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ABSTRACT

Advances in computing steadily erode computer security at its
foundation, calling for fundamental innovations to strengthen
the weakening cryptographic primitives and security protocols.
At the same time, the emergence of new computing paradigms,
such as Cloud Computing and Internet of Everything, demand
that innovations in security extend beyond their foundational
aspects, to the actual design and deployment of these primitives and
protocols while satisfying emerging design constraints such as
latency, compactness, energy efficiency, and agility. While many
alternatives have been proposed for symmetric key cryptography
and related protocols (e.g., lightweight ciphers and authenticated
encryption), the alternatives for public key cryptography are limited
to post-quantum cryptography primitives and their protocols. In
particular, lattice-based cryptography is a promising candidate,
both in terms of foundational properties, as well as its application
to traditional security problems such as key exchange, digital
signature, and encryption/decryption. We summarize trends in
lattice-based cryptographic schemes, some fundamental recent
proposals for the use of lattices in computer security, challenges for
their implementation in software and hardware, and emerging needs.
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1 INTRODUCTION

Advances in computing steadily erode computer security at its
foundation, enabling prospective attackers to use ever more powerful
computing systems and algorithms, and in turn making brute-force
attacks against cryptography progressively more practical. On one
hand there is Moore’s Law, which seems to continue inexorably, 1
making traditional computing systems more capable than ever
before. On the other hand there is the rise of alternative computing
paradigms, such as quantum computing and its algorithms [14, 23]
- an approaching reality,” which promise to further weaken the
strength of current, standardized cryptography and its applications.
As a result, the need to strengthen current practices in computer
security, including strengthening and adding variety in cryptography,
has become a widely accepted fact.

While there exist many alternatives for standardized symmetric
key cryptography and related protocols (e.g., lightweight ciphers
Thttp://www.telegraph.co.uk/technology/2017/01/05/
ces-2017-moores-law-not-dead-says-intel-boss
Zhttp://spectrum.ieee.org/tech-talk/computing/software/
rigetti-launches- fullstack- quantum- computing- service-and-quantum-ic-fab
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such as PRINCE[7] and QARMA[3]; and authenticated encryption), the
alternatives for public key cryptography are limited to post-quantum
cryptography primitives and their related protocols for key exchange,
digital signature, encryption/decryption and homomorphic schemes
[11].

Among the post-quantum cryptography candidates, lattice-
based cryptography (LBC) appears to be gaining acceptance. Its
applications are proliferating for both traditional security problems
(e.g., key exchange and digital signature), as well as emerging
security problems (e.g., homomorphic schemes). Lattice-based
cryptographic algorithms and protocols promise to tackle the
challenges posed by deployment across diverse computing platforms,
e.g., Cloud vs. Internet-of-Things (IoT) ecosystem, as well as for
diverse use cases, including the ability to perform computation
on encrypted data, providing strong foundations for protocols
based on asymmetric key cryptography against powerful attackers
(using Quantum computers and algorithms), and to offer protection
beyond the span of traditional cryptography. Indeed, lattice-based
cryptography promises to enhance security for long-lived systems,
e.g., critical infrastructures, as well as for safety-critical devices such
as smart medical implants [9]. In this paper, we summarize trends in
lattice-based cryptographic schemes, some fundamental recent
proposals for the use of lattices in computer security, challenges for
their implementation in software and hardware, and emerging needs.

2 TRENDS

At the computing platform level, we are seeing a diversity of
computing capability, ranging from high-performance (real-time)
virtualized environments, such as cloud computing resources and
software defined networks, to highly resource-constrained IoT
platforms to realize the vision of Internet of Everything. This
poses tremendous challenges in the design and implementation of
emerging cryptographic schemes, since the computing platforms
exact diverging goals and constraints.

The emergence of new computing paradigms, e.g., Quantum
computing, threatens to weaken even the strongest contemporary
cryptographic schemes. The path toward strengthening current
cryptographic schemes by increasing the key length and select-
ing domain parameters appropriately is neither a viable nor a
practical solution to the problem [8]. While doubling the key size
for symmetric key cryptography is an interim solution for non
resource-constrained devices,” Quantum computers poses a deadly
threat to the effectiveness of traditional asymmetric cryptographic
algorithms.

The cloud computing and the software defined network space
demand agility, high performance, and energy efficiency of cryp-
tography, which calls for the development of new programmable

3See NIST and NSA recommendations on Suite B Cryptography: https://www.nsa.gov/
what-we-do/information-assurance/
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accelerators capable of running not only individual cryptographic
algorithms, but full protocols efficiently, with the resulting challenge
of designing for agility, e.g., designing computing engines that
achieve the efficiency of Application-Specific Integrated Circuits
(ASICs), while retaining some level of programmability.

In the IoT space, implementations of standardized cryptography
to handle increased key sizes become too expensive in terms cost,
speed, and energy, but necessary, e.g., in the case of long lived
systems such as medical implants. This demands the development of
new and strong lightweight alternatives for both symmetric and
asymmetric primitives. Furthermore, given the variety of applications
and interplay with cloud, agility becomes another key requirement.

The examples above, to name a few, form a compelling argument
to call for innovation in the computer security space, including and
beyond the foundations, i.e., down to the actual implementation and
deployment of primitives and protocols to satisfy the emerging
business models and their design constraints - latency, compactness,
energy efficiency, tamper resistance and, more importantly, agility.

3 BACKGROUND

A lattice is defined as a countable set of points in a n-dimensional
Euclidean space with a periodic structure [20, 22]. Let by, ba,..., bn
€ R™ be a set of linearly independent vectors; and let us define
B as the m X n matrix in which i*" column is b; vector such
that B = [b1, by, ..., by]. Thus, a lattice L is the set of all integer
combinations that is generated by the basis B (with integer or
rational entries), that is:

n
L(B)={Bx:xeZ"} = {inbi tx;€ZM1<i< n}
i=1

Given basis B in a lattice, the shortest nonzero vector problem (SVP)
in £L(B) is defined as the problem of finding vector v € L(B)\{0}}
such that ||v|| = A1(£L(B)) *. The output of the SVP problem is the
shortest non zero vector. The Closest Vector Problem (CVP) is the
inhomogeneous version of the SVP in lattices.

One of the results by Gauss proves that there is a reduced basis
for every lattice by which solving CVP is not complex. Otherwise,
CVP is hard to solve with any arbitrary basis of the lattice[10]. In
applications of lattices to public key cryptography, the private key
is a reduced basis of the lattice, whereas a public key is another
non-reduced basis. For encryption, the plain text which is a lattice
point (v € L) is perturbed with small error e in a way that the result
is not a lattice point (w = v + e ¢ L). Finding the original text v,
decryption, is done by solving CVP using the reduced basis, i.e., the
private key. In digital signature, the message (w) is a point that does
not belong to the lattice (w ¢ £). Signer uses the reduced basis
to compute the closest point in the lattice (v) to the message (w)
and sends that lattice point as the signature. Verifier checks if the
signature (v) is a lattice point which can be done by any basis, i.e.,
with the public key.

It is conjectured there is no polynomial time algorithm that can
approximate lattice problems used in computer security, such as
SVP, CVP [16]. The mentioned conjecture is the basis for security of
lattice-based cryptography schemes. The seminal work of Ajtai
[1] provides confidence for the adoption of lattice based schemes
in cryptography. He proves that solving some NP-hard lattice
problems, e.g., SVP, in average-case is as hard as solving them in the

“Where || . || is the Euclidean norm in R™, and A;( L) is the first successive minimum.
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worst case assumption. There is a close relationship between lattice
hard problems (like CVP and SVP) and two common average-case
lattice-based problems: Learning With Error (LWE); the Shortest
Integer Solution (SIS); and their variant on rings Ring-LWE and
Ring-SIS. For LWE, As + e = b where A is a n X n matrix and s and e
are the secret and a small error respectively, the goal is to recover s
from (A, b). Equivalently, the lattice point As is perturbed by a small
error vector e and the result is b = As + e ¢ L. Recovering e and s is
equivalent to solving an average case CVP.

Large key size and inefficient matrix-vector/matrix-matrix arith-
metic of standard lattices are motivating reasons to adopt a more
efficient alternative in cryptography, i.e., ideal lattices. An Ideal lattice
is defined over a ring R = Z4[x]/(f(x)), where R contains all the
polynomials with modulo g integer coefficients. In an n-dimensional
lattice, a standard lattice is represented by n vectors, while for ideal
lattices 1 vector (polynomial) suffices and n — 1 remaining vectors are
simply built by applying simple operations (shift and negate) of that
single vector. The algebraic structure of ideal lattices not only allows
for fast arithmetic, e.g., by employing Fast Fourier Transforms, but
also allows a reduction in the memory footprint by factor of n. For
LWE, (assume As + e = b) in order to generate 1 extra pseudo-random
number, i.e., one element of b, n random numbers (one row of A)
should participate in dot product with the secret s. In Ring-LWE, n
pseudo-random numbers can be produced by performing polynomial
multiplication of same number of random numbers (one row of A)
with secret s.

4 IMPLEMENTATION CHALLENGES

The community strives to achieve efficient and secure implementa-
tions of lattice-based schemes, to map such schemes on a range of
applications from resource constrained devices in the embedded
system world to resourceful platforms in the server and cloud
world. In terms of the mechanics of the computation, a lattice-based
implementation involves modulo arithmetic on big numbers and the
extraction of the random term. Optimizations to modulo arithmetic
computation can be induced by the algebraic structure of the ideal
lattices which provides fast arithmetic by performing arithmetic
computations on numbers in Number-Theoretic Transform (NTT)
format which is highly efficient, with a time complexity of O(nlogn)
[17]. Standard lattice-based schemes are more amenable to arith-
metic computations performed as matrix-to-matrix/vector, with
time complexity of O(n?) for multiplication, which is much more
expensive in terms of memory and runtime. Another component of a
lattice-based scheme is extraction of the random term, which is
usually implemented with a discrete noise sampler (herein after
"sampler"). The drawing of the random term from a discrete dis-
tribution, e.g., the Gaussian distribution, can be implemented via
rejection [25], inversion [19], Ziggurat [5], or Knuth-Yao sampling
[13]. Distributions with moderate standard deviation are used for key
exchange and public key encryption, and small standard deviation
for digital signature to achieve compact and secure signatures.

Implementations in software are customized to map on wide
vector extensions, which are ubiquitous in general purpose and many
embedded processors, e.g., Intel and ARM-based processors. Practical
software implementations of standard lattices for encryption [12]
and key exchange [4] have been published recently.

Sampling from a perfect error distribution is impractical (in
terms of memory and computation) in either hardware or software
due to the infinite long tails. Consequently, an approximation of
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the perfect distribution with finite tails and negligible statistical
difference to the perfect distribution is employed in sampling. Larger
distribution tails culminate in more security assurance with the cost
of higher memory footprint. The design choices of these lattice-based
schemes is customized for their use in computer security. The
design of key exchange mechanisms, such as Newhope [2] can
tolerate a less accurate sampler to draw the random terms, instead of
traditional high precision Gaussian sampler with some guarantee of
security. Newhope uses a bi-modal sampler which offers speed and an
appropriate level of security for the implementation. Indeed, Alkim et
al. [2] used a less precise binomial sampler inside their key-exchange
protocol which is easier to implement in either hardware or software
and also protect against timing attacks.

For digital signature schemes the precision of the sampler cannot
not be traded for efficiency. Digital signature consists of three steps
including key generation (secret key (sk) for signer and public key
(pk) for verifier), Signgg, and Verify .. Signer applies the encryption
algorithm on input message M as S = Sign (M, sksigner) and
sends (M,S) to the verifier who applies Verify, (M.S) to check
validity of the signature. The Bimodal Lattice Signature Scheme
(BLISS) [6], whose security is based on Ring-SIS, has been gaining
attention because its efficiency compares to RSA and Elliptic Curve
Digital Signature (ECDSA). For security level above 128-bits, software
implementation of BLISS [6] achieves an order of magnitude better
runtime compared to RSA with almost the same signature size (5kb)
with 0.5% secret key (2kb) and 1.75% larger public key size (7kb). For
the same security level, hardware implementations of BLISS is about
an order of magnitude faster than RSA (Sign) and ECDSA (Sign and
Verify) implementations with lower resource usage [21].

To address limitations in resource constrained devices, it is
common practice to trade off memory footprint with security
assurance, which improves both efficiency and memory consumption
[12]. However, this limits the applicability of the implementation to
different scenarios.

Another trade-off of security for resources can be done at a higher
level in choosing ideal lattices over standard lattice. When imple-
mented, standard lattice-based cryptography (LBC), e.g., LWE-based,
schemes exhibit a relatively large memory footprint due to large key
size (hundreds of kilobyte for public key), which makes implementa-
tions of standard LWE-based schemes impractical on constrained
devices. The adoption of specific ring structures, e.g., Ring-LWE,
offers key size reduction by a factor of n compared to Standard
LWE. [15], making Ring-LWE an excellent candidate for resource
constrained devices, such as Wi-Fi capable devices, including medical
implants. For example, a Ring-LWE key exchange parameter set of
(n = 512, g = 25601) results in security level of 128-bit with public
key size of 7680 bits, while (n = 1024, ¢ = 14336) achieves 256-bit
security with public key size of 16384 bits [24]. However, a smaller
modulus q results in faster, more secure (due to increase of error
term impact) and lower memory and bandwidth overhead with the
cost of higher failure probability.

Implementations in hardware are customarily emulated on FPGA
platforms, which provide flexibility and customization, but not the
agility of programmability to match the expected highly variable
demand for computer security in virtualized environments. Pro-
grammability is another important design choice which can be
provided at different layers, e.g., to program for different sampler
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complexity. Implementation of lattice-based schemes as applica-
tion specific integrated circuits (ASICs) offer the best energy and
performance at the expense of agility [18].

5 NEEDS

Lattice-based cryptographic algorithms and protocols promise to
tackle the challenges posed by deployment across diverse computing
platforms, as well as for diverse use cases within reasonable security,
performance and energy efficiency guarantees.

Numerous schemes and implementations tackle different trade-
offs, such as memory footprint, security, performance, and energy,
are mapped on a variety of platforms and are applicable to specific
use cases. However, current designs are still deficient in addressing
the need for agility, which is paramount to tackle the needs of
emerging business models at the computing platform level. In
addition, securing such platforms against physical attacks is a topic
that needs to be researched.
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