Faithfulness assumption in concentration and covariance graphical models

Dhafer Malouche¹ Bala Rajaratnam²

¹Ecole Supérieure de la Statistique et de l'Analyse de l'Information de Tunis, Tunisie

²Stanford University, USA

Analysis and Probability in NICE 15-17 November 2010 - Nice, France.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

yeast FOCI coexpression network. (Magwene et Kim *2004*¹)

^{1.} P. Magwene and J. Kim. Estimating genomic coexpression networks using first-order conditional independence. *Genom Biol.*, 5(12), 2004.

- Estimating Gene Network Interaction (GNI) from Genomic Data ?
- GNI = Gaussian Concentration Graph.
 - G = (V, E) undirected graph, V set of genes
 - $\mathbf{X}_V = (X_u, \in u \in V)' \sim \mathcal{N}(\mu = 0, K = \Sigma^{-1})$ where $X_u = X(g_u)$ expression level of g_u .

《曰》 《聞》 《臣》 《臣》 三臣

Outline

Graphical models

- Preliminaries
- Concentration graphical models
- Covariance graphical models

Paithfulness assumption

- Definition
- Implications of faithful assumption

3 Faithfulness assumption for Gaussian tree models

Preliminaries

- Preliminaries
- Concentration graphical models
- Covariance graphical models

2 Faithfulness assumption

- Definition
- Implications of faithful assumption

3 Faithfulness assumption for Gaussian tree models

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

Preliminaries

Undirected graphs

Definition

An undirected graph G = (V, E) is a pair of sets V and $E \subseteq (V \times V) \setminus \{(u, u), u \in V\}$ such that

$$\forall (u,v) \in E \iff (v,u) \in E$$

- We write u ~_G v when (u, v) ∈ E and we say that u and v are adjacent in G.
- A path connecting two distinct vertices u and v in G is a sequence (u₀, u₁,..., u_n) where u₀ = u and u_n = v where ∀i = 0,..., n − 1, u_i ~_G u_{i+1}.
- We denote by $\mathcal{P}(u, v, G)$ the set of paths between u and v

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

Preliminaries

Undirected graphs...Separators

• In a connected graph, a separator $S \subseteq V$ such that $\exists u \not\sim_G v$ such that $u, v \notin S$ and

$$\forall p \in \mathcal{P}(u, v, G), \ p \cap S \neq \emptyset$$

- An Ø separates u and v iff there is no path between u and v,
 i.e., they belong to different connected components.
- (A, B, S) a triplet of disjoint subset of V, S separates A and B in G iff S separates any (u, v) ∈ A × B.
- A separation statement, (A, B, S) is a triplet of pairwise disjoint subsets. S separates A and B in G iff S is a separator of any pair of vertices (u, v) ∈ A × B.

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

Preliminaries

Graphical Models

- V is a finite set
- X = (X_v, v ∈ V)' is a random vector with probability distribution P.

•
$$G = (V, E)$$
 is a graph where $E \subseteq V \times V$.

Definition

We say that P is Markov to G if

 $\left(\begin{array}{c} A \text{ separation} \\ \text{statement read on } G \end{array}\right) \Rightarrow \left(\begin{array}{c} \text{Conditional independence} \\ \text{statement read on } P \end{array}\right)$

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

Preliminaries

Basic Concept

Concentration graphical models

- Preliminaries
- Concentration graphical models
- Covariance graphical models

2 Faithfulness assumption

- Definition
- Implications of faithful assumption

3 Faithfulness assumption for Gaussian tree models

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

Concentration graphical models

Concentration graphical models

$$\mathbf{X} = (X_v, v \in V)' \sim P$$
 and $\mathbf{G} = (V, \mathbf{E})$ an undirected graph.

Definition

G is the concentration graph associated with P iff

$$u \not\sim_{\mathbf{G}} v \iff X_u \perp \!\!\!\perp X_v \mid \mathbf{X}_{V \setminus \{u,v\}}$$

where
$$\mathbf{X}_{V \setminus \{u,v\}} := (X_w, w \neq u \text{ and } w \neq v)'$$
.

Question :

Can we read additional conditional independence statements in the graph G?

Faithfulness assumption 0000000

Faithfulness assumption for Gaussian tree models

・吊 ・ ・ きょう ・ きょう

Concentration graphical models

Concentration intersection property

Theorem (Lauritzen 1996)

Assume that

- i. G is the concentration graph associated with P.
- ii. P satisfies the concentration intersection property, i.e., $\forall A, B$ and $C \subseteq V$ and pairwise disjoints

 $\mathbf{X}_{A} \perp \!\!\!\perp \mathbf{X}_{B} \mid \mathbf{X}_{C \cup D} \text{ and } \mathbf{X}_{A} \perp \!\!\!\perp \mathbf{X}_{C} \mid \mathbf{X}_{B \cup D} \Rightarrow \mathbf{X}_{A} \perp \!\!\!\perp \mathbf{X}_{B \cup C} \mid \mathbf{X}_{D}.$ (1)

Then P is concentration global Markov to G, i.e., $\forall (A, B, S)$,

if S separates A and B in $G \Rightarrow \mathbf{X}_A \perp \mathbf{X}_B \mid \mathbf{X}_S$. (2)

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

Concentration graphical models

Example :

As $\{2,5\}$ separates $\{1\}$ and $\{4\}$ then

 $X_1 \perp \!\!\!\perp X_4 \mid (X_2, X_5).$

As $\{2,3,6\}$ separates $\{4,5\}$ and $\{1\}$ then

 $X_1 \perp\!\!\!\perp (X_4, X_5) \mid (X_2, X_3, X_6).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Covariance graphical models

- Preliminaries
- Concentration graphical models
- Covariance graphical models

2 Faithfulness assumption

- Definition
- Implications of faithful assumption

3 Faithfulness assumption for Gaussian tree models

Faithfulness assumption 0000000

Faithfulness assumption for Gaussian tree models

Covariance graphical models

Covariance graphical models

$$\mathbf{X} = (X_{v}, v \in V)' \sim P$$
 and $G_{0} = (V, E_{0})$ an undirected graph.

Definition

 G_0 is the covariance graph associated with P iff

$$u \not\sim_{G_0} v \iff X_u \perp \!\!\!\perp X_v$$

where
$$\mathbf{X}_{V \setminus \{u,v\}} := (X_w, w \neq u \text{ and } w \neq v)'.$$

Question :

Can we read additional conditional independence statements in the graph G_0 ?

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

伺 ト イヨト イヨト

Covariance graphical models

Covariance intersection property

Theorem (Kauermann 1996) Assume that

i. G_0 is the covariance graph associated with P.

ii. P satisfies the covariance intersection property, i.e.,

 $\forall A, B, C \subseteq V$ and pairwise disjoints

$$\mathbf{X}_A \perp\!\!\perp \mathbf{X}_B$$
 and $\mathbf{X}_A \perp\!\!\perp \mathbf{X}_C \Rightarrow \mathbf{X}_A \perp\!\!\perp \mathbf{X}_{B\cup C}$. (3)

Then P is covariance global Markov to G_0 , i.e., $\forall (A, B, S)$,

if $V \setminus (S \cup A \cup B)$ separates A and B in $G_0 \Rightarrow \mathbf{X}_A \perp \mathbf{X}_B \mid \mathbf{X}_S$.

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

Covariance graphical models

Example :

As
$$\{2,5\} = V \setminus (\{3,6\} \cup \{1\} \cup \{4\})$$

separates $\{1\}$ and $\{4\}$ then

$$X_1 \perp \!\!\!\perp X_4 \mid (X_3, X_6).$$

・ロト ・部ト ・ヨト ・ヨト

As $\{2,3,6\} = V \setminus (\emptyset \cup \{1\} \cup \{4,5\})$ separates $\{4,5\}$ and $\{1\}$ then

$$X_1 \perp\!\!\!\perp (X_4, X_5).$$

Definition

1 Graphical models

- Preliminaries
- Concentration graphical models
- Covariance graphical models

2 Faithfulness assumption

- Definition
- Implications of faithful assumption

3 Faithfulness assumption for Gaussian tree models

Faithfulness assumption 000000

Faithfulness assumption for Gaussian tree models

Definition

Faithfulness assumption

Definition

We say that P is faithful to G if

A separation statement read on G \Rightarrow

Conditional independence statement read on ${\cal P}$

Faithfulness assumption 000000

Faithfulness assumption for Gaussian tree models

Definition

Faithfulness assumption

Definition

We say that P is faithful to G if

A separation statement read on G \Rightarrow

Conditional independence statement read on *P*

Assume that G is the concentration graph and G_0 is the covariance graph associated with P.

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

Definition

Faithfulness assumption

Definition

We say that P is faithful to G if

 $\left(\begin{array}{c} A \text{ separation} \\ \text{statement read on } G \end{array}\right) \iff \left(\begin{array}{c} \text{Conditional independence} \\ \text{statement read on } P \end{array}\right)$

Assume that G is the concentration graph and G_0 is the covariance graph associated with P.

• P is concentration faithful to G if $\forall (A, B, S)$

S separates A and B in $G \iff \mathbf{X}_A \perp\!\!\perp \mathbf{X}_B \mid \mathbf{X}_S$.

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

Definition

Faithfulness assumption

Definition

We say that P is faithful to G if

 $\left(\begin{array}{c} A \text{ separation} \\ \text{statement read on } G \end{array}\right) \iff \left(\begin{array}{c} \text{Conditional independence} \\ \text{statement read on } P \end{array}\right)$

Assume that G is the concentration graph and G_0 is the covariance graph associated with P.

• P is concentration faithful to G if $\forall (A, B, S)$

S separates A and B in $G \iff \mathbf{X}_A \perp\!\!\!\perp \mathbf{X}_B \mid \mathbf{X}_S$.

• P is covariance faithful to G_0 if $\forall (A, B, S)$

S separates A and B in $G_0 \iff X_A \coprod X_B \downarrow X_{V \setminus (A \cup B \cup S)} = O(A \cup B \cup S)$

Implications of faithful assumption

Graphical models

- Preliminaries
- Concentration graphical models
- Covariance graphical models

2 Faithfulness assumption

- Definition
- Implications of faithful assumption

3 Faithfulness assumption for Gaussian tree models

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

イロト イポト イヨト イヨト

Implications of faithful assumption

Implication of concentration faithful assumption

Theorem (Malouche and Rajaratnam 2010a)

•
$$\mathbf{X}_V = (X_v, v \in V)' \sim P$$

- Assume that P satisfies the concentration and the covariance intersection properties ((1) and (3)).
- Assume that P has a positive density.
- *G* = (*V*, *E*) and *G*₀ = (*V*, *E*₀) denote respectively the concentration and the covariance graph associated with *P*.

If P is concentration faithful to G, then

- i. all the connected components of G_0 are complete.
- ii. G and G_0 have the same connected components.

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

(4 同) 4 ヨ) 4 ヨ)

Implications of faithful assumption

The proof : the concentration graph case...

• if G is connected,

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

・ 同 ト ・ ヨ ト ・ ヨ ト

Implications of faithful assumption

The proof : the concentration graph case...

• if G is connected,

$$u \not\sim_{G_0} v \iff X_u \perp \!\!\!\perp X_v$$

 $\iff \emptyset$ separates u and v in G
 $faithful assumption : impossible$

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

・ 同 ト ・ ヨ ト ・ ヨ ト

Implications of faithful assumption

The proof : the concentration graph case...

- if G is connected,
 - $\begin{array}{rcl} u \not\sim_{G_0} v & \Longleftrightarrow & X_u \amalg X_v \\ & \Leftrightarrow & \emptyset \text{ separates } u \text{ and } v \text{ in } G \\ & & faithful \ assumption : \ \text{impossible} \end{array}$

if G is not connected, we have to prove : if G_A is a connected component of G then G_A = G(P_A) where
 X_A = (X_u, u ∈ A)' ~ P_A.

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

Implications of faithful assumption

The proof : the concentration graph case...

- if G is connected,
 - $\begin{array}{rcl} u \not\sim_{G_0} v & \Longleftrightarrow & X_u \amalg X_v \\ & \Leftrightarrow & \emptyset \text{ separates } u \text{ and } v \text{ in } G \\ & & faithful \ assumption: \ \text{impossible} \end{array}$

if G is not connected, we have to prove : if G_A is a connected component of G then G_A = G(P_A) where
 X_A = (X_u, u ∈ A)' ~ P_A.

Equivalently

$$X_{u} \perp \!\!\!\perp X_{v} \mid \mathbf{X}_{V \setminus \{u,v\}} \iff X_{u} \perp \!\!\!\perp X_{v} \mid \mathbf{X}_{A \setminus \{u,v\}}$$

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

Implications of faithful assumption

Implication of covariance faithful assumption

Theorem (Malouche and Rajaratnam 2010a)

•
$$\mathbf{X}_V = (X_v, v \in V)' \sim P$$

- Assume that P satisfies the concentration and the covariance intersection properties ((1) and (3)).
- G = (V, E) and G₀ = (V, E₀) denote respectively the concentration and the covariance graph associated with P.
- If P is covariance faithful to G_0 , then
 - i. all the connected components of G are complete.
 - ii. G and G_0 have the same connected components.

Faithfulness assumption ○○○○○○● Faithfulness assumption for Gaussian tree models

- (同) - (目) - (目)

Implications of faithful assumption

The proof : the covariance graph case...

• if G_0 is connected,

Faithfulness assumption ○○○○○○● Faithfulness assumption for Gaussian tree models

・ 同 ト ・ ヨ ト ・ ヨ ト

Implications of faithful assumption

The proof : the covariance graph case...

• if G_0 is connected,

$$\begin{array}{rccc} u \not\sim_G v & \Longleftrightarrow & X_u \perp \!\!\!\!\perp X_v \mid \mathbf{X}_{V \setminus (\{u,v\} \cup \emptyset)} \\ & \Leftrightarrow & \emptyset \text{ separates } u \text{ and } v \text{ in } G_0 \\ & & faithful \ assumption : \ \text{impossible} \end{array}$$

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

Implications of faithful assumption

The proof : the covariance graph case...

• if G_0 is connected,

$$\begin{array}{rccc} u \not\sim_G v & \Longleftrightarrow & X_u \amalg X_v \mid \mathbf{X}_{V \setminus (\{u,v\} \cup \emptyset)} \\ & \Leftrightarrow & \emptyset \text{ separates } u \text{ and } v \text{ in } G_0 \\ & & faithful \ assumption : \ \text{impossible} \end{array}$$

if G₀ is not connected. W.I.o.g assume that G₀ have two connected components (G₀)_A and (G₀)_B, where A ∪ B = V and A ∩ B = Ø.

Claim 1 $u \sim_G v \iff u, v \in A \text{ or } u, v \in B$

Faithfulness assumption ○○○○○○● Faithfulness assumption for Gaussian tree models

Implications of faithful assumption

The proof : the covariance graph case...

• if G_0 is connected,

$$\begin{array}{rccc} u \not\sim_G v & \Longleftrightarrow & X_u \amalg X_v \mid \mathbf{X}_{V \setminus (\{u,v\} \cup \emptyset)} \\ & \Leftrightarrow & \emptyset \text{ separates } u \text{ and } v \text{ in } G_0 \\ & & faithful \ assumption : \ \text{impossible} \end{array}$$

if G₀ is not connected. W.l.o.g assume that G₀ have two connected components (G₀)_A and (G₀)_B, where A ∪ B = V and A ∩ B = Ø.

Claim 1 $u \sim_G v \iff u, v \in A \text{ or } u, v \in B$ Claim 2 A and B generate also two connected components in G. Faithfulness assumption 0000000

Faithfulness assumption for Gaussian tree models

Gaussian graphical Models

•
$$\mathbf{X} = (X_{\mathbf{v}}, \, \mathbf{v} \in V)' \sim P = \mathcal{N}_{|V|}(\mu, K = \Sigma^{-1})$$
, with density

$$f(\mathbf{x}) = rac{1}{(2\pi)^{|V|/2}|\Sigma|^{1/2}} \, \exp\left(-rac{1}{2}(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)'
ight),$$

 $K = (k_{uv})$ precision matrix and $\Sigma = (\sigma_{uv})$ Gaussian distribution.

- *P* satisfies concentration and covariance intersection properties ((1) and (3)).
- Concentration graph : G = (V, E)

$$u \not\sim_G v \iff k_{uv} = 0.$$

• Covariance graph associated with P: $G_0 = (V, E_0)$ defined by

$$u \not\sim_{G_0} v \iff \sigma_{uv} = 0.$$

Faithfulness assumption 0000000

Faithfulness assumption for Gaussian tree models

Undirected graphs... Trees

Definition

A graph G is called a *tree* if any pair of vertices (u, v) in G are connected by exactly one path, i.e., $|\mathcal{P}(u, v, G)| = 1 \quad \forall u, v \in V$.

Lemma

If G is a tree, any subgraph of G induced by a subset of V is a union of connected components, each of which are trees.

Faithfulness assumption 0000000

Faithfulness assumption for Gaussian tree models

Concentration faithful Trees

Theorem (Becker, Geiger and Meek 2005)

Assume that

- i. P is a Gaussian distribution
- ii. G is the concentration graph associated with P.

If G is a tree then P is concentration faithful to G.

Faithfulness assumption 0000000

Faithfulness assumption for Gaussian tree models

Covariance faithful Trees

Theorem (Malouche and Rajaratnam 2010b)

Assume that

- i. P is a Gaussian distribution
- ii. G_0 is the covariance graph associated with P.

If G_0 is a tree then P is covariance faithful to G_0 .

Computing inverse matrices using graphs

Lemma (Brualdi and Cvetkovic 2008, Jones and West 2005) Let $K = (k_{uv})$ and $\Sigma = (\sigma_{uv})$ be $d \times d$ matrices and let $G_0 = (V, E_0)$ be an undirected graph :

$$u \not\sim_{G_0} v \iff \sigma_{uv} = 0.$$

If $K = \Sigma^{-1}$, then $\forall (u, v) \in V imes V$

$$k_{uv} = \sum_{\substack{p \in \mathcal{P}(u, v, G_0) \\ p = (u_0, \dots, u_n)}} (-1)^{|p|+1} \sigma_{u_0 u_1} \sigma_{u_1 u_2} \dots \sigma_{u_{n-1} u_n} \frac{|\Sigma \setminus p|}{|\Sigma|}$$

Faithfulness assumption

Faithfulness assumption for Gaussian tree models

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

- G_0 covariance graph of $\mathbf{X} = (X_1, \dots, X_8)'$
- $S = \{4, 6\}$ does not separate $A = \{1, 2\}$, $B = \{5\}$.
- $V \setminus (A \cup B \cup S) = \{3, 8, 7\}$
- Question : $X_{\{1,2\}} \perp \!\!\!\perp X_{\{5\}} \mid X_{\{3,8,7\}}$?

Faithfulness assumption 0000000

Faithfulness assumption for Gaussian tree models

伺 ト イヨト イヨト

Example

- G_0 covariance graph of $\mathbf{X} = (X_1, \dots, X_8)'$
- $S = \{4, 6\}$ does not separate $A = \{1, 2\}$, $B = \{5\}$.
- $V \setminus (A \cup B \cup S) = \{3, 8, 7\}$
- Question : $X_{\{1,2\}} \perp \!\!\!\perp X_{\{5\}} \mid X_{\{3,8,7\}}$?

 $(\textbf{G}_{0})_{\{2,5,3,7,8\}}$ covariance graph of $\textbf{X}_{\{2,5,3,7,8\}}$

$$k_{25|387} = (-1)^{2+1} \sigma_{23} \sigma_{35} \frac{|\Sigma(\{8,7\})|}{|\Sigma(\{2,5,3,8,7\})|} \neq 0$$

$$X_2 \not\!\perp X_5 \mid \mathbf{X}_{\{3,8,7\}} \Rightarrow \mathbf{X}_{\{1,2\}} \not\!\perp X_{\{5\}} \mid \mathbf{X}_{\{3,8,7\}}$$

References I

- Magwene, P. and Kim. J. Estimating genomic coexpression networks using first-order conditional independence. *Genom Biol.*, 5(12), 2004.
- Lauritzen, S. L. *Graphical Models*. Oxford University Press., NY, 1996.
- Kauermann, G. 1996. On a dualization of graphical Gaussian models. *Scand. J. Statist.*, **23**, 105–116.
- Malouche, D. and Rajaratnam, B., Implications of faithfulness assumption in graphical models, *preprint*, 2010a.

• • = • • = •

References II

- Becker, A. Geiger, D. & Meek, C. 2005. Perfect Tree-like Markovian Distributions. Probability and Mathematical Statistics, 25(2), 231-239.
- Malouche, D. and Rajaratnam, B., Covariance Markov Faithful trees, *preprint*, 2010b
- Brualdi, R.A., & Cvetkovic, D. 2008. A combinatorial approach to matrix theory and its applications. CRC, Press, Chapman and Hall.
- Jones, B., West, M., Covariance decomposition in undirected gaussian graphical models. Biometrika 92, 770-786, 2005.