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Sampling Considerations for Health Care
Improvement

Rocco J. Perla, EdD; Lloyd P. Provost, MS; Sandra K. Murray, MA

Sampling in improvement work can pose
challenges. How is it different from the sampling
strategies many use with research, clinical trials, or
regulatory programs? What should improvement
teams consider when determining a useful
approach to sampling and a useful sample size?
The aim of this article is to introduce some of the
concepts related to sampling for improvement. We
give specific guidance related to determining a
useful sample size to a wider health care audience
so that it can be applied to improvement projects in
hospitals and health systems.
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BACKGROUND CONCEPTS

Using data for improvement

Data used for improvement are typically collected
by those working within the health care system to
monitor process performance, obtain ideas for im-
provement, test changes to see whether they are im-
provements, and to see whether improvements are
maintained. Run or Shewhart charts are used to de-
termine whether changes yield improvement and im-
provements are maintained. When collecting data for
improvement, we are aware that we are doing so at
the same time we are providing ongoing care to our
patients and our community. Therefore, sampling
is an important consideration to conserve resources
and put those resources into testing and adapting
changes rather than measuring as teams work toward
improvement.

Using sampling for data collection in improvement
projects can pose some challenges, though. Many of
these challenges are rooted in the differences be-
tween expectations of data when they are used for
improvement, accountability, or research.1,2 The en-
vironment during an improvement project can be
very different from that of a research project, with
less emphasis on bias, less control of confounding
variables, and not a fixed population, but rather an
ongoing process sampled over time.3 These differ-
ences impact the way we sample and the way we
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determine sample size. Using sampling strategies ap-
propriate for research and accountability purposes
when measuring for an improvement project is likely
to lead to larger than necessary samples and wasted
effort and resources.4 Sampling is not simply about
selecting the “right” computational sample size; all
sampling schemes are associated with theoretical as-
sumptions and concepts. Sampling for clinical tri-
als or regulatory purposes most typically assumes
a fixed population, a theoretical distribution of mea-
sures within this population, and uses these assump-
tions to devise sampling tables or strategies based on
population size. Data for improvement do not come
from a fixed population with a known distribution;
rather, the data come from an ongoing process whose
distribution may change as the future unwinds. Im-
provement projects in health care take place in an
environment that is dynamic and contains many fac-
tors that are uncontrolled.5 This reality impacts an
appropriate sampling strategy.

Table 1 summarizes some of the theoretical as-
sumptions underlying measurement for improve-
ment, based on the work of Lewis6 Shewhart,7,8 and
Deming.9 On the basis of their guidance, we use the
following 2 important concepts related to sampling
in improvement projects:

1) Obtaining just enough data based on past expe-
rience to guide our learning into the future.

2) Making full use of subject matter expertise in
selecting the most appropriate samples.

These 2 pivotal concepts are used as we address
sampling for improvement throughout this article.

SAMPLING IN IMPROVEMENT

Sampling at 2 levels in improvement projects

Improvement projects involve both global project
measures and measurement at the Plan-Do-Study-
Act (PDSA) cycle level.10 Sampling considerations
are important at both these levels. Project or global
measures focus at the project level and are main-
tained throughout the life of the improvement
project. Data will be collected and summary statis-
tics graphed for each of these measures at a regular
time interval, using an annotated run or Shewhart
chart. Typically, a project will have a “family” of 3 to
8 global outcome, process, and balancing measures.
Table 2 defines these 3 categories and provides an ex-
ample of each for a perioperative safety team working
to reduce harm. In subsequent sections of this article,
we address sample size for global measures.

Measures used during PDSA cycles for testing are
more transient and usually do not endure for the en-
tire lifespan of the improvement project. When the
PDSA cycle is being used to test changes, the ap-
proach is sequential. Initial PDSA cycles testing an
idea for improvement will typically start at a small
scale (with a small sample size). As knowledge about
the change increases, follow-up cycles are used to
adapt and retest the idea, test it under more robust

Table 1

THEORETICAL ASSUMPTIONS ASSOCIATED WITH SAMPLING FOR THE PURPOSES OF IMPROVEMENT

Theorist Theory/Philosophy Implications on Sampling

C. I. Lewis Conceptualistic
pragmatism

Past experience influences what we expect to occur in the future and
this prediction is based on small amounts of information being
processed over time

Walter
Shewhart

Cause systems We need just enough observational data to tell us if our systems of
production are stable or unstable

W. Edwards
Deming

Profound
knowledgea

Those closest to the process will have the greatest insight on where and
how to obtain the most useful samples

aCombined with appropriate subject matter knowledge.
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Table 2

GLOBAL MEASURES: OUTCOME, PROCESS, AND BALANCINGa

Type of Measure Description Perioperative Example

Outcome The voice of the customer or patient % of patients harmed
How is the system performing? % unplanned returns to the operating room
What is the result? % unplanned surgical readmission

Process The voice of the workings of the process % of patients with on-time antibiotic
administration

Logically linked to obtaining the outcomes % of patients with appropriate DVT
prophylaxis

Address how key parts/steps of the system are
performing

% of patients with appropriate β-blocker
use

Balancing Look at a system from different
directions/dimensions

Volume of surgical workload

What happened to the system as we improved
the outcome and process measures?

% of prophylactic antibiotics appropriately
discontinued

Could relate to unintended consequences or
competing explanations for project success

Abbreviation: DVT, deep vein thrombosis.
aAdapted from Provost and Murray.11

conditions, or test on a larger scale. Sample size dur-
ing these PDSA test cycles will vary depending upon
a number of factors.

Sampling during PDSA cycles

In improvement, the goal of sampling is to select
observational units in order to learn about systems
and improve them in the most timely, efficient, and
effective manner possible. Testing using the PDSA
cycle is done in the context of human and social
systems. We can plan an effective sampling strategy
during PDSA cycles, using 3 major concepts related
to this human context.10 The size or scale (num-
ber of tests, time required, number of staff involved,
amount of data) of a PDSA test of change should be
decided by considering:

1. the team’s degree of belief that the change will
result in improvement;

2. the costs associated with a failed test; and
3. the readiness of those who will have to make

the change.
As shown in Table 3, considering these 3 factors

enables one to determine the size or scale, and thus

the appropriate sample size, for the next PDSA cycle.
For example:

• A team is testing a new admitting approach de-
signed to improve billing accuracy and reduce
time to bill. The team considers this change
likely to produce great results. The staff involved
in testing the idea was not eager. Negative conse-
quences for their system could be considerable,
however, if the new system does not work. Using
the matrix, they determined that a very small-
scale test would be appropriate (high degree of
belief, high cost of failure, resistant staff). Their
initial sample size was to try the change with 1
admission.

• The new online decision support guidelines had
been reviewed by all of the clinicians and ap-
proved. The team had run some tests on the sys-
tem, and it had worked well. If for some rea-
son the system failed, a paper backup was ready
for use. The team was tempted to move to im-
plementation but decided on a large-scale test
of change to build its confidence that it would
work under all conditions (high degree of be-
lief, cost of failure low, staff ready). Its testing

Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



Sampling Considerations for Health care Improvement 39

Table 3

DECIDING THE SCALE OF A TESTa

Appropriate Scope for a PDSA Cycle

Staff/Clinician Readiness to Make Change

Current Situation Resistant Indifferent Ready

Low belief
that change idea will

lead to improvement

Cost of failure large
Cost of failure small

Very small-scale test
Very small-scale test

Very small-scale test
Very small-scale test

Very small-scale test
Small-scale test

High belief
that change idea will

lead to improvement

Cost of failure large
Cost of failure small

Very small-scale test
Small-scale test

Small-scale test
Large-scale test

Large-scale test
Implement

Abbreviation: PDSA, Plan-Do-Study-Act.
aAdapted from Langley et al.10

strategy for the next PDSA cycle consisted of pi-
loting the guidelines in the entire organization
for a month (large sample test).

When using the matrix in Table 3 to determine the
scale of the next PDSA cycle, judgment is used to
determine what constitutes a “very small,” “small,”
or a “large” test of change. The decision about sample
size for data collected as part of a PDSA cycle is
to obtain just enough data to answer the questions
posed in that cycle. When it turns out that additional
information is needed, a follow-up cycle is available
to obtain additional samples.

Selecting the sample

In sampling for improvement, it is useful to under-
stand the concepts of probability- and nonproba-
bility- (or judgment) based sampling. Deming3,12 first
introduced the term “judgment sampling” as a con-
trast to probability-based sampling in the context
of surveys in 1947. He defined the difference as
follows:

Probability samples: Samples selected by a random
process for which the sampling errors can be calcu-
lated, and for which the biases of selection, nonre-
sponse, and estimation are virtually eliminated or
contained within known limits. Also called random
sampling, the various methods of probability sam-
pling (eg, simple, stratified, and systematic random

samples) are discussed in basic statistics texts so are
not discussed further here.3

Judgment samples: Samples selected by a nonran-
dom process for which the biases and sampling er-
rors cannot be calculated from the sample but instead
must be settled by subject matter knowledge. In re-
search, the term purposive sampling has sometimes
been used to describe a type of judgment sample.13

The distinction between probability and judgment
sampling is important for quality improvement ef-
forts and is the reason sampling strategies for im-
provement often differ from those used in clinical
trials and accountability reports. Data used for im-
provement most often come from a stream of data
from an ongoing process (eg, health care delivery
process); we rarely have a fixed population of in-
terest from which to select a random sample. Even
if we could identify such a population at a point in
time, this population would quickly change as we
move into the future.12 In addition, in improvement
work, ensuring that all potential observational units
in a population and sampling frame have equal prob-
ability of selection is often not the most desired or
beneficial strategy. Rather, often we look to the sub-
ject matter experts to guide which areas, times of day,
or segments of the population are most important to
study and understand. For these reasons, judgment
sampling is very useful in improvement work. Some
examples of judgment samples are as follows:
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• Select the times of day we should collect STAT
laboratory turnaround times.

• Select the first 10 patients who arrive in the
clinic after 2:00 PM.

• Select the charts from only patients with 3 or
more comorbidities.

• Interview the next person with diabetes who
comes in the office for care.

The desirability of judgment sampling is, in many
ways, obvious whether the aim is to learn about a
system or process that includes various factors and
inputs that are likely to change over time. With judg-
ment sampling, while we lose the ability to assess
the precision of our results using traditional statis-
tical methods, we gain the ability to generalize on
the basis of samples selected under a wide range of
conditions and over time as improvements are made.
The work of Perla and Provost14 provides more detail
on the use of judgment samples in improvement.

Global project measures are those that are collected
and displayed on an annotated run or Shewhart chart
at least monthly for the duration of the improve-
ment project. Sampling for global project measures
involves deciding how often, how much, and which
data we are going to collect in order to help us im-
prove. Sometimes, the number of patients or other
volume of work available is small enough that it
makes sense to obtain all of the data in the set (ie, we
only have 7 people with newly diagnosed diabetes
each month, so we obtain data from all of them).
And sometimes, electronic records (eg, use of time
stamps for emergency department wait times) make
large amounts of data readily available without hav-
ing to sample. But when working with a large number
of units requiring manual data collection, sampling
can be an efficient way to collect enough data to accu-
rately track performance yet save time and resources
while doing so.15

SAMPLING CONSIDERATIONS USING RUN AND
SHEWHART CHARTS

Improvement projects are, by their temporal na-
ture, focused on performance as it moves forward in
time in health care systems. Without a defined popu-

lation, we cannot directly use probability-based sam-
ple size tables and formulas that are often used in re-
search study designs and for regulatory applications.
Despite this, we do have some practical guidance for
obtaining appropriate sample sizes for improvement-
related data where our selection is usually based to
some degree on judgment.

Sampling for measures on run charts

A primary use of the annotated run chart in an
improvement project is detection of improvement as
changes are tested and implemented. The importance
of viewing the impact of changes tested on the sys-
tem over time sets a context for determining sample
size for the test.11 The number of data points (sub-
groups) plotted on the run chart needs to be ade-
quate to detect patterns that may indicate improve-
ment and impacts the overall sampling burden. Some
guidelines for determining the number of data points
plotted necessary to detect patterns on a run chart
are shown in Table 4. Run charts are started when
the first data point is available on a project. As each
additional data point becomes available, it is added
to the run chart for continuous learning. Analysis is
principally visual, although rules for detecting im-
provement may be applied when enough data points

Table 4

MINIMUM NUMBER OF DATA POINTS FOR AN
EFFECTIVE RUN CHARTa

Situation
Data Points
Required

Expensive tests, complex
prototypes, or long periods
between available data points,
large effects anticipated

<10

Desire to discern patterns
indicating improvements that
are moderate or large

11-30

The effect of the change is
expected to be small relative to
the variation in the system

31-100

aAdapted from Provost and Murray.11
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are plotted.16 The run chart typically becomes quite
powerful when 10 or more data points are available.
The sampling burden for run charts then is impacted
by both the frequency of subgroups and the size of
the sample used to define subgroups. For example, a
team wanted to develop and test changes to improve
the turnaround time for a particular laboratory test.
The team decided to obtain a judgment sample of 5
test times each day and plot the average turnaround
time daily on a run chart. The team’s sampling bur-
den was 35 samples each week (5 per day × 7 days
each week).

For data used as part of an improvement effort,
getting samples across a wide range of conditions
(locations, days of the week, shift, etc) is almost al-
ways more important than the number of samples
collected under a specific condition. In general, more
data (larger sample sizes) lead to more information
and better precision of results. Unless the data are
already collected and reported, larger sample sizes
also involve more effort and cost.4 As an illustra-
tion, in the simulated run charts in Figure 1 (adapted
from the work of Provost and Murray11), we see aver-
age clinic waiting time plotted during the life of the
project. The examples were simulated using results
randomly generated with a mean of 50 minutes (SD =
10 minutes). An important improvement (a 30% re-
duction) in the average waiting time has been made
after period 12. The 5 run charts show the simulated
average waiting times of a sample of 1, 5, 10, 20, and
50 patients per week.

Is it obvious that a change in the waiting time has
occurred looking at the data plotted with a sample
size of 1 per week? What about a sample size of 5, 10,
20, and 50? The picture is not evident with a sam-
ple size of 1. The information gained with a sample
size of 5 and 10 begins to provide convincing visual
evidence that the change resulted in improvement.
With a sample size of 10 observations per week, we
observe the first signs of a nonrandom data pattern
for a run chart in the form of a shift and too few
runs.11 A sample size of 20 or 50 per week is proba-
bly overkill and wasteful. Sample size issues in im-
provement efforts are a balance between resources
(time, money, energy, slowing improvement efforts)

Figure 1. Sample size on a run chart and ability to detect
change.

and the precision of the results desired.4 We advise
improvement teams to consider smaller samples at
any one time but commit to collecting and graphing
them over time (eg, daily, weekly, monthly) as a way
to improve learning and conserve team resources. A
visual review of simulated run charts for the project’s
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key measures can provide the “power calculation”
usually done in research projects (which also assume
baseline performance values).

Sampling for Shewhart charts

Shewhart charts are a pivotal tool for improve-
ment work, providing an operational definition for
Shewhart’s theory of common and special causes.7

These time-series charts are used to develop im-
provement strategies, detect the impact of changes,
determine sustainability, and calculate process ca-
pability. While limits can be calculated with a small
number of data points (called subgroups), they be-
come most powerful when the limits are calculated
using 20 or more subgroups. Shewhart charts are ana-
lyzed using statistically based rules. Shewhart charts
come in a variety of types depending on the type of
data being used and other factors.11 Here, we address
sampling for the most common types of Shewhart
charts used in health care.

Classification of data: P charts

One of the most commonly used Shewhart charts
is the P chart, which is used to analyze per-
centages based on classification (yes/no, compli-
ance/noncompliance, conforming/nonconforming)
data. The limits for the P chart are based on the stan-
dard error of a binomial distribution. To develop an
effective chart, it is desirable to avoid too many zeros,
to have a symmetric distribution of the statistic plot-
ted, and sometimes important to have both an upper
and lower control limit to detect both improvement
and deterioration. The sample size used to create the
subgroups plays the primary role in achieving these
characteristics. A sample size large enough to be able
to detect the nonconforming units is needed in order
to tell whether the percentage measure is improving.
For example, if we had a process in which 1% of
the patient assessments did not meet standards and
we collected a sample of 10 assessments each week,
we would be unlikely to find any in that sample of
10 that did not meet standards, much less be able to

tell when we improved the process to less than 1%
noncompliance.

The minimum subgroup size for an effective P
chart depends on the average percentage (Pbar).
Table 5 (adapted from the work of Provost and
Murray11) summarizes the minimum subgroup size
required to create P charts with specific features:

1. To expect 25% or less of the subgroups with a
subgroup value of 0 (or 100%) that is necessary
for a useful chart.

2. To expect a symmetric distribution of P based
on the guideline of n >300/P.

3. To expect a lower control limit for the P chart
(or upper limit if near 100%).

These sample size guidelines are useful for both
random and judgment samples. The decision to use
1 of the 3 strategies (columns in Table 5) to select a
subgroup size for P charts will be impacted by cost,
feasibility, and data access. To make this decision,
use the following decision scheme:

Step 1: If feasible to use a subgroup size that pro-
vides a lower limit, then select this option. The power
of the Shewhart chart over a run chart is the limits
used to detect special causes.

Step 2: If not possible to select a subgroup size
that provides a lower limit, then consider a sub-
group size that satisfies n >300/P. When the sub-
group size meets this criterion, the distribution of the
data points is expected to be symmetric enough that
all the rules for special causes used with the chart
will be useful.

Step 3: If not possible to select a subgroup size that
satisfies steps 1 or 2, then select a minimum subgroup
size needed to have 25% or less zero values for P. At
a minimum, construction of a P chart should use a
subgroup size needed to have 25% or less zero values
for P.

Step 4: If it is not possible to obtain subgroup sizes
to meet this third criterion, the P chart will not be
useful. An alternative Shewhart chart tracking count
or time between rare events data (G or T chart) should
be considered.11

As an example of the use of Table 5, a team was in-
terested in determining a sample size for percentage
of eligible patients discharged from a particular unit
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Table 5

MINIMUM SUBGROUP SIZE FOR P CHARTS BASED ON 3 DIFFERENT CRITERIAa

Estimated Average %
Nonconforming Units
(Pbar)

Minimum Subgroup Size
(n) Needed to Have ≤25%

Zeros for Ps

Minimum Subgroup
Size Guideline

(n >300/P)

Minimum Subgroup
Size Needed to Have

LCL >0

0.1 1400 3000 9000
0.5 280 600 1800
1 140 300 900
1.5 93 200 600
2 70 150 450
3 47 100 300
4 35 75 220
5 28 60 175
6 24 50 142
8 17 38 104
10 14 30 81
12 12 25 66
15 9 20 51
20 7 15 36
25 5 12 28
30 4 10 22
40 3 8 14
50 2 6 10

Abbreviation: LCL, lower control limit.
aFor P > 50, use 100 − P to enter the table (eg, for P = 70%, use table P of 30%; for P = 99%, use table P of 1%; etc).
Adapted from Provost and Murray.11

who received prophylaxis for deep vein thrombosis
during their hospital stay. Their historical data re-
vealed that 30% of the patients did not receive deep
vein thrombosis prophylaxis. Using the guidance in
Table 5, it determined that using a sample size of
22 would yield both upper and lower limits on the
chart. This unit had as few as 40 and as many as
120 patients discharged per week. This team wanted
to obtain a data point each week, and had sufficient
data to do so, but did not have an automated system
from which to obtain the data. The team realized that
a manual record review of 22 records per week was
too time consuming, given its resources. The team
decided to obtain a sample of 6 medical records per
week for record review and plot a data point monthly.
By aggregating weekly data to monthly data, it was
able to obtain a subgroup size that produced a chart
with both lower and upper control limits.

Count data: C and U charts

For count data (the number of errors, instances,
occurrences, or nonconformities in the subgroup),
the standard error from the Poisson distribution is
used to develop the limits on the Shewhart C or U
chart. The minimum sample size is related to the
opportunity for occurrences (time period, physical
area, or number of units) that determines the aver-
age number of nonconformities (Cbar) or average rate
(Ubar). Table 6 provides guidance for determining
opportunity size (subgroup size or area of opportu-
nity) for each data point plotted for a C chart.11

In selecting the sample size (area of opportunity)
for a subgroup on the C chart, select the time period,
physical or geographic area, or number of units it
takes to expect at least an average of 1.4 or more
nonconformities to get a useful C chart, or, ideally,
where the average is greater than 9.0 to get a lower
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Table 6

GUIDELINE FOR C CHART CONSTRUCTION

To Have a Lower Control Limit To Have ≤25% Zeros

Cbar must be >9.0 Cbar must be ≥1.4

limit. For example, a team wanted to reduce billing
errors for a particular category of bill. Its historic data
averaged 0.6 billing errors per invoice. It decided that
a sample of 20 bills would safely yield more than 9
errors and would result in an effective C chart with
a lower limit to quickly detect improvement. This
organization generated about 55 bills a week of the
type the team was interested in tracking. The team
decided that it could obtain a sample 20 bills every
2 weeks and plot the resulting data on a C chart.

This guideline for a C chart (Cbar >9 for a lower
limit and Cbar >1.4 for a useful chart with ≤25% zeros
plotted) can also be used to design effective U charts.
In U charts, the “area of opportunity” (subgroup size)
is allowed to vary. So, to determine a useful sample
size, a “standard” area of opportunity (1 day, 100
admissions, 1000 catheter days, 10 000 deliveries,
100 000 hours worked, etc) is set and the “number of
standard areas” needed to meet the criteria in Table 6
is determined using the following steps:

• Pick an appropriate standard area of opportunity
(based on subject matter knowledge).

• Estimate the current average rate for the measure
of interest.

• Divide 1.4 by the average rate to get the minimum
number of “standard areas of opportunities” re-
quired to have a useful U chart.

• Then divide 9 by the average rate to get the min-
imum number of “standard areas of opportuni-
ties” required for the U chart to have a lower
limit.

• Use the resulting information to plan the sub-
group size.

For example, a team was chartered to reduce the
hospital-wide pressure ulcer rate. The team wanted
to develop a U chart for its baseline data from the
past 2 years. The pressure ulcer rate was currently

reported monthly as 5 per 1000 occupied bed days.
To determine the minimum subgroup strategy, the
team divided 1.4 by 5.0 to get 0.28 standard areas
of opportunities. So to develop a useful U chart, it
needed a sample of 280 bed days (0.28 × 1000 occu-
pied bed days). This meant the team could have sep-
arate monthly charts (or subgroups) for wards with
more than 10 occupied beds (10 beds × 30 days
per month = 300 occupied bed days per month). To
get a U chart with a lower limit, the team would
need 1.8 standard areas of opportunity (9 divided by
5.0) or 1800 bed days. This would work well for the
hospital-wide monthly chart since the hospital had
110 beds and typically had more than 3000 occupied
bed days each month.

Shewhart charts for continuous data (I charts and
Xbar S and I charts)

When planning the measurement strategy for im-
provement projects, measures based on a continuous
scale are usually preferred to count or classification
data when the option is available. We can learn more
quickly from continuous than attribute data (mea-
suring rare events is one exception to this). So, for
example, in learning about length of stay (LOS), cre-
ating subgroups that contain LOS data from 3 to 10
patients will provide more learning about the causes
of variation than subgroups of 30 to 300 attribute
measures of LOS (eg, percentage of times >3 days).

When multiple samples are available to create sub-
groups, the Xbar (average of subgroup data) and S
charts (standard deviation of subgroup data) can be
used effectively with subgroup sizes of as few as 2
or 3. These charts can also handle very large sample
sizes such as those from administrative or automated
databases. The sensitivity of an Xbar chart depends
on the variation of the measure of interest. This vari-
ation is documented and studied in the S chart. The
central limit theorem shows that the precision of av-
erages of multiple data points is greater than that
of the original data and therefore the width of the
control limits on an Xbar chart is inversely related to
the square root of the subgroup size. This relation-
ship can be used to design an Xbar chart with limits
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that are equal to changes of specific magnitude using:
n = (3 × σ /c),2 where n is the required subgroup size,
sigma is the common cause variation of the measure
documented on the S chart (average within subgroup
standard deviation), and c is the size of change of in-
terest. For example, if an hourly length of stay mea-
sure had a σ of 20 minutes and it was desired to
detect a change of 10 minutes, n = (3 × 20/10)2 =
36 for a subgroup size that will give a limit 10 min-
utes above or below the center line (average) on the
Xbar chart. So if a sample size of n = 36 patients was
used to define each subgroup, then each subgroup af-
ter a shift in the average of 10 minutes would have a
50% chance of exceeding the control limits and thus
signal a special cause. If it was only important to de-
tect a change of 30 minutes, a subgroup size of n =
4 would be adequate to give limits that are plus or
minus 30 minutes from the center line.

For the I chart, each individual measure is used
to define the subgroup. So the “sample size” issues
have to do with the number of subgroups and the
guidance for run charts is useful.

Power calculations for Shewhart charts

The issue of power comes up when people ask
about the “sensitivity” of the Shewhart chart to detect
changes. In the improvement literature, power calcu-
lations lead to operating characteristic (OC) curves,
but an assumption of random sampling is needed
to perform these calculations.17 This step is very
acceptable to researchers and others who use ran-
dom selection in their work.13,18 However, as men-
tioned earlier, improvement efforts often use judg-
ment samples. If the subject matter expert thinks that
the method of selecting samples will simulate ran-
dom sampling, viewing OC curves for different sam-
ple sizes under various assumptions can be helpful
in developing an effective measurement strategy. OC
curves can still be useful as indicators of the sensi-
tivity of Shewhart charts when using such samples.

A health system wanted to use a Shewhart P chart
to monitor the proportion of patients in its differ-
ent long-term care facilities compliant with medi-
cation reconciliation on admission to gauge the im-

pact of different improvement attempts. Each facility
was at a different stage of testing and implementing
changes. Various scenarios were discussed and alter-
native sampling plans were created with the ability to
detect an improvement as a signal outside the control
limits on the P chart (a point above the upper limit).
OC curves were graphed for alternative monthly sub-
group sizes (sample sizes) that show the chance
of detecting a change each month using the Shew-
hart chart for different amounts of improvement
(Figure 2).

One of the long-term care facilities had a baseline
compliance of 30% and wanted to know what sam-
ple size would be needed to detect within 1 month
an improvement in compliance by 30% using the P
chart. Looking at Figure 2A, they settled on a monthly
sample size of 33 randomly selected patient records
that gave them a 79% chance of detecting a 30% im-
provement in 1 month.

Figure 2A-C shows some of the possible OC curves
that could be used to determine the power of a Shew-
hart chart in this situation. With just a small amount
of baseline information and knowing what degree of
improvement is desired, managers and leaders can
use these curves to more effectively select subgroup
sizes for various projects and balance power to de-
tect change with the resources needed to collect ad-
ditional samples. The key assumption made is the
sampling method deployed simulates a random sam-
ple. The subject matter experts have to make this de-
cision on the basis of their knowledge of the sampling
method deployed. We have found many situations in
which these calculations were useful in developing
sampling strategies where various forms of judgment
samples were used.

SUMMARY

This article provided background on sampling con-
cepts and methods for quality improvement, mak-
ing an important distinction between probability and
nonprobability sampling. It emphasized the impor-
tance of judgment sampling in improvement work.
Sample size considerations for improvement were
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Figure 2. Chance of detecting improvement in medication rec-
onciliation using operating characteristic curves (arrow indi-
cates percent change desired to be detected). (A) Chance of
detecting improvement on P chart with 30% baseline perfor-
mance. (B) Chance of detecting improvement on P chart with
50% baseline performance. (C) Chance of detecting improve-
ment on P chart with 80% baseline performance.

discussed both for the PDSA level of measurement
and for global project measures. The importance of
viewing the impact of the change on the system
over time sets a context for determining sample size
when using run and Shewhart charts. With Shew-
hart charts for attribute data, such as the P, C, and
U charts, it is possible to address the subgroup sizes
needed to detect improvement using criteria related
to the average percent nonconforming (P chart) or av-
erage rate of nonconformities (C and U charts). When
using Shewhart charts for continuous data, learning
occurs more quickly and requires smaller subgroup
sizes. OC curves can be used to effectively determine
subgroup size when the subject matter expert be-
lieves that the judgment sampling method simulates
random samples.
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