Technical Report

RP Watkins "OneLedge" connector Allowable downward loads from experimental testing

To: Michael Summers, RP Watkins

Prepared by: Karl Telleen and Joe Maffei, Maffei Structural Engineering

9 February 2018

Scope

This report provides allowable loads for vertical (downward) load bearing capacity of the RP Watkins OneLedge connector in accordance with the experimental testing standard ASTM D7147-11 "Standard Specification for Testing and Establishing Allowable Loads for Joist Hangers," which is referenced by the 2015 International Building Code.

Maffei Structural Engineering provided recommendations for testing in a report dated 14 July 2017. RP Watkins fabricated test specimens. Applied Materials Engineering (AME) carried out testing as described in the testing report dated 6 February 2018 (attached herein as Appendix 1).

Description of the OneLedge connector

The OneLedge connector by RP Watkins, is a product for attaching a wooden ledger board to an Insulated Concrete Form (ICF) structural wall. The ledger board runs parallel to the length of the wall. Joists then attach to the ledger board perpendicularly, using a separate connection.

The OneLedge consists of a single piece of cold-formed galvanized steel. It comes in a range of widths to accommodate the width of the ledger board.

Before the wall concrete is placed, the vertical tabs of the OneLedge are inserted through cut slits in the ICF form such that they penetrate through the insulation and into the concrete. One reinforcing bar is placed horizontally through the holes in the tabs, and one bar is placed vertically, between the tabs. After the concrete wall is cast and cured, the ledger board is installed, bearing on the OneLedge connector's seat. The ledger board is fastened to the OneLedge using screws that penetrate through the front face of the OneLedge, through the ledger board, and through the back face of the OneLedge, such that the tips of the screws are in the wall ICF form.

Summary of test results and allowable load

Table 1 summarizes key results from experimental testing and the resulting allowable load for design. This summary is based on the detailed test results shown in Appendix 1.

In accordance with ASTM D7147-11 Section 13, the allowable downward load is calculated as the lesser of:

- (a) The lowest ultimate load per OneLedge connector divided by 3.
- (b) The average, over each OneLedge connector in each specimen, load that produces a vertical deflection of 0.125 inches at the bottom of the OneLedge connector with respect to the wall.

The ultimate load measured in the test was limited by the strength of the wood joists.

cnocimon	ultimate load	load per OneLedge at 0	.125" deflection (lbs)	allowable load per
specimen	per OneLedge (lbs)	OneLedge 1	OneLedge 2	OneLedge (lbs)
1	8191	2991	3292	
2	8990	4083	4274	
3	8675	4256	3975	
	Minimum / 3 = 2730	Average	= 3812	Allowable = 2730

Table 1Summary of test results and allowable load

Applicability of allowable load

Figure 1, Figure 2, and Figure 3 show the configuration and dimensions of the tested specimens. The allowable load specified above is applicable to OneLedge connectors having the configuration shown in Figure 2. Project parameters are permitted to vary within the ranges stated in Table 2.

Adjustments to allowable load

For applications on projects where the project specified concrete strength ($f_{c, specified}$) for the ICF wall is less than 91% of the tested concrete strength ($f_{c, tested}$) stated in Table 2, the allowable load stated above shall be reduced in accordance with ASTM D7147-11 Section 13.5.9 by multiplying by:

$$V(f'_{c, specified} / f'_{c, tested}) \le 1.0$$

For applications on projects where the project specified thickness (t_{spec}) and/or tensile strength (F_{u_spec}) for the OneLedge sheet metal material is less than the tested OneLedge sheet metal thickness (t_{tested}) and/or tensile strength (F_{u_tested}) stated in Table 2, the allowable load stated above shall be reduced in accordance with ASTM D7147-11 Section 13.5.7 by multiplying by:

 $(3.0/2.5)(F_{u_spec}/F_{u_tested}) (t_{spec}/t_{tested}) \le 1.0$

Parameter	Test	Range of applicability on projects
OneLedge seat depth (horizontal dimension to accommodate ledger board thickness)	1 5/8 inches	1 5/8" (2x dimension lumber ledger) or 1 7/8" (1.5" LVL ledger)
OneLedge other dimensions	See Figure 1.	As tested
OneLedge hole pattern	See Figure 1.	As tested
OneLedge thickness	14 gauge galvanized $(t_{tested} = 0.072 \text{ inches})$	As tested or thicker. If thinner, allowable load shall be reduced in accordance with ASTM D7147-11 Section 13.5.7. See "Adjustments to allowable load."
OneLedge material	Steel tensile strength F_{u_tested} = 58 ksi	As tested or greater. If less, allowable load shall be reduced in accordance with ASTM D7147-11 Section 13.5.7. See "Adjustments to allowable load."
Ledger board type and dimensions	Dimension lumber nominal 2x12	Dimension lumber nominal 2x12 or LVL 1.75"
Concrete strength	<i>f</i> [°] _{c, tested} = 2490 psi	As tested or greater. If less, allowable load shall be reduced in accordance with ASTM D7147-11 Section 13.5.9. See "Adjustments to allowable load."
Thickness of concrete core of ICF wall	4 inches	As tested or thicker
Thickness of foam each side of concrete core	2.5 inches	As tested or thinner
Embedment of OneLedge tabs into concrete core	3.75 inches	As tested or greater

 Table 2
 Range of applicability for selected parameters (continues on next page)

Parameter	Test	Range of applicability on projects
Steel reinforcing bars added in concrete wall	1 bar horizontal. #3 18 inches long.	As tested or greater.
at OneLedge (in		Horizontal bar must be placed in holes
addition to typical wall	1 bar vertical.	in OneLedge as shown in Figure 2.
reinforcement)	#3 18 inches long.	Bar must be centered on OneLedge.
		Vertical bar must pass between OneLedge tabs and must be adjacent to the horizontal bar, between the horizontal bar and the OneLedge.
Horizontal edge distance	10 inches	As tested or greater (from centerline of OneLedge to end of ICF concrete wall or opening)
Fasteners of OneLedge to ledger board	6 screws, #12 diameter, 2 1/2" long: ITW Buildex "Teks 3 HWH CL 12-14 x 2-1/2"	As tested or greater

Figure 1 OneLedge connector dimensions. Dimensions are not shown here for (a) horizontal length of tabs and for (b) depth of seat (horizontal dimension to accommodate ledger board thickness) because these dimensions vary for different versions of the product. See Table 2 for ranges of applicability of testing. (Image from www.watkinshanger.com)

RP Watkins OneLedge connector Allowable downward loads from experimental testing 9 February 2018

Figure 2 Tested specimen dimensions (drawing by RP Watkins).

RP Watkins OneLedge connector Allowable downward loads from experimental testing 9 February 2018

Figure 3 Test setup. Joist length is 24 inches.

RP Watkins OneLedge connector Allowable downward loads from experimental testing 9 February 2018

Appendix 1: Testing report

APPLIED MATERIALS & ENGINEERING, INC. 980 41st Street Tel: (510) 4 Tel: (510) 420-8190 Oakland, CA 94608 FAX: (510) 420-8186 e-mail: info@appmateng.com

February 6, 2018

Mr. Michael Summers **RP** Watkins LLC 13401 S 226th Street Gretna, NE 68028

Project Number 1170972C

Subject: **RP** Watkins OneLedge Load Testing

Dear Mr. Summers:

As requested, Applied Materials & Engineering, Inc. (AME) has completed load testing the RP Watkins OneLedge. The intent of the testing was to determine the vertical downward load capacity of the RP Watkins OneLedge attached to mockup ICF walls.

SAMPLE DESCRIPTION

Three mockup samples were received on November 13, 2017. Mockup configuration consisted of two 20"x24"x9" thick ICF walls. Two wood I-joists spanning 24" in length were fastened with joist hangers to a single wooden ledger board at each end of the joists. The ledger board was seated in and fastened with screws to the RP Watkins OneLedge, which had been cast into the ICF walls. Specimen details are based on the test protocol from Maffei Structural Engineering dated July 14, 2017. Material test results for the materials used to construct the specimens are provided in Appendix A.

TEST PROCEDURE

Three samples were tested on November 27 and 28, 2017 using a calibrated universal testing machine. Samples were tested in general accordance with applicable procedures outlined in ASTM D7147-11, "Standard Specifications for Testing and Establishing Allowable Loads of Joist Hangers", ASTM International. Samples were tested when (ICF) concrete reached an average compressive strength of 2490 psi (see Appendix B). A vertical compressive load was applied to the center of the web stiffened Ijoist via a steel load transfer block at a constant rate of axial deformation of 0.1 in. /min. without shock until the specimen could not support any further loading and load-deflection curve showed that the vertical load resistance was no longer increasing with increased deflection.

A pre-load of 1000 lbf was applied before uniform loading began. Deflection of each OneLedge was continuously using a calibrated LVDT. Test setup is provided in Appendix C.

Mr. Michael Summers **RP Watkins LLC** Original Watkins Joist Hanger Load Testing February 6, 2018 Page 2

TEST RESULTS

Based on our testing, the average load at 0.125" deflection of the RP Watkins OneLedge was determined to be 6283 lbf, 8357, lbf and 8231 lbf for the three samples, respectively. Detailed results of our testing are provided in Table I. Load-deflection curves are shown in Figure 1, 2 and 3.

The typical failure mode observed at ultimate strength of the specimen was flexural cracking and splitting of the I-joist flanges. Failure modes are provided in Appendix D.

If you have any questions regarding the above, please do not hesitate to call the undersigned.

Respectfully Submitted,

APPLIED MATERIALS & ENGINEERING, INC.

Joseph Gapúz

Laboratory Manager

Reviewed by

Armen Tajirian, Ph.D., P.E. Principal

TABLE I

<u>ASTM D7147-11</u> <u>RP WATKINS ONELEDGE LOAD TESTING</u>

Test #	1	2	3	Average of 3 Tests
Load at 0.125" Deflection of Right Hanger, lbf	5982	8166	8512	
Load at 0.125" Deflection of Left Hanger, lbf	6584	8547	7950	
Average Hanger Load at 0.125" Deflection, lbf	6283	8357	8231	7624
Maximum Load at Failure, lbf	16382	17979	17350	17237
Specific Gravity of Right Ledger	0.398	0.328	.369	
Specific Gravity of Left Ledger	0.354	0.362	.387	
Moisture Content of Right Ledger Board, %	10.1	10.0	10.6	
Moisture Content of Left Ledger Board, %	10.3	9.8	9.9	

FIGURE 1

<u>ASTM D7147</u> <u>RP WATKINS ONELEDGE LOAD TESTING – TEST #1</u>

FIGURE 2

<u>ASTM D7147</u> <u>RP WATKINS ONELEDGE LOAD TESTING – TEST #2</u>

FIGURE 3

<u>ASTM D7147</u> <u>RP WATKINS ONELEDGE LOAD TESTING – TEST #3</u>

APPENDIX A

Element Materials Technology 3100 North Hemlock Circle Broken Arrow, OK 74012-1115 USA P 918 258 6066
 F 918 258 1154
 T 800 982 8378
 info.brokenarrow@element.com

Laboratory Report - EAR-Controlled Data

Attn:	Michael Summers	Report No:	B17110127
RP Wat		Date Reported:	11/10/2017
2904 N	Harvard Ave.	P.O. No:	Credit Card
OKLAH	IOMA CITY, OK 73127 US	1.0.10.	orealt ouru

Material: Steel

Description:

(2) 14 GA G90 Samples

Room Temperature Tensile Testing ASTM E8/E8M-16a, Not Specified, As Received

Sample ID	Width, Initial, in	Thickness, Initial, in	Tensile Strength, ksi	Yield (0.2% Offset), ksi	Elongation After Fracture (in 2 inches), %	Location of Fracture
Sample 1	0.496	0.072	57	50	37	Inside Middle Half of Gage

Room Temperature Tensile Testing ASTM E8/E8M-16a, Not Specified, As Received

Sample ID	Width, Initial, in	Thickness, Initial, in	Tensile Strength, ksi	Yield (0.2% Offset), ksi	Elongation After Fracture (in 2 inches), %	Location of Fracture
Sample 2	0.497	0.071	58	51	34	Inside Middle Half of Gage

This document contains technical data whose export and reexport/ retransfer may be subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

Approved by:

Doug Kooken Operations Manager

Test results relate only to the items tested. This document shall not be reproduced, except in full, without the written approval of Element Materials Technology. The recording of false, fictitious, or fraudulent statements or entries on this document may be a punishable offense under federal and state law. A2LA Accredited Laboratory Certificate No. 1089-01 (Mechanical) & 1089-02 (Chemical).

Page 1 of 1

Factory Mutual (J.I. 2 X 9A2 AM), ICC ER-3056, ICC ESR-1976

7

TEKS[®] Self-Drilling Fasteners

Product Report No. 02702

Selector Guide

Part Number	Description	Head Style	Drill Point	Drill & Tap Capacity	Max. Material Attachment	Box Qty	Applications
1134000	12-14 x 3/4"	HWH	#3	.036210	.270	5,000	Doof dook to stool framing
1136000	12-14 x 1"	HWH	#3	.036210	.520	4,000	 Roof deck to steel framing
1120000	12-14 x 1-1/4"	HWH	#2	.036210	.550	4,000	 Wall panel to girt
1123000	12-14 x 1-1/2"	HWH	#2	.036210	.800	2,500	a wan parler to girt
1140000	12-14 x 2"	HWH	#3	.036210	1.450	2,000	Duct work to steel framing
1553000	12-14 X 2-1/2"	HWH	#3	.036210	1.950	1,000	5
1143000	12-14 x 3"	HWH	#3	.036210	2.450	1,000	 Accessories to steel framing
1146000	12-14 x 4"	HWH	#3	.036210	3.450	500	
1147000	1/4-14 x 3/4"	HWH	#3	.036210	.210	3,000	 Clip to steel framing
1149000	1/4-14 x 1"	HWH	#3	.036210	.400	2,500	
1150000	1/4-14 x 1-1/4"	HWH	#3	.036210	.650	2,000	 Retrofit framing
1152000	1/4-14 x 1-1/2"	HWH	#3	.036210	.900	2,000	
1155000	1/4-14 x 2"	HWH	#3	.036210	1.400	1,500	
1554000	1/4-14 x 2-1/2"	HWH	#3	.036210	1.900	1,000	
1157000	1/4-14 x 3"	HWH	#3	.036210	2.400	1,000	
1304000	1/4-14 x 4"	HWH	#3	.036210	3.400	500	
1586000	1/4-14 x 3/4"	*HWH	#3	.036210	.250	3,000	 Commercial overhead steel
1587000	1/4-14 x 1"	*HWH	#3	.036210	.500	2,500	doors, hinges & latches.

* 7/16" Across Flats HWH with serrations under head.

.....

Performance Data

		PUI	LOUT	VALU	ES (av	erage Ib	s. ultin	nate)				
Fast	Fastener Steel Gauge											
Dia.	Pt.	26	24	22	20	18	16	14	12	3/16		
12	2	156	243	283	375	605	848	1181	1856	3520		
12	3	142	211	289	341	551	757	1063	1631	2998		
1/4	3	141	231	293	346	613	880	1145	1858	4550		

FASTENER VALUES									
Fastener (dia-tpi)	Tensile (lbs. min.)	Shear (avg. lbs. ult.)	Torque (min. in. lbs.)						
12-14	2778	2000	92						
1/4-14	4060	2600	150						

		SHE	AR VA	LUES (a	average	lbs. ultir	nate)					
Fastener Steel Gauge (lapped)												
Dia.	Pt.	26	26 24 22 20 18 16 14									
12	2	365	600	623	898	1370	1758	2138	2202			
12	3		-	-	769	1358	1620	1970	1986			
1/4	3	-	-	-	930	1442	2100	2584	2650			

SHEET STEEL GAUGES										
Gauge No. 12 14 16 18 20 22 24 26										
Decimal Equivalent	.105"	.075"	.060"	.048"	.036"	.030"	.024"	.018"		

The values listed are ultimate averages achieved under laboratory conditions and apply to Buildex manufactured fasteners only. Appropriate safety factors should be applied to these values for design purposes.

Installation Guidelines

- A standard screwgun with a depth sensitive nosepiece should be used to install Teks. For optimal fastener performance, the screwgun should be a minimum of 6 amps and have an RPM range of 0-2500.
- Adjust the screwgun nosepiece to properly seat the fastener.
- New magnetic sockets must be correctly set before use. Remove chip build-up as needed.

Buildex

1349 West Bryn Mawr Avenue Itasca, Illinois 60143 630-595-3500 Fax: 630-595-3549 www.itwbuildex.com The fastener is fully seated when the head is flush with the work surface.

Overdriving may result in torsional failure of the fastener or stripout of the substrate.

Teks® and Climaseal® are trademarks of ITW Buildex and Illinois Tool Works, Inc.

© 2010 ITW Buildex and Illinois Tool Works, Inc.

APPENDIX B

APPLIED MATERIALS & ENGINEERING, INC. 980 41st Street Tel: (510) 420-8190 FAX: (510) 420-8186 Oakland, CA 94608 e-mail: info@appmateng.com

Project Number:	1170972C	Report Date:	12/19/17	
Project Name:	RP Watkins OneLedge	Type of Sample:	Concrete (Cylinder C39
	Load Testing	Size of Sample:	4"x8" Cylir	nder
		Capping Method:	ASTM C12	231
		Specimens Made By:	Client	
Client Name:	RP Watkins LLC	Date Sampled:	11/07/17	
		Time Sampled:		
		Date Received:	11/13/17	
	Field Test Con	ditions and Results		
Supplier:		Slump, inch:		ASTM C143
Mix Number:		Air Temperature, ^o F:		
Ticket Number:		Mix Temperature, ^o F:		ASTM C1064
Truck Number:		Air Content, %:		ASTM C231
Location in Structure:		Fresh Unit Weight, PCF:		ASTM C138
<u>-</u>				
	Laborato	ry Test Results		
	44/00/47 44/00/47	44/00/47		

COMPRESSION TEST REPORT

Laboratory lest Results					
Test Schedule	11/28/17	11/28/17	11/28/17		
Identification	1A	1B	1C		
Diameter, in.	4.00	4.00	4.00		
Length, in.	8.00	8.00	8.00		
Width, in.					
Correction Factor	1.00	1.00	1.00		
Area, in. ²	12.56	12.56	12.56		
Ultimate Load, Ibs	31,050	31,450	31,520		
Ultimate Strength, psi	2470	2500	2510		
Average Strength, psi			2490		
Fracture Type					
Age Tested, days	21	21	21		
Specified Strength, psi					

Specimens not scheduled for testing will be discarded after 28 days

Remarks:

Cc: michael@watkinshanger.com karl@maffei-structure.com

Reviewed by

Joseph Gapuz

Joseph G Gapuz Laboratory Manager

Form CTR Rev 0 3/25/05

APPENDIX C

Figure 1. Test Setup

Figure 2. Test Setup Top View

Figure 3. Test Setup- Right Joist Hanger

Figure 4. Test Setup- Left Joist Hanger

APPENDIX D

Figure 1. Typical failure mode of specimen at ultimate load

Figure 2. Typical failure mode of specimen at ultimate load.