Tree and Cycle Concentration and Covariance Graphical Markov Models are Faithful.

D. Malouche¹ B. Rajaratnam²

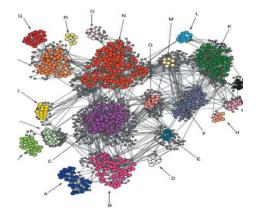
¹ École Supérieure de la Statistique et de l'Analyse de l'Information Carthage University

> ²Department of Statistics Stanford University

3rdMeeting on Statistics and Data Mining, March 15 - 16, 2012, Hammamet, Tunisia

Motivation

yeast FOCI coexpression network. (Magwene and Kim 2004)



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

▲□▶ <圖▶ < ≧▶ < ≧▶ < ≧ - のへで</p>

- V is a finite set.
- X = (X_v, v ∈ V)' ~ P is a random vector with P as a probability distribution.

・ロト・日本・日本・日本・日本・今日・

- V is a finite set.
- ► X = (X_v, v ∈ V)' ~ P is a random vector with P as a probability distribution.

Question

How can we represent the probabilistic relationships between the random variables in X? **Probabilistic relationships are** conditional independence and dependence between the random variables in X

うして ふぼう ふほう ふほう しょう

V is a finite set.

► X = (X_v, v ∈ V)' ~ P is a random vector with P as a probability distribution.

Question

How can we represent the probabilistic relationships between the random variables in X? **Probabilistic relationships are** conditional independence and dependence between the random variables in X

Solution

A graph G = (V, E) where V is the set of vertices and $E \subseteq V \times V$ is the set of edges and we define a separation criteria in G:

Separation statement \Rightarrow Conditional independence statement.

It is the global Markov property of P with respect to G

- ► Undirected graphs : (u, v) ∈ E ⇐⇒ (v, u) ∈ E : Concentration and Covariance graphs.
 - concentration graph : natural separation statement, ,Whittaker 1990, Lauritzen 1996...

うして ふぼう ふほう ふほう しょう

 covariance graph : m—separation statement Cox and Wermuth 1996, Kauremann 1996....

- ► Undirected graphs : (u, v) ∈ E ⇐⇒ (v, u) ∈ E : Concentration and Covariance graphs.
 - concentration graph : natural separation statement, ,Whittaker 1990, Lauritzen 1996...
 - covariance graph : m—separation statement Cox and Wermuth 1996, Kauremann 1996....
- Directed graphs (acyclic) (u, v) ∈ E ⇒ (v, u) ∉ E : Bayesian networks.

► *d*-separation statement. *Pearl 1988*...

- ► Undirected graphs : (u, v) ∈ E ⇐⇒ (v, u) ∈ E : Concentration and Covariance graphs.
 - concentration graph : natural separation statement, ,Whittaker 1990, Lauritzen 1996...
 - covariance graph : m—separation statement Cox and Wermuth 1996, Kauremann 1996...
- ► Directed graphs (acyclic) (u, v) ∈ E ⇒ (v, u) ∉ E : Bayesian networks.
 - ► *d*-separation statement. *Pearl 1988...*
- Mixed graphs (directed and undirected edges are present in G)
 Chain graphs, Ancestral graphs
 Anderson et al. 2001....

Concentration and covariance graphs

We are exclusively interested in concentration and covariance graphs

・ロト・日本・日本・日本・日本・今日・

Concentration and covariance graphs

- We are exclusively interested in concentration and covariance graphs
- Concentration graph : G = (V, E(G))

 $u \not\sim_G v \iff u \perp \!\!\!\perp v \mid V \setminus uv$

where $u \perp\!\!\!\perp v \mid V \setminus uv$ is a shortcut of $X_u \perp\!\!\!\perp X_v \mid X_{V \setminus uv}$ and $X_{V \setminus uv} = (X_w, w \notin \{u, v\})$

Concentration and covariance graphs

- We are exclusively interested in concentration and covariance graphs
- Concentration graph : G = (V, E(G))

 $u \not\sim_G v \iff u \perp \!\!\!\perp v \mid V \setminus uv$

where $u \perp\!\!\!\perp v \mid V \setminus uv$ is a shortcut of $X_u \perp\!\!\!\perp X_v \mid X_{V \setminus uv}$ and $X_{V \setminus uv} = (X_w, w \notin \{u, v\})$

• Covariance graph : H = (V, E(H))

 $u \not\sim_G v \iff u \perp\!\!\!\perp v$

How and When can we read CI statements from a graph.

How and When can we read CI statements from a graph.

Theorem (Lňenička and Matúš 2007, Malouche and Rajaratnam 2012)

If P satisfies the the pseudo graphoid axiom : for any $(u,v,w) \in V^3$ and $S \subseteq V \setminus uvw$

$$u \perp\!\!\!\!\perp v \mid Sw \text{ and } u \perp\!\!\!\!\perp w \mid Sv \ \Rightarrow \ u \perp\!\!\!\!\perp v \mid S \text{ and } u \perp\!\!\!\!\perp w \mid S$$

then we can read from the concentration graph G and the covariance graph H the following two assertions : $\forall (A, B, S)$

If $A \perp_G B \mid S \implies A \perp\!\!\perp B \mid S$

and

If
$$A \perp_H B \mid V \setminus (ABS) \Longrightarrow A \perp\!\!\perp B \mid S$$

うして ふぼう ふほう ふほう しょう

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

Faithfulness Property

- Equivalence in the Global Markov Property
- ► The graph allow us to read all the conditional independence and dependence statements existing in *P*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Main assumption in some estimation algorithms : PC-algorithm.

- Faithfulness Property
 - Equivalence in the Global Markov Property
 - ► The graph allow us to read all the conditional independence and dependence statements existing in *P*.
 - Main assumption in some estimation algorithms : PC-algorithm.

Definition

P is **faithful** to the concentration graph *G* if \forall (*A*, *B*, *S*)

 $\mathsf{If} \ A \bot_G B \mid S \iff A \amalg B \mid S$

ション ふゆ アメリア メリア しょうくの

- Faithfulness Property
 - Equivalence in the Global Markov Property
 - ► The graph allow us to read all the conditional independence and dependence statements existing in *P*.
 - Main assumption in some estimation algorithms : PC-algorithm.

Definition

P is **faithful** to the covariance graph *H* if \forall (*A*,*B*,*S*)

 $\mathsf{If} \ A \bot_{H} B \mid V \setminus (ABS) \iff A \amalg B \mid S$

うして ふぼう ふほう ふほう しょう

- Faithfulness Property
 - Equivalence in the Global Markov Property
 - ► The graph allow us to read all the conditional independence and dependence statements existing in *P*.
 - Main assumption in some estimation algorithms : PC-algorithm.

Definition

P is **faithful** to the covariance graph *H* if \forall (*A*, *B*, *S*)

 $\mathsf{If} \ A \bot_{H} B \mid V \setminus (ABS) \iff A \amalg B \mid S$

うして ふぼう ふほう ふほう しょう

Question

When the faithfulness assumption can be satisfied ?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Theorem (Becker et al. 2006,)

Assume that P satisfies the grahoid axiom (for example Gaussian and Elliptical distributions). If the concentration graph G is a **tree** then P is faithful to G (represent all the CI statements) and H is complete (does not represent any CI statement).

Theorem (Malouche and Rajaratnam 2010, Peña 2011,)

Assume that P satisfies the grahoid axiom (for example Gaussian and Elliptical distributions). If the covariance graph H is a **tree** then P is faithful to H (represent all the CI statements) and G is complete (does not represent any CI statement).

Theorem (Malouche and Rajaratnam 2010, Peña 2011,)

Assume that P satisfies the grahoid axiom (for example Gaussian and Elliptical distributions). If the covariance graph H is a **tree** then P is faithful to H (represent all the CI statements) and G is complete (does not represent any CI statement).

Theorem (Malouche and Rajaratnam 2012)

Assume that P satisfies the grahoid axiom. If the concentration G or covariance graph H is a cycle then all the CI statements of P are represented by G and H together.

Further reading

- [1] Pearl, J. Probabilistic Reasoning in Intelligent Systems, Morgan-Kaufmann, 1988
- [2] Whittaker, J. Graphical models in Applied Multivariate Statistics. Wiley, 1990
- [3] Lauritzen, S. L. Graphical Models New York : Oxford University Press., 1996
- [4] Kauermann, G. On a dualization of graphical Gaussian models Scand. J. Statist., 1996, 23, 105-116
- [5] Cox, D. R. & Wermuth, N. Multivariate Depencies : Models, Analysis and Interpretations Chapman and Hall, 1996
- [6] Anderson, S. A., Madigan, D. and Perlman, M. D.
 2001. Alternative Markov properties for chain graphs. Scand. J. Statist. 28 33–86.

Further reading...

- [7] P. Magwene and J. Kim. Estimating genomic coexpression networks using first-order conditional independence. Genom Biol., 5(12), 2004.
- [8] Lňenička, R., Matúš, F., 2007. On gaussian conditional independence structures. Kybernetika 43, 327–342.
- [9] Peña, 2011, J. Reading Dependencies from covariance grahs, preprint in arXiv.
- [10] Malouche, D. and Rajaratnam B. 2011, Covariance Gaussian Faithful Trees, Journal of Probability and Statistics,
- [11] Malouche, D. and Rajaratnam B. Pseudographoids satisfy also the global Markov property wrt covariance graphs, communication submitted to JDS 2012.