Representing Conditional independencies and dependencies using undirected graphs Covariance and concentration graphs

D. Malouche¹ B. Rajaratnam²

¹Ecole Supérieure de la Statistique et de l'Analyse de l'Information University of Carthage

> ²Department of Statistics Stanford University

Université de Lille May 22th 2012

Outline

Motivation

Global Markov Properties

Relations

Pseudographoids

Reading conditional dependencies

Motivation

Global Markov Properties

Relations

Pseudographoids

Reading conditional dependencies

Multivariate Gaussian distribution.

V a finite set, $X=(X_v,\ v\in V)'\sim P=\mathcal{N}_{|V|}(\mu,\Sigma)$ with density function

$$f(x) = \frac{\sqrt{|K|}}{(2\pi)^{d/2}} \exp\left\{-\frac{1}{2}(x-\mu)'K(x-\mu)\right\} \quad \forall x \in \mathbb{R}^{|V|}$$

where

- $\Sigma = (\sigma_{uv})_{(u,v) \in V \times V}$ is the $|V| \times |V|$ covariance matrix
- $ightharpoonup K = \Sigma^{-1} = (k_{uv})_{(u,v) \in V \times V}$ is the $|V| \times |V|$ precision matrix

Multivariate Gaussian distribution.

V a finite set, $X=(X_v,\ v\in V)'\sim P=\mathcal{N}_{|V|}(\mu,\Sigma)$ with density function

$$f(x) = \frac{\sqrt{|K|}}{(2\pi)^{d/2}} \exp\left\{-\frac{1}{2}(x-\mu)'K(x-\mu)\right\} \quad \forall x \in \mathbb{R}^{|V|}$$

where

- $\Sigma = (\sigma_{uv})_{(u,v) \in V \times V}$ is the $|V| \times |V|$ covariance matrix
- $ightharpoonup K = \Sigma^{-1} = (k_{uv})_{(u,v) \in V \times V}$ is the $|V| \times |V|$ precision matrix

Theorem

Let $X = (X_v, v \in V)' \sim P = \mathcal{N}_{|V|}(\mu, \Sigma)$ and let A, B and S be a triplet of disjoint subsets of V (A and B are non empty) :

$$X_A \perp \!\!\!\perp X_B \mid X_S \iff \forall (u,v) \in A \times B \quad |\Sigma_{uS,vS}| = 0$$

Covariance and Concentration graphs.

▶ A graph G = (V, E) is a pair of sets : V is a set of vertices and $E \subseteq V \times V$ a set of edges.

$$G$$
 is undirected \iff $\forall (u,v) \in V \times V \ (u,v) \in E \iff (v,u) \in E$

Covariance and Concentration graphs.

▶ A graph G = (V, E) is a pair of sets : V is a set of vertices and $E \subseteq V \times V$ a set of edges.

G is undirected
$$\iff$$
 $\forall (u,v) \in V \times V \ (u,v) \in E \iff (v,u) \in E$

▶ $P \mapsto \prec G$, $H \succ = \{V, E(G), E(H)\}$ a pair of undirected graphs where

Covariance and Concentration graphs.

▶ A graph G = (V, E) is a pair of sets : V is a set of vertices and $E \subseteq V \times V$ a set of edges.

$$G$$
 is undirected \iff $\forall (u,v) \in V \times V \ (u,v) \in E \iff (v,u) \in E$

- ▶ $P \mapsto \prec G$, $H \succ = \{V, E(G), E(H)\}$ a pair of undirected graphs where
 - G = (V, E(G)) is the Covariance graph :

$$u \not\sim_G v \iff X_u \perp \!\!\!\perp X_v \iff \sigma_{uv} = 0$$
If Gaussian

Motivation 5

Covariance and Concentration graphs.

▶ A graph G = (V, E) is a pair of sets : V is a set of vertices and $E \subseteq V \times V$ a set of edges.

$$G$$
 is undirected \iff $\forall (u,v) \in V \times V \ (u,v) \in E \iff (v,u) \in E$

- ▶ $P \mapsto \prec G$, $H \succ = \{V, E(G), E(H)\}$ a pair of undirected graphs where
 - G = (V, E(G)) is the Covariance graph :

$$u \not\sim_G v \iff X_u \perp \!\!\!\perp X_v \iff \sigma_{uv} = 0$$
If Gaussian

ightharpoonup H = (V, E(H)) is the Concentration graph :

$$u \not\sim_H v \iff X_u \perp \!\!\!\perp X_v \mid X_{V \setminus uv} \iff k_{uv} = 0$$
If Gaussian

<u>Motivation</u> 6

Questions

- 1. Can these graphs be used to read many other relationships between the variables of *X* ?
- 2. What happens in a more general cases (other than Gaussian distributions)?

Motivation

Global Markov Properties

Relations

Pseudographoids

Reading conditional dependencies

$$\Sigma = \left[\begin{array}{ccccc} \sigma_{11} & 0 & 0 & \sigma_{41} & 0 \\ 0 & \sigma_{22} & 0 & \sigma_{42} & \sigma_{5,2} \\ 0 & 0 & \sigma_{33} & \sigma_{43} & 0 \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_{44} & \sigma_{54} \\ 0 & \sigma_{52} & 0 & \sigma_{54} & \sigma_{55} \end{array} \right]$$

$$\Sigma = \left[\begin{array}{ccccc} \sigma_{11} & 0 & 0 & \sigma_{41} & 0 \\ 0 & \sigma_{22} & 0 & \sigma_{42} & \sigma_{5,2} \\ 0 & 0 & \sigma_{33} & \sigma_{43} & 0 \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_{44} & \sigma_{54} \\ 0 & \sigma_{52} & 0 & \sigma_{54} & \sigma_{55} \end{array} \right]$$

$$\Sigma = \left[\begin{array}{ccccc} \sigma_{11} & 0 & 0 & \sigma_{41} & 0 \\ 0 & \sigma_{22} & 0 & \sigma_{42} & \sigma_{5,2} \\ 0 & 0 & \sigma_{33} & \sigma_{43} & 0 \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_{44} & \sigma_{54} \\ 0 & \sigma_{52} & 0 & \sigma_{54} & \sigma_{55} \end{array} \right]$$

 $2 \perp \!\!\! \perp 3 \mid 5?$

$$\Sigma = \left[\begin{array}{cccccc} \sigma_{11} & 0 & 0 & \sigma_{41} & 0 \\ 0 & \sigma_{22} & 0 & \sigma_{42} & \sigma_{5,2} \\ 0 & 0 & \sigma_{33} & \sigma_{43} & 0 \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_{44} & \sigma_{54} \\ 0 & \sigma_{52} & 0 & \sigma_{54} & \sigma_{55} \end{array} \right]$$

$$|\Sigma_{25,35}| = \left| \begin{array}{cc} 0 & \sigma_{25} \\ 0 & \sigma_{55} \end{array} \right| = 0$$

$$K = \Sigma^{-1} = \begin{bmatrix} k_{11} & 0 & 0 & k_{41} & 0 \\ 0 & k_{22} & 0 & k_{42} & k_{5,2} \\ 0 & 0 & k_{33} & k_{43} & 0 \\ k_{41} & k_{42} & k_{43} & k_{44} & k_{54} \\ 0 & k_{52} & 0 & k_{54} & k_{55} \end{bmatrix}$$

$$K = \Sigma^{-1} = \begin{bmatrix} k_{11} & 0 & 0 & k_{41} & 0 \\ 0 & k_{22} & 0 & k_{42} & k_{5,2} \\ 0 & 0 & k_{33} & k_{43} & 0 \\ k_{41} & k_{42} & k_{43} & k_{44} & k_{54} \\ 0 & k_{52} & 0 & k_{54} & k_{55} \end{bmatrix}$$

$$K = \Sigma^{-1} = \left[\begin{array}{ccccc} k_{11} & 0 & 0 & k_{41} & 0 \\ 0 & k_{22} & 0 & k_{42} & k_{5,2} \\ 0 & 0 & k_{33} & k_{43} & 0 \\ k_{41} & k_{42} & k_{43} & k_{44} & k_{54} \\ 0 & k_{52} & 0 & k_{54} & k_{55} \end{array} \right]$$

 $2 \perp \!\!\! \perp 3 \mid 4?$

$$K = \Sigma^{-1} = \left[\begin{array}{ccccc} k_{11} & 0 & 0 & k_{41} & 0 \\ 0 & k_{22} & 0 & k_{42} & k_{5,2} \\ 0 & 0 & k_{33} & k_{43} & 0 \\ k_{41} & k_{42} & k_{43} & k_{44} & k_{54} \\ 0 & k_{52} & 0 & k_{54} & k_{55} \end{array} \right]$$

$$|\Sigma_{24,34}| = 0$$

▶ Let u and v be two distincts vertices, i.e., u, $v \in V$

- Let u and v be two distincts vertices, i.e., u, $v \in V$
- ▶ A path between u and v is a sequence u_0, u_1, \ldots, u_n where

$$u_0 = u \sim_G u_1 \sim_G \ldots \sim_G u_n = v$$

 $p = (u_0, u_1, \dots, u_n)$ and $\mathcal{P}(u, v, G)$ the set of the paths between u and v in G.

- Let u and v be two distincts vertices, i.e., u, $v \in V$
- ▶ A path between u and v is a sequence u_0, u_1, \ldots, u_n where

$$u_0 = u \sim_G u_1 \sim_G \ldots \sim_G u_n = v$$

 $p = (u_0, u_1, \dots, u_n)$ and $\mathcal{P}(u, v, G)$ the set of the paths between u and v in G.

▶ $S \subseteq V \setminus uv$ separates u and v in G, i.e., $u \perp_{G} v \mid S$ if either $S = \emptyset$ or $\forall p \in \mathcal{P}(u, v, G) \ p \cap S \neq \emptyset$.

- Let u and v be two distincts vertices, i.e., $u, v \in V$
- ▶ A path between u and v is a sequence u_0, u_1, \ldots, u_n where

$$u_0 = u \sim_G u_1 \sim_G \ldots \sim_G u_n = v$$

 $p = (u_0, u_1, \dots, u_n)$ and $\mathcal{P}(u, v, G)$ the set of the paths between u and v in G.

- ▶ $S \subseteq V \setminus uv$ separates u and v in G, i.e., $u \perp_G v \mid S$ if either $S = \emptyset$ or $\forall p \in \mathcal{P}(u, v, G) \ p \cap S \neq \emptyset$.
- ▶ Let A and $B \subseteq V \setminus S$, $A \cap B = \emptyset$ and A and B are non empty. A and B are separated by S in G, i.e., $A \perp_G B \mid S$ if $\forall (u, v) \in A \times B$ we have $u \perp_G vS$.

Global Markov property (GMP)

Let $P \longmapsto \prec G$, $H \succ = \{V, E(G), E(H)\}$ (covariance-concentration associated with P).

Global Markov property (GMP)

Let $P \mapsto \prec G$, $H \models \{V, E(G), E(H)\}$ (covariance-concentration associated with P).

▶ Covariance Global Markov property : P is Global Markov to the covariance graph G if $\forall (A, B, S)$ pairwise disjoint subsets of V then

if
$$A \perp_G B \mid V \setminus ABS \Rightarrow A \perp \!\!\!\perp B \mid S$$

Global Markov property (GMP)

Let $P \mapsto \prec G$, $H \succ = \{V, E(G), E(H)\}$ (covariance-concentration associated with P).

▶ Covariance Global Markov property : P is Global Markov to the covariance graph G if $\forall (A, B, S)$ pairwise disjoint subsets of V then

if
$$A \perp_G B \mid V \setminus ABS \Rightarrow A \perp \!\!\!\perp B \mid S$$

▶ Concentration Global Markov property : P is Global Markov to the concentration graph H if \forall (A, B, S) pairwise disjoint subsets of V then

if
$$A \perp_H B \mid S \Rightarrow A \perp \!\!\!\perp B \mid S$$
.

$$\Sigma = \left[\begin{array}{ccccc} \sigma_{11} & 0 & 0 & \sigma_{41} & 0 \\ 0 & \sigma_{22} & 0 & \sigma_{42} & \sigma_{5,2} \\ 0 & 0 & \sigma_{33} & \sigma_{43} & 0 \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_{44} & \sigma_{54} \\ 0 & \sigma_{52} & 0 & \sigma_{54} & \sigma_{55} \end{array} \right]$$

$$|\Sigma_{25,35}| = \left| \begin{array}{cc} 0 & \sigma_{25} \\ 0 & \sigma_{55} \end{array} \right| = 0$$

$$K = \Sigma^{-1} = \begin{bmatrix} k_{11} & 0 & 0 & k_{41} & 0 \\ 0 & k_{22} & 0 & k_{42} & k_{5,2} \\ 0 & 0 & k_{33} & k_{43} & 0 \\ k_{41} & k_{42} & k_{43} & k_{44} & k_{54} \\ 0 & k_{52} & 0 & k_{54} & k_{55} \end{bmatrix}$$

$$2 \perp \!\!\! \perp 3 \mid 4?$$

$$|\Sigma_{24,34}| = 0$$

Sufficient conditions for GMP

Let A, B and C be any triplet of pairwise disjoint subsets of V.

► Lauritzen (1996)

$$A \perp\!\!\!\perp B \mid C \cup D$$
 and $A \perp\!\!\!\perp C \mid B \cup D$ then $A \perp\!\!\!\perp B \cup C \mid D$ (1)

Sufficient conditions for GMP

Let A, B and C be any triplet of pairwise disjoint subsets of V.

► Lauritzen (1996)

$$A \perp\!\!\!\perp B \mid C \cup D$$
 and $A \perp\!\!\!\perp C \mid B \cup D$ then $A \perp\!\!\!\perp B \cup C \mid D$ (1)

► Kauermann (1996)

$$A \perp \!\!\!\perp C$$
 and $A \perp \!\!\!\perp D$ then $A \perp \!\!\!\perp C \cup D$ (2)

Sufficient conditions for GMP

Let A, B and C be any triplet of pairwise disjoint subsets of V.

► Lauritzen (1996)

$$A \perp\!\!\!\perp B \mid C \cup D$$
 and $A \perp\!\!\!\perp C \mid B \cup D$ then $A \perp\!\!\!\perp B \cup C \mid D$ (1)

► Kauermann (1996)

$$A \perp \!\!\!\perp C$$
 and $A \perp \!\!\!\perp D$ then $A \perp \!\!\!\perp C \cup D$ (2)

Theorem

- ► (Pearl and Paz 1987)
 If P satisfies (1) then the concentration GMP is satisfied.
- (Kauermann 1996, Banarjee and Richardson 2003)
 If P satisfies (2) then the covariance GMP is satisfied.

Next...

▶ We will no longer use probability distributions : We will define relations (see Matúš 1992 and Lňenička and Matúš 2007).

Next...

- ▶ We will no longer use probability distributions : We will define relations (see Matúš 1992 and Lňenička and Matúš 2007).
- We give new sufficient conditions to get GMP : pseudographoid axioms.

Next...

- We will no longer use probability distributions: We will define relations (see Matúš 1992 and Lňenička and Matúš 2007).
- We give new sufficient conditions to get GMP : pseudographoid axioms.
- We show perfect duality between covariance and concentration graphs

Motivation

Global Markov Properties

Relations

Pseudographoids

Reading conditional dependencies

Relations

- $\mathcal{T}(V) = \{(A, B, S), \text{ where } A \text{ and } B \neq \emptyset, \\ A, B \text{ and } S \subseteq V \text{ and pairwise disjoint}\}$
- ▶ A relation L is a subset of T(V).
- ▶ We associate to $L \mapsto \tau(L)$ another relation called the *dual* of L such that

$$\tau(L) = \{(A,B,S) \in \mathcal{T}(V) \text{ such that } (A,B,V \setminus ABS) \in L\}.$$

Example of relations

▶ Probabilistic relations : $X = (X_v, v \in V)' \sim P$ and

$$L = L[P] = \{(A,B,S) \in \mathcal{T}(V) \text{ such that } A \perp\!\!\!\perp B \mid S\}$$

Example of relations

▶ Probabilistic relations : $X = (X_v, v \in V)' \sim P$ and

$$L = L[P] = \{(A,B,S) \in \mathcal{T}(V) \text{ such that } A \perp\!\!\!\perp B \mid S\}$$

▶ Matricial relations : $\Sigma = (\sigma_{uv})_{(u,v) \in V \times V}$ a symmetric $|V| \times |V|$ matrix and

$$\begin{array}{lcl} \textit{L} = \textit{L}[\Sigma] & = & \{(\textit{A}, \textit{B}, \textit{S}) \in \mathcal{T}(\textit{V}) \text{ such that} \\ & \forall \, (\textit{u}, \textit{v}) \in \textit{A} \times \textit{B} \text{ we have } |\Sigma_{\textit{uS},\textit{vS}}| = 0\} \,. \end{array}$$

Example of relations

▶ Probabilistic relations : $X = (X_v, v \in V)' \sim P$ and

$$L = L[P] = \{(A, B, S) \in \mathcal{T}(V) \text{ such that } A \perp\!\!\!\perp B \mid S\}$$

Matricial relations : $\Sigma = (\sigma_{uv})_{(u,v) \in V \times V}$ a symmetric $|V| \times |V|$ matrix and

$$L = L[\Sigma] = \{(A, B, S) \in \mathcal{T}(V) \text{ such that} \ \forall (u, v) \in A \times B \text{ we have } |\Sigma_{uS, vS}| = 0\}.$$

• Graphical relations : G = (V, E) is an undirected graph and

$$L = L[G] = \{(A, B, S) \in \mathcal{T}(V) \text{ such that } A \perp_G B \mid S\}$$

We denote
$$S(G) = L = L[G]$$
.

A set of relations

Definition

```
if \forall (A,B,S) \in \mathcal{T}(V), (A,B,S) \in L \iff \forall (u,v) \in A \times B \text{ and } \forall S \subseteq S' \subseteq ABS \setminus uv \text{ we have } (u,v,S') \in L.
```

A set of relations

•

```
Definition L \in \Phi(V) if \forall (A, B, S) \in \mathcal{T}(V), (A, B, S) \in L \iff \forall (u, v) \in A \times B \text{ and } \forall S \subseteq S' \subseteq ABS \setminus uv we have (u, v, S') \in L.
```

Theorem (Matúš, 1992)

If L is a probabilistic relation, i.e., L = L[P], then $L \in \Phi(V)$.

Motivation

Global Markov Properties

Relations

Pseudographoids

Reading conditional dependencies

Other subsets of relations: Pseudographoids

▶ **pseudographoids** (Lňenička and Matúš 2007) : $L \in \Psi(V)^{\rightarrow}$ if and only if $\forall S \subseteq V$ and u, v and $w \in V \setminus S$.

$$\{(u,v,Sw),\,(u,w,Sv)\}\subseteq L\Rightarrow\{(u,v,S),\,(u,w,S)\}\subseteq L$$

Other subsets of relations: Pseudographoids

▶ **pseudographoids** (Lňenička and Matúš 2007) : $L \in \Psi(V)^{\rightarrow}$ if and only if $\forall S \subseteq V$ and u, v and $w \in V \setminus S$.

$$\{(u,v,Sw),\,(u,w,Sv)\}\subseteq L\Rightarrow\{(u,v,S),\,(u,w,S)\}\subseteq L$$

▶ reverse-pseudographoids $L \in \Psi(V)^{\leftarrow}$ if and only if $\forall S \subseteq V$ and u, v and $w \in V \setminus S$.

$$\{(u, v, Sw), (u, w, Sv)\} \subseteq L \leftarrow \{(u, v, S), (u, w, S)\} \subseteq L$$

Other subsets of relations: Pseudographoids

▶ **pseudographoids** (Lňenička and Matúš 2007) : $L \in \Psi(V)^{\rightarrow}$ if and only if $\forall S \subseteq V$ and u, v and $w \in V \setminus S$.

$$\{(u, v, Sw), (u, w, Sv)\} \subseteq L \Rightarrow \{(u, v, S), (u, w, S)\} \subseteq L$$

▶ reverse-pseudographoids $L \in \Psi(V)^{\leftarrow}$ if and only if $\forall S \subseteq V$ and u, v and $w \in V \setminus S$.

$$\{(u,v,Sw),\,(u,w,Sv)\}\subseteq L \Leftarrow \{(u,v,S),\,(u,w,S)\}\subseteq L$$

▶ symmetric-pseudographoids $\psi(V) = \Psi(V)^{\rightarrow} \cap \Psi(V)^{\leftarrow}$. Then $L \in \psi(V)$ if and only if $\forall S \subseteq V$ and u, v and $w \in V \setminus S$.

$$\{(u,v,Sw),\,(u,w,Sv)\}\subseteq L\iff \{(u,v,S),\,(u,w,S)\}\subseteq L$$

Examples, properties

Lemma

If P has a positive density with respect to a measure μ , then L[P] is a pseudographoid, i.e., $L[P] \in \Psi(V)^{\rightarrow}$.

Examples, properties

Lemma

If P has a positive density with respect to a measure μ , then L[P] is a pseudographoid, i.e., $L[P] \in \Psi(V)^{\rightarrow}$.

Lemma

- ▶ If P is a Gaussian distribution then L[P] is a symmetric-pseudographoid, i.e., $L[P] \in \psi(V)$.
- ▶ If G = (V, E) is an undirected graph then L[G] is a symmetric-pseudographoid, i.e., $L[G] \in \psi(V)$

Examples, properties

Lemma

If P has a positive density with respect to a measure μ , then L[P] is a pseudographoid, i.e., $L[P] \in \Psi(V)^{\rightarrow}$.

Lemma

- ▶ If P is a Gaussian distribution then L[P] is a symmetric-pseudographoid, i.e., $L[P] \in \psi(V)$.
- ▶ If G = (V, E) is an undirected graph then L[G] is a symmetric-pseudographoid, i.e., $L[G] \in \psi(V)$

Lemma

$$\tau(\Psi(V)^{\rightarrow}) = \Psi(V)^{\leftarrow}$$
 and $\tau(\Psi(V)^{\leftarrow}) = \Psi(V)^{\rightarrow}$

Covariance and concentration graphs (associated with relations)

Let $L \subseteq \mathcal{T}(V)$ be a relation.

$$L \longmapsto \prec G, H \succ = \{V, E(G), E(H)\}.$$

Covariance and concentration graphs (associated with relations)

Let $L \subseteq \mathcal{T}(V)$ be a relation.

$$L \longmapsto \prec G, H \succ = \{V, E(G), E(H)\}.$$

ightharpoonup G = (V, E(G)) is the covariance graph associated with L if

$$(u,v) \not\in E(G) \iff (u,v,\emptyset) \in L.$$

Covariance and concentration graphs (associated with relations)

Let $L \subseteq \mathcal{T}(V)$ be a relation.

$$L \longmapsto \prec G, H \succ = \{V, E(G), E(H)\}.$$

- ▶ G = (V, E(G)) is the covariance graph associated with L if $(u, v) \notin E(G) \iff (u, v, \emptyset) \in L$.
- ▶ H = (V, E(H)) is the concentration graph associated with L if $(u, v) \notin E(H) \iff (u, v, V \setminus uv) \in L$.

Theorem

Let $L \subseteq \mathcal{T}(V)$ be a relation in $\Phi(V)$.

Let $L \mapsto \prec G, H \succ$ be the covariance-concetration graphs associated with L. Then

Theorem

Let $L \subseteq \mathcal{T}(V)$ be a relation in $\Phi(V)$.

Let $L \mapsto \prec G, H \succ$ be the covariance-concetration graphs associated with L. Then

1. If $L \in \Psi(V)^{\rightarrow}$ then $S(H) \subseteq L$, i.e.,

$$A \perp_H B \mid S \Rightarrow A \perp \!\!\!\perp B \mid S.$$

Theorem

Let $L \subseteq \mathcal{T}(V)$ be a relation in $\Phi(V)$.

Let $L \mapsto \prec G, H \succ$ be the covariance-concetration graphs associated with L. Then

1. If $L \in \Psi(V)^{\rightarrow}$ then $S(H) \subseteq L$, i.e.,

$$A \perp_H B \mid S \Rightarrow A \perp \!\!\!\perp B \mid S.$$

2. If $L \in \Psi(V)^{\leftarrow}$ then $\tau(S(G)) \subseteq L$, i.e.,

$$A \perp_G B \mid V \setminus ABS \Rightarrow A \perp \!\!\!\perp B \mid S.$$

Theorem

Let $L \subseteq \mathcal{T}(V)$ be a relation in $\Phi(V)$.

Let $L \mapsto \prec G, H \succ$ be the covariance-concetration graphs associated with L. Then

1. If $L \in \Psi(V)^{\rightarrow}$ then $S(H) \subseteq L$, i.e.,

$$A \perp_H B \mid S \Rightarrow A \perp \!\!\!\perp B \mid S.$$

2. If $L \in \Psi(V)^{\leftarrow}$ then $\tau(S(G)) \subseteq L$, i.e.,

$$A \perp_G B \mid V \setminus ABS \Rightarrow A \perp \!\!\!\perp B \mid S.$$

3. If $L \in \psi(V)$ then $\tau(S(G)) \cap S(H) \subseteq L$.

► Since $L \in \Psi(V)^{\rightarrow}$ and by induction on |S| we show $u \perp_{H} v \mid S \Rightarrow (u, v, S) \in L : s(H) \subseteq \mathcal{L}$ where

$$s(H) = \{(u, v, S) \in \mathcal{T}(V) \text{ such that } u \perp_H v \mid S\}$$

$$\mathcal{L} = \{(u, v, S) \in \mathcal{T}(V) \text{ such that } (u, v, S) \in L\}.$$

► Since $L \in \Psi(V)^{\rightarrow}$ and by induction on |S| we show $u \perp_{H} v \mid S \Rightarrow (u, v, S) \in L : s(H) \subseteq \mathcal{L}$ where

$$s(H) = \{(u, v, S) \in \mathcal{T}(V) \text{ such that } u \perp_H v \mid S\}$$

and

$$\mathcal{L} = \{(u, v, S) \in \mathcal{T}(V) \text{ such that } (u, v, S) \in L\}.$$

▶ Since $L \in \Phi(V)$ we show that $s(H) \subseteq \mathcal{L}$ implies that $S(H) \subseteq L$. Then (1) is proved.

▶ Since $L \in \Psi(V)^{\rightarrow}$ and by induction on |S| we show $u \perp_{H} v \mid S \Rightarrow (u, v, S) \in L : s(H) \subseteq \mathcal{L}$ where

$$s(H) = \{(u, v, S) \in \mathcal{T}(V) \text{ such that } u \perp_H v \mid S\}$$

$$\mathcal{L} = \{(u, v, S) \in \mathcal{T}(V) \text{ such that } (u, v, S) \in L\}.$$

- ▶ Since $L \in \Phi(V)$ we show that $s(H) \subseteq \mathcal{L}$ implies that $S(H) \subseteq L$. Then (1) is proved.
- ▶ Note that if $L \mapsto \prec G, H \succ$ the $\tau(L) \mapsto \prec H, G \succ$.

▶ Since $L \in \Psi(V)^{\rightarrow}$ and by induction on |S| we show $u \perp_{H} v \mid S \Rightarrow (u, v, S) \in L : s(H) \subseteq \mathcal{L}$ where

$$s(H) = \{(u, v, S) \in \mathcal{T}(V) \text{ such that } u \perp_H v \mid S\}$$

$$\mathcal{L} = \{(u, v, S) \in \mathcal{T}(V) \text{ such that } (u, v, S) \in L\}.$$

- ▶ Since $L \in \Phi(V)$ we show that $s(H) \subseteq \mathcal{L}$ implies that $S(H) \subseteq L$. Then (1) is proved.
- ▶ Note that if $L \mapsto \prec G, H \succ$ the $\tau(L) \mapsto \prec H, G \succ$.
- ▶ Applying (1) to $\tau(L)$ (if $L \in \Psi(V)^{\leftarrow}$ then $\tau(L) \in \Psi(V)^{\rightarrow}$.)

► Since $L \in \Psi(V)^{\rightarrow}$ and by induction on |S| we show $u \perp_{H} v \mid S \Rightarrow (u, v, S) \in L : s(H) \subseteq \mathcal{L}$ where

$$s(H) = \{(u, v, S) \in \mathcal{T}(V) \text{ such that } u \perp_H v \mid S\}$$

$$\mathcal{L} = \{(u, v, S) \in \mathcal{T}(V) \text{ such that } (u, v, S) \in L\}.$$

- ▶ Since $L \in \Phi(V)$ we show that $s(H) \subseteq \mathcal{L}$ implies that $S(H) \subseteq L$. Then (1) is proved.
- ▶ Note that if $L \mapsto \prec G, H \succ$ the $\tau(L) \mapsto \prec H, G \succ$.
- ▶ Applying (1) to $\tau(L)$ (if $L \in \Psi(V)^{\leftarrow}$ then $\tau(L) \in \Psi(V)^{\rightarrow}$.)
- ▶ Then $S(G) \subseteq \tau(L)$.

Next...

- ► We find a graphical criteria to read conditional independence statements
- New graphical criteria in order to read conditional dependencies?

Motivation

Global Markov Properties

Relations

Pseudographoids

Reading conditional dependencies

Semigraphoid relations

Definition (Lňenička and Matúš 2007)

 $L \in \Pi(V)$ if and only if $\forall u, v, w \in V$ and $S \subseteq V \setminus uvw$

$$\{(u,w,S),\,(u,v,Sw)\}\subseteq L\implies \{(u,v,S),\,(u,w,Sv)\}\subseteq L.$$

Any relation L in $\Pi(V)$ is a called a **semipseudographoid**.

Semigraphoid relations

Definition (Lňenička and Matúš 2007)

 $L \in \Pi(V)$ if and only if $\forall u, v, w \in V$ and $S \subseteq V \setminus uvw$

$$\{(u,w,S),\,(u,v,Sw)\}\subseteq L\implies \{(u,v,S),\,(u,w,Sv)\}\subseteq L.$$

Any relation L in $\Pi(V)$ is a called a **semipseudographoid**.

Lemma

if L = L[P] where P is Gaussian then $L \in \Pi(V)$

Semigraphoid relations

Definition (Lňenička and Matúš 2007)

 $L \in \Pi(V)$ if and only if $\forall u, v, w \in V$ and $S \subseteq V \setminus uvw$

$$\{(u, w, S), (u, v, Sw)\} \subseteq L \implies \{(u, v, S), (u, w, Sv)\} \subseteq L.$$

Any relation L in $\Pi(V)$ is a called a **semipseudographoid**.

Lemma

if L = L[P] where P is Gaussian then $L \in \Pi(V)$

Lemma

$$L \in \Pi(V) \iff \tau(L) \in \Pi(V)$$

1st graphical criteria

Theorem

Let $L \subseteq \mathcal{T}(V) \in \Phi(V) \cap \Pi(V)$.

Let $L \mapsto \prec G, H \succ$ be the covariance-concentration graphs associated with L.

Let $u, v \in V$ and $S \subseteq V \setminus uv$ and $S \neq \emptyset$. Then

1st graphical criteria

Theorem

Let $L \subseteq \mathcal{T}(V) \in \Phi(V) \cap \Pi(V)$.

Let $L \mapsto \prec G, H \succ$ be the covariance-concentration graphs associated with L.

Let $u, v \in V$ and $S \subseteq V \setminus uv$ and $S \neq \emptyset$. Then

1. Assume that $L \in \Psi(V)^{\leftarrow}$, $u \sim_G v$ and that $\forall w \in S$, $\forall p \in \mathcal{P}(w, v, G), p \ni u$ then $(u, v, S) \notin L$

1st graphical criteria

Theorem

Let $L \subseteq \mathcal{T}(V) \in \Phi(V) \cap \Pi(V)$.

Let $L \mapsto \prec G, H \succ$ be the covariance-concentration graphs associated with L.

Let $u, v \in V$ and $S \subseteq V \setminus uv$ and $S \neq \emptyset$. Then

- 1. Assume that $L \in \Psi(V)^{\leftarrow}$, $u \sim_G v$ and that $\forall w \in S$, $\forall p \in \mathcal{P}(w, v, G), p \ni u$ then $(u, v, S) \notin L$
- 2. Assume that $L \in \Psi(V)^{\rightarrow}$, $u \sim_H v$ and that $\forall w \in V \setminus Suv$, $\forall p \in \mathcal{P}(w, v, H), p \ni u$ then $(u, v, S) \notin L$.

Examples (Covariance graph)

 $4 \perp \!\!\! \perp 5 \mid 1,6$?

Examples (Covariance graph)

$$\Sigma_{416,516} = \left(egin{array}{cccc} \sigma_{45} & \sigma_{41} & 0 \ 0 & \sigma_{11} & \sigma_{16} \ 0 & \sigma_{16} & \sigma_{66} \end{array}
ight)$$

Examples (Covariance graph)

 $4 \! \perp \!\!\! \perp \!\!\! 5 \mid 1,6$

$$\Sigma_{416,516} = \left(egin{array}{ccc} \sigma_{45} & \sigma_{41} & 0 \\ 0 & \sigma_{11} & \sigma_{16} \\ 0 & \sigma_{16} & \sigma_{66} \end{array}
ight)$$

$$|\Sigma_{416,516}| = \sigma_{45} \, |\Sigma_{16}| \, .$$

Examples (Concentration graph)

4 ⊥⊥ **5** | **2** ?

Examples (Concentration graph)

Examples (Concentration graph)

4 1/5 | 2 ?

1-connection

Definition (Peña 2010)

Let $u, v \in V$ and $S \subseteq V \setminus uv$. We say that u and v are 1-connected given S if $\mathcal{P}(u, v, G_{Suv}) = \{p\}$, i.e., $u \sim_G^1 v \mid S$.

1-connection

Definition (Peña 2010)

Let $u, v \in V$ and $S \subseteq V \setminus uv$. We say that u and v are 1-connected given S if $\mathcal{P}(u, v, G_{Suv}) = \{p\}$, i.e., $u \sim_G^1 v \mid S$.

$$4 \sim^1 6 \mid 1$$

Weak Transitive

Definition

 $L \in Delta(V)$ if and only if $\forall u, v$ and w in V and $S \subseteq V \setminus uvw$

$$\{(u, v, S), (uv, Sw)\} \subseteq \mathcal{L} \implies (u, w, S) \in \mathcal{L} \text{ or } (v, w, S) \in \mathcal{L}$$

When $L \in \Delta(V)$ we say that L satisfies the **weak transitive** axiom.

Lemma

if L = L[P] where P is Gaussian then $L \in \Delta(V)$

Weak Transitive

Definition

 $L \in Delta(V)$ if and only if $\forall u, v$ and w in V and $S \subseteq V \setminus uvw$

$$\{(u, v, S), (uv, Sw)\} \subseteq \mathcal{L} \implies (u, w, S) \in \mathcal{L} \text{ or } (v, w, S) \in \mathcal{L}$$

When $L \in \Delta(V)$ we say that L satisfies the **weak transitive** axiom.

Lemma

if L = L[P] where P is Gaussian then $L \in \Delta(V)$

Lemma

$$L \in \Delta(V) \cap \Pi(V) \iff \tau(L) \in \Delta(V) \cap \Pi(V)$$

2nd Graphical Criteria

Theorem

Let
$$L \subseteq \mathcal{T}(V) \in \Phi(V) \cap \Pi(V) \cap \Delta(V)$$
.

Let $L \mapsto \prec G, H \succ = \{V, E(G), E(H)\}$ be the covariance-concentration graphs associated with L.

Let $u, v \in V$ and $S \subseteq V \setminus uv$. Then

2nd Graphical Criteria

Theorem

Let
$$L \subseteq \mathcal{T}(V) \in \Phi(V) \cap \Pi(V) \cap \Delta(V)$$
.

Let $L \mapsto \prec G, H \succ = \{V, E(G), E(H)\}$ be the covariance-concentration graphs associated with L.

Let $u, v \in V$ and $S \subseteq V \setminus uv$. Then

1. If $L \in \Psi(V)^{\rightarrow}$ and if $u \sim_H^1 v \mid S$ then $(u, v, V \setminus Suv) \notin L$.

2nd Graphical Criteria

Theorem

Let
$$L \subseteq \mathcal{T}(V) \in \Phi(V) \cap \Pi(V) \cap \Delta(V)$$
.

Let $L \mapsto \prec G, H \succ = \{V, E(G), E(H)\}$ be the covariance-concentration graphs associated with L.

Let $u, v \in V$ and $S \subseteq V \setminus uv$. Then

- 1. If $L \in \Psi(V)^{\rightarrow}$ and if $u \sim_H^1 v \mid S$ then $(u, v, V \setminus Suv) \notin L$.
- 2. If $L \in \Psi(V)^{\leftarrow}$ and if $u \sim_G^1 v \mid S$ then $(u, v, S) \notin L$.

Example (Covariance graph)

 $4\sim^1 6\mid 1$ If covariance graph : 4 $\not\perp\!\!\!\perp$ 6 \mid 1

Example (Concentration graph)

 $\begin{array}{c|c} 4 \sim^1 6 \mid 1 \\ \text{If concentration graph}: \\ 4 \not\perp\!\!\!\perp 6 \mid 2,3,5 \end{array}$