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Motivation

yeast FOCI coexpression network. (Magwene and Kim 2004)



Graphical Markov Models.

I V is a �nite set.

I X = (Xv , v ∈ V )′ ∼ P is a random vector with P as a
probability distribution.

Question
How can we represent the probabilistic relationships between the
random variables in X ? Probabilistic relationships are

conditional independence and dependence between the

random variables in X

Solution
A graph G = (V ,E ) where V is the set of vertices and E ⊆ V ×V

is the set of edges and we de�ne a separation criteria in G :

Separation statement ⇒ Conditional independence statement.

It is the global Markov property of P with respect to G
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Di�erent families of Graphical Models.

I Undirected graphs : (u,v) ∈ E ⇐⇒ (v ,u) ∈ E :
Concentration and Covariance graphs.

I concentration graph : natural separation statement,

,Whittaker 1990, Lauritzen 1996...
I covariance graph : m−separation statement

Cox and Wermuth 1996, Kauremann 1996...

I Directed graphs (acyclic) (u,v) ∈ E ⇒ (v ,u) 6∈ E : Bayesian
networks.

I d−separation statement.

Pearl 1988...

I Mixed graphs (directed and undirected edges are present in G )
: Chain graphs, Ancestral graphs
Anderson et al. 2001....
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Concentration and covariance graphs

I We are exclusively interested in concentration and covariance
graphs

I Concentration graph : G = (V , E (G ))

u 6∼G v ⇐⇒ u⊥⊥v | V \uv

where u⊥⊥v | V \uv is a shortcut of Xu⊥⊥Xv | XV \uv and
XV \uv = (Xw , w 6∈ {u,v})

I Covariance graph : H = (V , E (H))

u 6∼G v ⇐⇒ u⊥⊥v
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How and When can we read CI statements from a graph.

Theorem (L¬eni£ka and Matú² 2007, Malouche and
Rajaratnam 2012)

If P satis�es the the pseudo graphoid axiom : for any

(u,v ,w) ∈ V 3 and S ⊆ V \uvw

u⊥⊥v | Sw and u⊥⊥w | Sv ⇒ u⊥⊥v | S and u⊥⊥w | S

then we can read from the concentration graph G and the

covariance graph H the following two assertions : ∀ (A,B,S)

If A⊥GB | S =⇒ A⊥⊥B | S

and

If A⊥HB | V \ (ABS) =⇒ A⊥⊥B | S
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Faithful assumption

I Faithfulness Property

I Equivalence in the Global Markov Property
I The graph allow us to read all the conditional independence

and dependence statements existing in P.
I Main assumption in some estimation algorithms :

PC-algorithm.

De�nition
P is faithful to the graph if ∀ (A,B,S)

Question
When the faithfulness assumption can be satis�ed ?
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Trees, Cycles...

Theorem ()

Assume that P satis�es the grahoid axiom (for example Gaussian

and Elliptical distributions). If the graph is a tree then P is

faithful to (represent all the CI statements) and is complete (does

not represent any CI statement).

Theorem (Malouche and Rajaratnam 2012)

Assume that P satis�es the grahoid axiom. If the concentration G

or covariance graph H is a cycle then all the CI statements of P

are represented by G and H together.
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