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Motivation

yeast FOCI coexpression network. (Magwene and Kim 2004)




Graphical Markov Models.



Graphical Markov Models.

» V is a finite set.

» X =(Xy, ve V) ~ Pisarandom vector with P as a
probability distribution.



Graphical Markov Models.

» V is a finite set.

» X =(X,, ve V) ~ Pis arandom vector with P as a
probability distribution.

Question

How can we represent the probabilistic relationships between the
random variables in X 7 Probabilistic relationships are
conditional independence and dependence between the
random variables in X



Graphical Markov Models.

» V is a finite set.

» X =(X,, ve V) ~ Pis arandom vector with P as a
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Question

How can we represent the probabilistic relationships between the
random variables in X 7 Probabilistic relationships are
conditional independence and dependence between the
random variables in X

Solution
A graph G = (V,E) where V is the set of vertices and E C V x V
is the set of edges and we define a separation criteria in G :

Separation statement = Conditional independence statement.

It is the global Markov property of P with respect to G
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Concentration and Covariance graphs.
» concentration graph : natural separation statement,
,Whittaker 1990, Lauritzen 1996...

» covariance graph : m—separation statement
Cox and Wermuth 1996, Kauremann 1996...

» Directed graphs (acyclic) (u,v) € E = (v,u) ¢ E : Bayesian
networks.

» d—separation statement.
Pearl 1988...

» Mixed graphs (directed and undirected edges are present in G)
: Chain graphs, Ancestral graphs
Anderson et al. 2001....
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Concentration and covariance graphs

» We are exclusively interested in concentration and covariance
graphs

» Concentration graph : G =(V, E(G))
udgv <= ullv|V\uv
where u Il v | V'\ uv is a shortcut of X, 1L X, | X, and
XV\UV = (XW7 w ¢ {U, V})
» Covariance graph : H=(V, E(H))

udgv < ullv
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How and When can we read Cl statements from a graph.

Theorem (Lnenicka and Matds 2007, Malouche and
Rajaratnam 2012)

If P satisfies the the pseudo graphoid axiom : for any
(u,v,w)e V3 and SC V\uw

ullv|Swandullw|Sv = ullv|Sandullw]|S

then we can read from the concentration graph G and the
covariance graph H the following two assertions : V (A, B, S)

IFALGB|S = ALLB|S

and

FALyB|V\(ABS) = AILB|S
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Faithful assumption

» Faithfulness Property

» Equivalence in the Global Markov Property

» The graph allow us to read all the conditional independence
and dependence statements existing in P.

» Main assumption in some estimation algorithms :
PC-algorithm.

Definition
P is faithful to the covariance graph H if V (A, B,S)

If ALyB| V\(ABS) < Al B|S

Question
When the faithfulness assumption can be satisfied ?
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Trees, Cycles...

Theorem (Malouche and Rajaratnam 2010, Pefia 2011,)

Assume that P satisfies the grahoid axiom (for example Gaussian
and Elliptical distributions). If the covariance graph H is a tree
then P is faithful to H (represent all the Cl statements) and G is
complete (does not represent any Cl statement).

Theorem (Malouche and Rajaratnam 2012)

Assume that P satisfies the grahoid axiom. If the concentration G
or covariance graph H is a cycle then all the Cl statements of P
are represented by G and H together.
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