
AppGameKit 2      Collision Using Arrays 

 

Making use of other Applications 

Although we need game software to help makes games for modern devices, we should not exclude 

the use of other applications to aid the process as well.  We can probably assume that most people 

are award of the importance of applications like Adobe Photoshop, but what about Microsoft Excel? 

For this example we are going to do just that as an aid to developing a simple maze game.  Two 

things we really need to consider at this point are the overall size and the size of individual cells 

within the maze.  To keep it simple and have less data to work with, I’m going to keep my maze 

relatively simple and use large cell dimensions.  The overall size will be 800 x 800 pixels with 50 x 50 

pixel cells. 

To begin with, we need a project.  Create a folder called “AMazing” and a project of the same name.  

Save the project to that folder. 

Set the resolution to 800 x x800 and run the program to produce the media folder, the location we 

will use for our sprites and background.  

Now, launch Excel and create a new blank sheet.  Our cell size allows for exactly 16 across and 16 

down.  Take 16 columns and 16 rows and change the cell height and width to 50 pixels.  Put a border 

of any colour on those cells to make them stand out from the rest.  You should have something like 

the image shown below. 

  



To create the maze, just use the cell fill colour tool.  Choose whichever colour you want and make a 

maze similar to the one shown:  



Spruce it up in Photoshop 

We have our basic maze pattern, so we can make it look a bit better in Photoshop.  Go back to Excel 

and make a copy of Sheet1.  On the copy sheet, remove the borders from the maze and the gridlines 

from the whole sheet. (found under the View tab) 

Using the mouse, highlight all the cells 

belonging to the maze.  Then on the home 

tab click on the little arrow head pointing 

down that is located beside the “Copy” 

command. 

Choose “Copy as Picture”, then check 

“Bitmap” and click “OK” 

Launch Photoshop, create a new file size 

800 x 800 pixels and paste in your maze. 

From here you can make your maze look as 

nice as you like, but I’ll leave that part to 

you.  When you’re finished, save it as a .jpg 

called Maze, into the media folder created 

earlier. 

Add the following two lines just before the 

“do” loop and run your program. 

You should now see your completed maze on screen.  

Here’s my version: which is nicer?? 

This tutorial is not about Photoshop or sprite creation.  So I’ll leave it to you to create your player.  

Just make sure it fits into a 

50 x 50 cell size. 

I’m going with this basket 

ball: 

 

Save it to the media folder 

and call it “Player”  Make it 

a .jpg or a .png if you need 

to maintain transparency 

like my example. 

Load the image and create 

a sprite like before; also 

create two integer 

variables to store the X and 



Y co-ordinates of the player when it is moving around the screen and draw it on screen so that it is 

constantly having its location updated – so inside the “do” loop.  Your code should now look 

something look this: 

The “Y” location of my player has been set to 50, which places the ball nicely at the start position of 

my maze.  Check out the screenshot below: 

We’ll now make the ball move up -> down -> left -> right by responding to key presses.  You will have 

done this before in earlier tutorials, so go ahead and add the code to make the ball move by 10 

pixels in all directions.  Don’t worry about going through walls or off the screen at this point. 

To refresh your memory, here is the code that will complete the movement described: 



I said at the beginning that we would keep this simple.  So, with that in mind change the code so that 

the ball moves 50 pixels at a time.  That will make it easier for the player to line the ball up with the 

paths through the maze.  However, the speed is now 5 times faster and needs to be slowed down.  

We could change the frame rate, but that would ultimately affect any other sprites we might create.  

We will just allow the ball to move 

once every 5 frames rather than 

every frame by including our own 

delay code. 

Create a variable called 

Frame_Counter and set it to zero.  

Amend the code so that it now looks 

like this: 

Test your program. 

We are now ready to implement the 

actual collision testing using an array. 

  



The Array 

It will be helpful to return to the Excel grid again for this part as it will help us to visualise the 

relationship between our array and the maze.  Our maze contains 16 cells horizontally and 16 cells 

vertically – giving a total of 256 cell locations.  So that will be the size of our array.  As arrays start 

with an index value of zero, we can 

visualise it like this in the 

spreadsheet.   

It will help if you put these values 

into a copy of your spreadsheet. 

Our array will just contain one of two 

values to represent places where the 

player can walk and walls.  So, the 

values 0 and 1 will suffice.  Here is 

another copy of the maze in the 

spreadsheet with 0’s and 1’s marked.  

 Do that to a version of yours as well. 

We need to create the array now in 

our game code and populate it with 

0’s and 1’s like in my image.   

Fortunately, as we have used a 

spreadsheet, we can save it as a CSV 

file (Comma Separated Values) and 

then just copy and paste them into 

our code. 

The above line of code shows how a 

single dimension array is created in 

AppGameKit 2 where we can specify 

initial values within the square 

brackets. 

To get the values, save the sheet as a 

CSV file, open the file using Notepad, 

copy the values and paste them into 

your code.  Make sure you have a 

comma separating each of the values 

and you should end up with 

something like this: 

  



I’ve highlighted the 1’s so that you can clearly see the pattern of the maze.  Although it is a single 

dimension array, it is helpful to lay it out like this.  All we have to do now is navigate through the 

maze in our array and update the X and Y location of the ball on screen accordingly. 

Right, that might have been over simplifying things, so let’s break it down a bit.  Here’s my maze in 

Photoshop with the array locations of the places we can walk on overlaid. 



From the image we can see that our player (the 

ball) starts off located at index value 16 in the 

array.  So we should create a variable in the 

code to reflect that. 

We can also see the locations where we can walk and those that are walls.  If we go back to our code 

for moving to the right and amend it, we just have to ensure that the contents of the array location 

to the right (or one place greater than 16 contains a zero and not a one.  Here’s the amended code: 

As before, 39 represents the “Right Arrow” key.  Added to that is a test to see if the array 

“MazeGrid” contains a zero at the current location of the player, plus one, location 17.  Only if both 

conditions are true do we move the ball by adding 50 to its X location.  We must also change the 

location of our player in the array, and that is achieved by increasing the relevant variable by one. 

You should be able to determine how to amend the code for moving left!  It’s the same as above but 

we subtract one rather than adding one when checking if it is okay to move. 

Moving up and down is similar, but because there are 16 cells in each row we have to either add or 

subtract 16 instead of one to verify if it is okay to move. 

The code shown completes the requirements for all four directions.  Make the amendments and test 

your maze game.  If all is well you will not be able to walk through the walls anymore.  So you should 

be able to see that, although it looks like the ball is colliding with the walls, it is, in fact, just following 

an instruction in a line of code that checks a cell ahead of where you want to go and doesn’t do 

anything if it’s not free.  


