks
endif X .
like this:

if GetRawEeyState| 39) = 1
PlayerX = PlayerX + 50
endif

Test your program.

We are now ready to implement the

if GetRawKeyState(40) = 1 actual collision testing using an array.

Plavery = Plaver¥ + 50

endif
endif
Frame_Cuunter = Frame_Cuunter + 1
if Frame_Cuunter = 5

Frame_Cuunter = 0
endif

The Array

It will be helpful to return to the Excel grid again for this part as it will help us to visualise the
relationship between our array and the maze. Our maze contains 16 cells horizontally and 16 cells
vertically — giving a total of 256 cell locations. So that will be the size of our array. As arrays start

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

with an index value of zero, we can
visualise it like this in the
spreadsheet.

It will help if you put these values
into a copy of your spreadsheet.

Our array will just contain one of two
values to represent places where the
player can walk and walls. So, the
values 0 and 1 will suffice. Here is
another copy of the maze in the
spreadsheet with 0’s and 1’s marked.

Do that to a version of yours as well.

We need to create the array now in
our game code and populate it with
0’s and 1’s like in my image.

Fortunately, as we have used a
spreadsheet, we can save it as a CSV
file (Comma Separated Values) and
then just copy and paste them into
our code.

MazeGrid a= integer[25e] =

The above line of code shows how a
single dimension array is created in
AppGameKit 2 where we can specify
initial values within the square
brackets.

To get the values, save the sheet as a
CSV file, open the file using Notepad,
copy the values and paste them into
your code. Make sure you have a
comma separating each of the values
and you should end up with
something like this:

F1!’1!’1!’1!'1!'1!'1!'1!'1!'1!'1!'1!'1!'1!'1!'
o,¢,90,0,0,0,0,0,0,0,0,0,0,0,0,%,
i0,4,2,1,2,2,2,1,2,2,2,2,2,0,3,
i0,40,0,0,0,0,0,0,0,0,0,%,0,3,
i0,2,4,0,2,2,2,0,2,2,2,2,2,0,3,
i90,0,4,0,%,0,4,0,%,0,0,0,0,0,3,
i414,%4,0,%2,0,2,0,%2,2,2,0,2,0,3,
i40,0,0,0,0,0,4,0,0,0,0,0,%,8,3,
i0,4,0,1,0,2,2,1,2,2,2,2,2,0,3,
i0,4,0,%4,0,0,0,0,0,0,0,0,0,0,%,
i0,4,0,1,2,2,2,1,0,2,2,1,2,0,3,
i0,40,0,0,0,0,4,0,4,0,0,%,82,3,
i0,4,0,2,2,4,0,1,2,4,0,0,%,0,3,
i4.,%0,0,0,0,0,2,0,2,2,2,%,0,0,
i90,0,0,4,0,4,0,0,0,0,0,0,0,0,2,
i41,2,1,1,2,12,1,1,2,2,1,3,2,32,1]

MazeGrid a=s integer[25&]

s so that you can clearly see the pattern of the maze. Although it is a single
dimension array, it is helpful to lay it out like this. All we have to do now is navigate through the

maze in our array and update the X and Y location of the ball on screen accordingly.

I've highlighted the 1’

Right, that might have been over simplifying things, so let’s break it down a bit. Here’s my maze in

Photoshop with the array locations of the places we can walk on overlaid.

30

46

| 62 i

29

28

60 |

110

108

142

174

206

222 | 223

27

59

26

58

25

57

24

56

23

55

22

54

21

53

20

52

19

| 51

18

104

102

100

120 | 121 | 122 | 123 | 124

169

187 | 188

185

203 | 204

199

217

17

33

| 49

16

113 | 114 | 115 | 116 | 117 | 118

133

131

129

149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158

147

145

163

161

179|180 | 181 | 182 | 183

177

195

193

211 | 212 | 213 | 214 | 215

231|232 | 233|234 | 235 | 236 | 237 | 238

229

225 | 226 | 227

From the image we can see that our player (the

ball) starts off located at index value 16 in the Flayer Location On Grid as integer
array. So we should create a variable in the

code to reflect that.

We can also see the locations where we can walk and those that are walls. If we go back to our code
for moving to the right and amend it, we just have to ensure that the contents of the array location
to the right (or one place greater than 16 contains a zero and not a one. Here’s the amended code:

if GetRawKeyState(| 3%) = 1 and MazeGrid[Player Location On Grid + 1] = 0
FlayerX = PlayerX + 50
Player Location Om Grid = Player Location On Grid + 1

endif

As before, 39 represents the “Right Arrow” key. Added to that is a test to see if the array
“MazeGrid” contains a zero at the current location of the player, plus one, location 17. Only if both
conditions are true do we move the ball by adding 50 to its X location. We must also change the
location of our player in the array, and that is achieved by increasing the relevant variable by one.

You should be able to determine how to amend the code for moving left! It’s the same as above but
we subtract one rather than adding one when checking if it is okay to move.

Moving up and down is similar, but because there are 16 cells in each row we have to either add or
subtract 16 instead of one to verify if it is okay to move.

if Frame Counter = 0
if GetRawFeyState(37) = 1 and MazeGrid[Player Location On Grid - 1] i}

PlayerX = Player¥X - 50
Player Location On Grid = Player Location On Grid - 1

endif

if GetRawKeyState(38) = 1 and MazeGrid[Player Location On Grid - 1l&] = 0
PlayerY = FlayerY - 50
Flayer Location On Grid = Player Location On Grid - 18

endif

if GetRawFeyState(3%) = 1 and MazeGrid[Player Location On Grid + 1] = 0O
Player¥ = PlayerX + 50
Flayer Location On Grid = Flayer Location On Grid + 1

endif
if GetRawFeyState(40) = 1 and MazeGrid[Player Location On Grid + 16] = 0
Playery = Player¥Y + 50
Flayer Location On Grid = Player Location On_ Grid + 16
endif
endif

The code shown completes the requirements for all four directions. Make the amendments and test
your maze game. If all is well you will not be able to walk through the walls anymore. So you should
be able to see that, although it looks like the ball is colliding with the walls, it is, in fact, just following
an instruction in a line of code that checks a cell ahead of where you want to go and doesn’t do
anything if it’s not free.

16

