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Motivation

yeast FOCI coexpression

network. (Magwene et

Kim 2004 1)

1. P. Magwene and J. Kim. Estimating genomic coexpression networks using

first-order conditional independence. Genom Biol., 5(12), 2004.



Motivation

Estimating Gene Network Interaction (GNI) from Genomic

Data ?

GNI = Gaussian Concentration Graph.

G = (V ,E ) undirected graph, V set of genes

XV = (Xu,∈ u ∈ V )′ ∼ N (µ = 0,K = Σ−1)

where Xu = X (gu) expression level of gu.

No interaction between

gu and gv ⇐⇒ u 6∼G v

⇐⇒ Xu ⊥⊥Xv | XV\{u,v}
⇐⇒ kuv = 0



Motivation

Estimating G

Estimating K

Classical

Methods

Low-order

Conditioning

Algorithms

Faithfulness

Assumption

Required

Xu ⊥⊥ Xv . . .

Xu ⊥⊥ Xv | Xw , w 6= u, v

. . .

n ≥ |V |
n << |V |
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Preliminaries

Undirected graphs

Definition

An undirected graph G = (V ,E ) is a pair of sets V and

E ⊆ (V × V ) \ {(u, u), u ∈ V } such that

∀ (u, v) ∈ E ⇐⇒ (v , u) ∈ E

We write u ∼G v when (u, v) ∈ E and we say that u and v

are adjacent in G .

A path connecting two distinct vertices u and v in G is a

sequence (u0, u1, . . . , un) where u0 = u and un = v where

∀ i = 0, . . . , n − 1, ui ∼G ui+1.

We denote by P(u, v ,G ) the set of paths between u and v

D. Malouche Faithfulness Assumption
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Preliminaries

Undirected graphs...Separators

In a connected graph, a separator S ⊆ V such that ∃ u 6∼G v

such that u, v 6∈ S and

∀p ∈ P(u, v ,G ), p ∩ S 6= ∅

An ∅ separates u and v iff there is no path between u and v ,

i.e., they belong to different connected components.

(A,B,S) a triplet of disjoint subset of V , S separates A and

B in G iff S separates any (u, v) ∈ A× B.

A separation statement, (A,B, S) is a triplet of pairwise

disjoint subsets. S separates A and B in G iff S is a separator

of any pair of vertices (u, v) ∈ A× B.
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Preliminaries

Graphical Models

V is a finite set

X = (Xv , v ∈ V )′ is a random vector with probability

distribution P.

G = (V ,E ) is a graph where E ⊆ V × V .

Definition

We say that P is Markov to G if(
A separation

statement read on G

)
⇒

(
Conditional independence

statement read on P

)
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Preliminaries

Basic Concept

XV ∼ P
G , C

separation

criteria

pairwise

Markov

P 7−→ G (P)

No

graphical

models

intersection

property

on P

global

Markov

nonyes
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Concentration graphical models

Concentration graphical models

X = (Xv , v ∈ V )′ ∼ P and G = (V ,E ) an undirected graph.

Definition

G is the concentration graph associated with P iff

u 6∼G v ⇐⇒ Xu ⊥⊥Xv | XV \{u,v}

where XV \{u,v} := (Xw , w 6= u and w 6= v)′.

Question :

Can we read additional conditional independence statements in the

graph G ?

D. Malouche Faithfulness Assumption
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Concentration graphical models

Concentration intersection property

Theorem (Lauritzen 1996)

Assume that

i. G is the concentration graph associated with P.

ii. P satisfies the concentration intersection property, i.e., ∀ A, B

and C ⊆ V and pairwise disjoints

XA⊥⊥XB | XC∪D and XA⊥⊥XC | XB∪D ⇒ XA⊥⊥XB∪C | XD .

(1)

Then P is concentration global Markov to G, i.e., ∀(A,B, S),

if S separates A and B in G ⇒ XA⊥⊥XB | XS . (2)
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Concentration graphical models

Example :

As {2, 5} separates {1} and

{4} then

X1⊥⊥X4 | (X2, X5).

As {2, 3, 6} separates {4, 5}
and {1} then

X1⊥⊥ (X4,X5) | (X2,X3,X6).

1

2

3 5

4

6

D. Malouche Faithfulness Assumption



Graphical models Faithfulness assumption Faithfulness assumption for Gaussian tree models

Covariance graphical models

1 Graphical models

Preliminaries

Concentration graphical models

Covariance graphical models

2 Faithfulness assumption

Definition

Implications of faithful assumption

3 Faithfulness assumption for Gaussian tree models

D. Malouche Faithfulness Assumption



Graphical models Faithfulness assumption Faithfulness assumption for Gaussian tree models

Covariance graphical models

Covariance graphical models

X = (Xv , v ∈ V )′ ∼ P and G0 = (V ,E0) an undirected graph.

Definition

G0 is the covariance graph associated with P iff

u 6∼G0 v ⇐⇒ Xu ⊥⊥Xv

where XV \{u,v} := (Xw , w 6= u and w 6= v)′.

Question :

Can we read additional conditional independence statements in the

graph G0 ?
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Covariance graphical models

Covariance intersection property

Theorem (Kauermann 1996)

Assume that

i. G0 is the covariance graph associated with P.

ii. P satisfies the covariance intersection property, i.e.,

∀ A, B, C ⊆ V and pairwise disjoints

XA⊥⊥XB and XA⊥⊥XC ⇒ XA⊥⊥XB∪C . (3)

Then P is covariance global Markov to G0, i.e., ∀(A,B,S),

if V \ (S ∪ A ∪ B) separates A and B in G0 ⇒ XA⊥⊥XB | XS .

D. Malouche Faithfulness Assumption
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Covariance graphical models

Example :

As {2, 5} = V \ ({3, 6} ∪ {1} ∪ {4})
separates {1} and {4} then

X1⊥⊥X4 | (X3, X6).

As {2, 3, 6} = V \ (∅ ∪ {1} ∪ {4, 5})
separates {4, 5} and {1} then

X1⊥⊥ (X4,X5).

1

2

3 5

4

6
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Definition

Faithfulness assumption

Definition

We say that P is faithful to G if(
A separation

statement read on G

)
⇐⇒

(
Conditional independence

statement read on P

)

Assume that G is the concentration graph and G0 is the covariance

graph associated with P.

P is concentration faithful to G if ∀ (A,B, S)

S separates A and B in G ⇐⇒ XA⊥⊥XB | XS .

P is covariance faithful to G0 if ∀ (A,B, S)

S separates A and B in G0 ⇐⇒ XA⊥⊥XB | XV \(A∪B∪S).

D. Malouche Faithfulness Assumption
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Faithfulness assumption

Definition
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Definition

Faithfulness assumption

Definition

We say that P is faithful to G if(
A separation

statement read on G

)
⇐⇒

(
Conditional independence

statement read on P

)

Assume that G is the concentration graph and G0 is the covariance

graph associated with P.

P is concentration faithful to G if ∀ (A,B, S)

S separates A and B in G ⇐⇒ XA⊥⊥XB | XS .

P is covariance faithful to G0 if ∀ (A,B, S)

S separates A and B in G0 ⇐⇒ XA⊥⊥XB | XV \(A∪B∪S).
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Implications of faithful assumption

Implication of concentration faithful assumption

Theorem (Malouche and Rajaratnam 2010a)

XV = (Xv , v ∈ V )′ ∼ P

Assume that P satisfies the concentration and the covariance

intersection properties ((1) and (3)).

Assume that P has a positive density.

G = (V ,E ) and G0 = (V ,E0) denote respectively the

concentration and the covariance graph associated with P.

If P is concentration faithful to G, then

i. all the connected components of G0 are complete.

ii. G and G0 have the same connected components.

D. Malouche Faithfulness Assumption
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Implications of faithful assumption

The proof : the concentration graph case...

if G is connected,

u 6∼G0 v ⇐⇒ Xu ⊥⊥Xv

⇐⇒ ∅ separates u and v in G

faithful assumption : impossible

if G is not connected, we have to prove : if GA is a connected

component of G then GA = G (PA) where

XA = (Xu, u ∈ A)′ ∼ PA.

Equivalently

Xu ⊥⊥Xv | XV \{u,v} ⇐⇒ Xu ⊥⊥Xv | XA\{u,v}

D. Malouche Faithfulness Assumption
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Implications of faithful assumption

Implication of covariance faithful assumption

Theorem (Malouche and Rajaratnam 2010a)

XV = (Xv , v ∈ V )′ ∼ P

Assume that P satisfies the concentration and the covariance

intersection properties ((1) and (3)).

G = (V ,E ) and G0 = (V ,E0) denote respectively the

concentration and the covariance graph associated with P.

If P is covariance faithful to G0, then

i. all the connected components of G are complete.

ii. G and G0 have the same connected components.
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Implications of faithful assumption

The proof : the covariance graph case...

if G0 is connected,

u 6∼G v ⇐⇒ Xu ⊥⊥Xv | XV \({u,v}∪∅)
⇐⇒ ∅ separates u and v in G0

faithful assumption : impossible

if G0 is not connected. W.l.o.g assume that G0 have two

connected components (G0)A and (G0)B , where A ∪ B = V

and A ∩ B = ∅.

Claim 1 u ∼G v ⇐⇒ u, v ∈ A or u, v ∈ B

Claim 2 A and B generate also two connected components in G .

D. Malouche Faithfulness Assumption
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Implications of faithful assumption

The proof : the covariance graph case...

if G0 is connected,

u 6∼G v ⇐⇒ Xu ⊥⊥Xv | XV \({u,v}∪∅)
⇐⇒ ∅ separates u and v in G0

faithful assumption : impossible

if G0 is not connected. W.l.o.g assume that G0 have two

connected components (G0)A and (G0)B , where A ∪ B = V

and A ∩ B = ∅.

Claim 1 u ∼G v ⇐⇒ u, v ∈ A or u, v ∈ B

Claim 2 A and B generate also two connected components in G .

D. Malouche Faithfulness Assumption



Graphical models Faithfulness assumption Faithfulness assumption for Gaussian tree models

Gaussian graphical Models

X = (Xv , v ∈ V )′ ∼ P = N|V |(µ,K = Σ−1), with density

f (x) =
1

(2π)|V |/2|Σ|1/2
exp

(
−1

2
(x− µ)′Σ−1(x− µ)′

)
,

K = (kuv ) precision matrix and Σ = (σuv ) Gaussian

distribution.

P satisfies concentration and covariance intersection

properties ((1) and (3)).

Concentration graph : G = (V ,E )

u 6∼G v ⇐⇒ kuv = 0.

Covariance graph associated with P : G0 = (V ,E0) defined by

u 6∼G0 v ⇐⇒ σuv = 0.

D. Malouche Faithfulness Assumption
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Undirected graphs...Trees

Definition

A graph G is called a tree if any pair of vertices (u, v) in G are

connected by exactly one path, i.e., |P(u, v ,G )| = 1 ∀ u, v ∈ V .

1 2 3 4

5 6

78

Lemma

If G is a tree, any subgraph of G induced by a subset of V is a

union of connected components, each of which are trees.
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Concentration faithful Trees

Theorem (Becker, Geiger and Meek 2005)

Assume that

i. P is a Gaussian distribution

ii. G is the concentration graph associated with P.

If G is a tree then P is concentration faithful to G.

D. Malouche Faithfulness Assumption



Graphical models Faithfulness assumption Faithfulness assumption for Gaussian tree models

Covariance faithful Trees

Theorem (Malouche and Rajaratnam 2010b)

Assume that

i. P is a Gaussian distribution

ii. G0 is the covariance graph associated with P.

If G0 is a tree then P is covariance faithful to G0.

D. Malouche Faithfulness Assumption
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Computing inverse matrices using graphs

Lemma (Brualdi and Cvetkovic 2008, Jones and West 2005)

Let K = (kuv ) and Σ = (σuv ) be d × d matrices and let

G0 = (V ,E0) be an undirected graph :

u 6∼G0 v ⇐⇒ σuv = 0.

If K = Σ−1, then ∀ (u, v) ∈ V × V

kuv =
∑

p ∈ P(u, v ,G0)

p = (u0, . . . , un)

(−1)|p|+1σu0u1σu1u2 . . . σun−1un
|Σ \ p|
|Σ|
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Example

1 2 3 4

5 6

78

G0 covariance graph of X = (X1, . . . ,X8)′

S = {4, 6} does not separate A = {1, 2},
B = {5}.
V \ (A ∪ B ∪ S) = {3, 8, 7}
Question : X{1,2}⊥⊥X{5} | X{3,8,7} ?

2 3

5

78

(G0){2,5,3,7,8} covariance graph of X{2,5,3,7,8}

k25|387 = (−1)2+1σ23 σ35
|Σ({8, 7})|

|Σ({2, 5, 3, 8, 7})|
6= 0

X2 6⊥⊥X5 | X{3,8,7} ⇒ X{1,2} 6⊥⊥X{5} | X{3,8,7}
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