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Motivation
Multivariate Gaussian distribution.

V a finite set, X = (X, v € V)" ~ P = Ny, (1, £) with density
function

f(x)= \/W‘ eXp{—l(x_M)/K(X_M)} vx € RIVI

(Qﬂ)d/2 2

where
> ¥ = (0w)(uv)evxv is the V] x |V] covariance matrix

» K=3Y"1= (kuv)(u,v)evxv is the [V] x [V] precision matrix



Motivation
Multivariate Gaussian distribution.

V a finite set, X = (X, v € V)" ~ P = Ny, (1, £) with density

function
_ VIKI 1 / v
)‘(X)—(27T)d/2 exp —E(X—,u) K(x—p)p ¥xeR
where

> ¥ = (0w)(uv)evxv is the V] x |V] covariance matrix
» K=3Y"1= (kuv)(u,v)evxv is the [V] x [V] precision matrix

Theorem
Let X = (X, ve V) ~P=Ny(u,X) and let A, B and S be a
triplet of disjoint subsets of V (A and B are non empty) :

XallXg | Xs <= V(u,v)EAXB |Tysus|=0
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Motivation
Covariance and Concentration graphs.

» A graph G = (V,E) is a pair of sets : V is a set of vertices
and £ C V x V a set of edges.

G is undirected <=  VY(u,v) € VXV (u,v) € E < (v,u) € E

» P—=< G, H>={V, E(G), E(H)} a pair of undirected
graphs where
» G = (V,E(G)) is the Covariance graph :
ugtev = X, UL X, < o, =0
—_———
If Gaussian
» H=(V,E(H)) is the Concentration graph :

udpv = X, LX, | Xy\ow <= ko =0
————

If Gaussian



Motivation

Questions
1. Can these graphs be used to read many other relationships
between the variables of X ?

2. What happens in a more general cases (other than Gaussian
distributions) ?
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Separation in undirected graphs

» Let u and v be two distincts vertices, i.e., u, v e VvV
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Global Markov Properties

Separation in undirected graphs

v

Let u and v be two distincts vertices, i.e., u, ve V

v

A path between u and v is a sequence ug, u1, ..., u, where
up=unr~gug~gGg...~g Up =YV

p = (uo, u1,...,up) and P(u, v, G) the set of the paths
between v and v in G.

v

S C V \ uv separates u and v in G, i.e.,, ulgv | S if either
S=0orvVpeP(uv,G)pnS #0D.

v

Let Aand BC V\'S, ANB =0 and A and B are non empty.
A and B are separated by S in G, i.e., ALGB | S if
V(u,v) € Ax B we have ulgvs.

10
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Let P—=< G, H>=={V, E(G), E(H)}
(covariance-concentration associated with P).
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Global Markov Properties

Global Markov property (GMP)

Let P—=< G, H>=={V, E(G), E(H)}
(covariance-concentration associated with P).

» Covariance Global Markov property : P is Global Markov to
the covariance graph G if V (A, B, S) pairwise disjoint subsets
of V then

if ALgB|V\ABS = A1LB|S
» Concentration Global Markov property : P is Global Markov

to the concentration graph H if V (A, B, S) pairwise disjoint
subsets of V then

if ALyB|S = AL B]|S.
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Examples (Covariance graph)
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Examples (Concentration graph)
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Global Markov Properties

Sufficient conditions for GMP
Let A, B and C be any triplet of pairwise disjoint subsets of V.
> Lauritzen (1996)

AL B|CUDand ALLC|BUDthen ALLBUC|D (1)
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Global Markov Properties

Sufficient conditions for GMP
Let A, B and C be any triplet of pairwise disjoint subsets of V.
> Lauritzen (1996)

AL B|CUDand ALLC|BUDthen ALLBUC|D (1)

» Kauermann (1996)
Al Cand AL D then AL CUD (2)

Theorem
» (Pearl and Paz 1987)
If P satisfies (1) then the concentration GMP is satisfied.

» (Kauermann 1996, Banarjee and Richardson 2003)
If P satisfies (2) then the covariance GMP is satisfied.
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Next...

» We will no longer use probability distributions : We will define
relations (see Mati3 1992 and Liieni¢ka and Mata¥ 2007).
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Next...

» We will no longer use probability distributions : We will define
relations (see Mati3 1992 and Liieni¢ka and Mata¥ 2007).

» We give new sufficient conditions to get GMP :
pseudographoid axioms.

» We show perfect duality between covariance and
concentration graphs
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Relations
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Relations

Relations

T(V) = {(AB,S), where A and B # 0,
A, B and S C V and pairwise disjoint}

>

» A relation L is a subset of T(V).

» We associate to L +— 7(L) another relation called the dual of
L such that

7(L) = {(A, B,S) € T(V) such that (A, B,V \ ABS) € L}.

17
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Example of relations

» Probabilistic relations : X = (X, v € V) ~ P and

L= L[P] = {(A,B,S) € T(V) such that A lL B| S}
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L= L[P] = {(A,B,S) € T(V) such that A lL B| S}

» Matricial relations : & = (0w )(u,v)evx Vv @ symmetric
|V| x |V| matrix and

L=1L[X] = {(A B,S) € T(V) such that
V(u,v) € Ax B we have |X,s ,s| =0}.



Relations
Example of relations

» Probabilistic relations : X = (X, v € V) ~ P and

L= L[P] = {(A,B,S) € T(V) such that A lL B| S}

» Matricial relations : & = (0w )(u,v)evx Vv @ symmetric
|V| x |V| matrix and

L=1L[X] = {(A B,S) € T(V) such that
V(u,v) € Ax B we have |X,s ,s| =0}.

» Graphical relations : G = (V/, E) is an undirected graph and
L=L[G]={(A B,S) € T(V) such that ALgB | S}

We denote S(G) = L = L[G].

18



Relations

A set of relations

Definition
Led(V) if V(AB,S)eT(V) (AB,S) el
V(u,v) € Ax Band VS C S C ABS\ uv
we have (u,v,S’) € L.

19
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A set of relations

Definition
Led(V) if V(AB,S)eT(V) (AB,S) el
V(u,v) € Ax Band VS C S C ABS\ uv
we have (u,v,S’) € L.

Theorem (Matds, 1992)
If L is a probabilistic relation, i.e., L = L[P], then L € (V).
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Pseudographoids
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Other subsets of relations : Pseudographoids

» pseudographoids (Liienitka and Matus 2007) : L € W(V) 7 if
andonly if VSC Vand u, vand w € V\ S.

{(u,v,Sw), (u,w,S5v)} C L= {(u,v,S), (u,w,S)} C L



Pseudographoids 21

Other subsets of relations : Pseudographoids
» pseudographoids (Liienitka and Matus 2007) : L € W(V) 7 if

andonly if VSC Vand u, vand w € V\ S.

{(u,v,Sw), (u,w,S5v)} C L= {(u,v,S), (u,w,S)} C L

» reverse-pseudographoids L € V(V/)“ if and only if VS C V
and u, vand w € V'\ S.

{(u,v,S5w), (u,w,Sv)} C L < {(u,v,S), (u,w,S)} C L



Pseudographoids

Other subsets of relations : Pseudographoids
» pseudographoids (Liienitka and Matus 2007) : L € W(V) 7 if

andonly if VSC Vand u, vand w € V\ S.

{(u,v,Sw), (u,w,S5v)} C L= {(u,v,S), (u,w,S)} C L

» reverse-pseudographoids L € V(V/)“ if and only if VS C V
and u, vand w € V'\ S.
{(u,v,S5w), (u,w,Sv)} C L < {(u,v,S), (u,w,S)} C L
» symmetric-pseudographoids (V) = W(V)7 NV (V).

Then L e y(V)ifand only if VS C V and u, v and w
eV\S.

{(u,v,Sw), (u,w,Sv)} C L — {(u,v,S), (u,w,S)} CL



Pseudographoids
Examples, properties

Lemma
If P has a positive density with respect to a measure i, then L[P]
is a pseudographoid, i.e., L[P] € V(V)7.
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Examples, properties

Lemma
If P has a positive density with respect to a measure i, then L[P]
is a pseudographoid, i.e., L[P] € V(V)7.

Lemma
» If P is a Gaussian distribution then L[P] is a
symmetric-pseudographoid, i.e., L[P] € ¥(V).
» If G =(V,E) is an undirected graph then L[G] is a
symmetric-pseudographoid, i.e., L[G] € (V)
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Examples, properties

Lemma
If P has a positive density with respect to a measure i, then L[P]
is a pseudographoid, i.e., L[P] € V(V)7.

Lemma

» If P is a Gaussian distribution then L[P] is a
symmetric-pseudographoid, i.e., L[P] € ¥(V).

» If G =(V,E) is an undirected graph then L[G] is a
symmetric-pseudographoid, i.e., L[G] € (V)

Lemma
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Covariance and concentration graphs (associated with
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Covariance and concentration graphs (associated with
relations)

Let L C T(V) be a relation.

L= G,H»={V,E(G),E(H)}.

» G = (V,E(G)) is the covariance graph associated with L if

(u,v) € E(G) < (u,v,0) € L.
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Covariance and concentration graphs (associated with
relations)

Let L C T(V) be a relation.

L—=< G, H == {V,E(G), E(H)}.
» G = (V,E(G)) is the covariance graph associated with L if
(u,v) € E(G) <= (u,v,0) e L.

» H = (V,E(H)) is the concentration graph associated with L if

(u,v) € E(H) < (u,v,V\uv)eL
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Covariance-concentration global Markov property

Theorem
Let L CT(V) be a relation in ®(V).

Let L —=< G, H > be the covariance-concetration graphs
associated with L. Then
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Covariance-concentration global Markov property

Theorem
Let L CT(V) be a relation in ®(V).

Let L —=< G, H > be the covariance-concetration graphs
associated with L. Then

1. IfLeW(V)™ then S(H)C L, ie,

ALyB|S = ALLB|S.
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Covariance-concentration global Markov property

Theorem
Let L CT(V) be a relation in ®(V).

Let L —=< G, H > be the covariance-concetration graphs
associated with L. Then

1. IfLeW(V)™ then S(H)C L, ie,

ALyB|S = ALLB|S.

2. If L e W(V)* then 7(S(G)) C L, ie.,

ALGB|V\ABS = AlLB|S.
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Covariance-concentration global Markov property

Theorem
Let L CT(V) be a relation in ®(V).

Let L —=< G, H > be the covariance-concetration graphs
associated with L. Then

1. IfLeW(V)™ then S(H)C L, ie,

ALyB|S = ALLB|S.

2. If L e W(V)* then 7(S(G)) C L, ie.,

ALGB|V\ABS = AlLB|S.

3. If L € (V) then 7(S(G)) N S(H) C L.
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Proof

» Since L € ¥(V)™ and by induction on |S| we show
ulpv ]S = (u,v,S) e L:s(H)C L where

s(H) = {(u,v,S) € T(V) such that ulyv | S}
and

L ={(u,v,S) € T(V) such that (u,v,S) € L}.
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Proof

» Since L € ¥(V)™ and by induction on |S| we show
ulpv ]S = (u,v,S) e L:s(H)C L where

s(H) = {(u,v,S) € T(V) such that ulyv | S}
and
L ={(u,v,S) € T(V) such that (u,v,S) € L}.
» Since L € ®(V) we show that s(H) C L implies that
S(H) C L. Then (1) is proved.
» Note that if L +—=< G,H > the 7(L) —»< H, G >.

» Applying (1) to 7(L) (if L € WV(V)* then 7(L) € ¥(V)7.)
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Pseudographoids

Proof

» Since L € ¥(V)™ and by induction on |S| we show
ulpv ]S = (u,v,S) e L:s(H)C L where

s(H) = {(u,v,S) € T(V) such that ulyv | S}
and
L ={(u,v,S) € T(V) such that (u,v,S) € L}.
» Since L € ®(V) we show that s(H) C L implies that
S(H) C L. Then (1) is proved.
» Note that if L +—=< G,H > the 7(L) —»< H, G >.
» Applying (1) to 7(L) (if L € WV(V)* then 7(L) € ¥(V)7.)
» Then S(G) C 7(L).

25



Pseudographoids

Next...

» We find a graphical criteria to read conditional independence
statements

» New graphical criteria in order to read conditional
dependencies ?

26
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Reading conditional dependencies
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Reading conditional dependencies

Semigraphoid relations

Definition (Liieni¢ka and Matus 2007)
LeN(V)ifandonly if Vu, v, w e Vand S C V\ uvw

{(u,w,S), (u,v,Sw)} C L = {(u,v,S), (u,w,Sv)} C L.

Any relation L in T1(V) is a called a semipseudographoid.
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Semigraphoid relations

Definition (Liieni¢ka and Matus 2007)
LeN(V)ifandonly if Vu, v, w e Vand S C V\ uvw

{(u,w,S), (u,v,Sw)} C L = {(u,v,S), (u,w,Sv)} C L.

Any relation L in T1(V) is a called a semipseudographoid.

Lemma
if L = L[P] where P is Gaussian then L € T1(V)
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Reading conditional dependencies

Semigraphoid relations

Definition (Liieni¢ka and Matus 2007)
LeN(V)ifandonly if Vu, v, w e Vand S C V\ uvw

{(u,w,S), (u,v,Sw)} C L = {(u,v,S), (u,w,Sv)} C L.

Any relation L in T1(V) is a called a semipseudographoid.

Lemma
if L = L[P] where P is Gaussian then L € T1(V)

Lemma
LeTl(V) < 7(L) e (V)

28



Reading conditional dependencies

1st graphical criteria

Theorem
Let LCT(V)ed(V)nn(Vv).

Let L —=< G, H > be the covariance-concentration graphs
associated with L.

Let uyv eV and S C V\ uv and S # (). Then
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1st graphical criteria

Theorem
Let LCT(V)ed(V)nn(Vv).

Let L —=< G, H > be the covariance-concentration graphs
associated with L.

Let uyv eV and S C V\ uv and S # (). Then

1. Assume that L € V(V)*, u~g v and thatVw € S,
Vp e P(w,v,G), p> uthen (u,v,S) & L
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1st graphical criteria

Theorem
Let LC T(V)e®(V)nn(V).

Let L —=< G, H > be the covariance-concentration graphs
associated with L.

Let uyv eV and S C V\ uv and S # (). Then

1. Assume that L € V(V)*, u~g v and thatVw € S,
Vp e P(w,v,G), p> uthen (u,v,S) & L

2. Assume that L € W(V)7, u~y v and that Vw € V' \ Suv,
Vp € P(w,v,H), p> u then (u,v,S) & L.
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Examples (Covariance graph)
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Examples (Covariance graph)
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Examples (Covariance graph)

® ; 41051,6

os o041 0O
2 416,516 = 0 o011 o016
0 o016 066

|X416,516] = 045 |Z16] -
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Examples (Concentration graph)
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Examples (Concentration graph)
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Examples (Concentration graph)

410527
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Reading conditional dependencies

1-connection

Definition (Pefia 2010)

Let u, ve Vand S C V \ uv. We say that u and v are
1—connected given S if P(u, v, Gsyy) = {p}, i.e, u~t v|S.

32



Reading conditional dependencies 32

1-connection

Definition (Pefia 2010)
Let u, ve Vand S C V \ uv. We say that u and v are
1—connected given S if P(u, v, Gs,) = {p}, i.e., u~L v |S.

® : 4161




Reading conditional dependencies 33

Weak Transitive

Definition
L € Delta(V) if and only if Vu, vand w in V and S C V' \ uvw

{(u,v,S), (uv,Sw)} C L = (u,w,S)e Lor (v,w,S) e L

When L € A(V) we say that L satisfies the weak transitive
axiom.

Lemma
if L= L[P] where P is Gaussian then L € A(V)
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Weak Transitive

Definition
L € Delta(V) if and only if Vu, vand w in V and S C V' \ uvw

{(u,v,S), (uv,Sw)} C L = (u,w,S)e Lor (v,w,S) e L

When L € A(V) we say that L satisfies the weak transitive
axiom.

Lemma
if L= L[P] where P is Gaussian then L € A(V)

Lemma
Le A(V)NTI(V) <= 7(L) e A(V)NTI(V)

33
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2nd Graphical Criteria

Theorem
Let LCT(V)ed(V)NnN(V)NA(V).

Let L < G,H == {V,E(G),E(H)} be the

covariance-concentration graphs associated with L.

Letuyve Vand S C V\ uv. Then
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2nd Graphical Criteria

Theorem
Let LCT(V)ed(V)NnN(V)NA(V).

Let L < G,H == {V,E(G),E(H)} be the
covariance-concentration graphs associated with L.

Letuyve Vand S C V\ uv. Then

1. IfLeW(V)” and ifu~} v | S then (u,v,V \ Suv) & L.
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2nd Graphical Criteria

Theorem
Let LCT(V)ed(V)NnN(V)NA(V).

Let L < G,H == {V,E(G),E(H)} be the
covariance-concentration graphs associated with L.

Letuyve Vand S C V\ uv. Then

1. IfLeW(V)” and ifu~} v | S then (u,v,V \ Suv) & L.

2. IfLeV(V)" and ifu~%L v |S then (u,v,S) € L.
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Example (Covariance graph)

(3) 2 4~16]1

If covariance graph : 4 1/ 6|1
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Example (Concentration graph)

4~1611
If concentration graph :
416]|2,3,5
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