## PSI AP Physics C – Work and Energy

### (With Calculus)

### **Multiple Choice Questions**

| 1. | An object moves according to the function $x = t^{7/2}$ where x is the distance traveled and t |                      |                    |                      |                    |       |    |           |    |  |
|----|------------------------------------------------------------------------------------------------|----------------------|--------------------|----------------------|--------------------|-------|----|-----------|----|--|
|    | is the time                                                                                    | e. Its kinetic       | energy is          | proportion           | al to:             | dx 7+ | 52 | YE = V2   |    |  |
|    | (A) $t^{5/2}$                                                                                  | (B) t <sup>7/2</sup> | (C) t <sup>5</sup> | (D) t <sup>3/2</sup> | (E) t <sup>7</sup> | dt=2  |    | KEZ (=) = | ES |  |

2. Which of the following best describes the relationship between force and potential energy?

F = - du (A) Force is the anti-derivative of potential energy.

(B) Force is the negative gradient of potential energy.

(C) Potential energy is the negative gradient of force.

(D) Potential energy is the derivative of force.

(E) Force is the anti-derivative of potential energy.

3. A 5-kilogram ball moves in the x direction where x represents the ball's position. The potential energy U of the ball in Joules is given as a function:  $U(x) = 4x^2 - 3x + 2$ . The force on the particle at x = 4 m is:

(A) 29 N in -x direction (B) 29N in +x direction

(C) 108 N in -x direction

(D) 45 N in -x direction

(E) 108 N in +x direction

$$F = -dv = -[8 \times -3]$$
  
 $dx = 8(4) + 3 = -295$ 

4. A student pushes a box across a rough, flat surface at a constant speed v. The box has a

mass m, and the coefficient the person to the box is

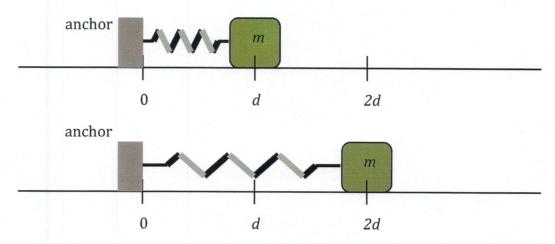
(A) 0 (B)  $\mu$ mg/v (C)  $\mu$ v/mg (D) mg/ $\mu$ v (E) $\mu$ c.

5. The force exerted by a spring is given by:  $F = \frac{kx^4}{2}$ . If k is 100 N/m, find the work done by the spring on a mass from x = 0 m to x = 2 m.

(D) 1600 J (E) 2400 J  $\mu$  Solution work is done to the person to the box is  $\mu$ c.

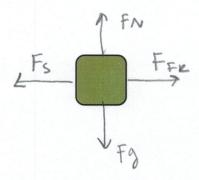
(E) 2400 J  $\mu$ c.

by the weight lifter on the mass?


(A) mgt

(B) zero

(D) mgh/t (E) mgt/h


| 7.  | A spring force is given by the formula $F = 20x - 12x^2$ , where F is in N and x is in m. What is the change in potential energy when the spring is stretched 3 m from its equilibrium position?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | position?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.  | A ball attached to a string rotates in a complete circle at a constant speed. The work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | done during each revolution is: (A) (B) U (C) U+Ke (D) Ke (E) Ke-U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10  | The potential energy of two molecules is given by: $U = \frac{2}{r^7} - \frac{4}{r^5}$ . If r is the distance between two molecules what is the force acting on the particles if r=1 m?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | (A) 0.75 N (B) 0.67 N (C) 2 N (D) -6 N -8 (E) 10 N -6 $F = \frac{14}{78} - \frac{30}{76}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11  | . A force of 40 N compresses a spring with a spring constant 80 N/m. How much energy is stored in the spring? $40 = 80 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | (A) $10J$ (B) $15J$ (C) $20J$ (D) $25J$ (E) $30J$ $X = .5m$ $E = \frac{1}{2} (8D) (.5)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12  | . What is the power delivered by gravity to a 6 kg block 4 s after it has fallen from rest?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (   | (A) 2400 W (B) 1000 W (C) 800 W (D) 1200 W (E) 2000 W $P = F \cdot V$ $P = (6) (40) = V_2 = 0 + (6) (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13. | . If $F(x) = 8x^3-3x^2$ what is the work done from $x = 1$ m to $x = 2$ m? $\begin{pmatrix} 2 & 3 & 3 & 2 & -40 \\ 3 & 3 & 3 & 2 & -40 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | (A) 0.5 J (B) 0.8 J (C) 2 J (D) 12 J (E) 23 J $\begin{bmatrix} 2 \times 4 - \times 3 \end{bmatrix}$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14. | A 2 kg block is pushed horizontally across a rough surface with a coefficient of kinetic friction of 0.2, at a constant speed of 4 m/s, by a force F. The work that is done by the force in 5 s is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | (A) 20 J (B) 40 J (C) 60 J (D) 80 J (E) 100 J $X = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} (5) = \{4\} $ |
|     | 마는 게임 100 km : [1] [1] 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### Part II. Free Response



6. A block of mass m rests on a rough surface, and has a light spring of spring constant k and unstretched length d attached to one side as shown, with the other end of the spring attached to an anchor. There is a static coefficient of friction  $\mu_s$  between the surface and the block, and when the block is placed to the right at position 2d, it remains stationary on the surface. Express answers in terms of m, k, d, and fundamental constants.

a. Draw a free-body diagram of the block at the time when it is located at position 2d.



b. Determine the friction force acting on the block when it is located at position 2d.

## Work, Energy, Conservation of Energy



- c. The block is now moved to position 3d and released, where it remains at rest. When the block is moved slightly past this position, the block begins to slide along the surface with a kinetic coefficient of friction  $\mu_k$ .
  - i. In terms of the variables given, what is the value of  $\mu_s$ ?

$$mgN_s = aKd$$

$$N_s = aKd$$

$$mg$$

ii. How much potential energy is stored in the mass-spring system just before the block begins to move?

iii. The block slides a total distance of d before coming to a halt again. Determine the coefficient of kinetic friction  $\mu_k$ .

$$KE_1 + U_1 + WNC = KE_2 + U_2$$

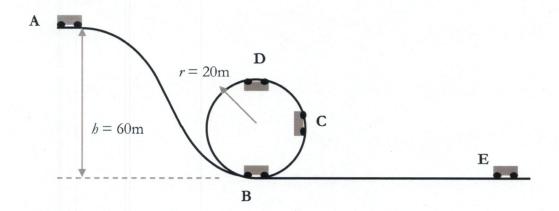
$$O + \frac{1}{2}K(2d)^2 + mgNd = O + \frac{1}{2}Kd^2$$

$$2Kd^2 - mgNd = \frac{1}{2}Kd^2$$

$$-mgNd = -\frac{3}{2}Kd^2$$

$$N_{\chi} = \frac{3!Kd}{2mg}$$

iv. At what position does the block have its maximum velocity as it slides?


Where 
$$\frac{dv}{dt}$$
 or acceleration = 0

$$F_S = F_{FR} \quad \text{where } a = 0$$

$$mg \, N_K = K \times \times \times = \frac{3}{2} \, d$$

$$\frac{3 \, Kd}{2 \, mg} = K \times \times \times = \frac{3}{2} \, d$$

v. What is the maximum velocity of the block as it slides?

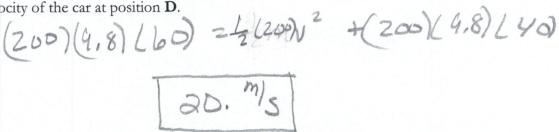


7. A roller coaster car of mass m = 200 kg is released from rest at the top of a 60 m high hill (position **A**), and rolls with negligible friction down the hill, through a circular loop of radius 20 m (positions **B**, **C**, and **D**), and along a horizontal track (to position **E**).

a. What is the velocity of the car at position B?

V= 34m/s

b. Determine the velocity of the car at position C.


$$200 (9.8)(60) = \frac{1}{2}240 V^2 + 260(4.8)(20)$$

c. Draw a free-body diagram of the car at position C.



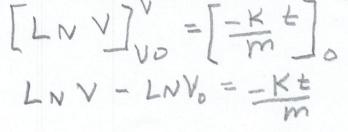
# Work, Energy, Conservation of Energy

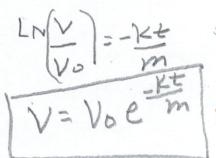
d. Determine the velocity of the car at position D.



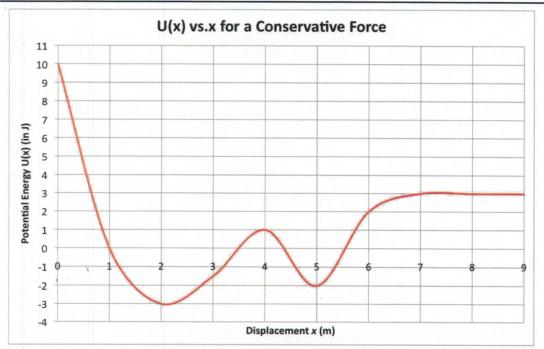
e. Determine the force (magnitude and direction) of the track on the car at position **D**.

$$f_{c} = \frac{(200)(20)^{2}}{30} = 4000N$$


$$f_{g} = \frac{(200)(9.8)}{2000} = 1960$$


$$f_{TR} = \frac{4000 - 1960}{2040N}$$

- f. After completing the loop, the rollercoaster car is travelling horizontally at velocity  $v_0$  and subjected to a braking force  $F_{braking} = -kv$ , where k is a constant, v is the instantaneous velocity of the car, and time t is the amount of time that the braking force has been applied.
  - i. Develop a definite integral—expressed in terms of initial velocity  $v_0$ , k, m, and time t—that could be used to evaluate the velocity of the car along the horizontal track.


$$m = -KV \qquad \int_{V_0}^{t} \frac{dV}{dt} = \int_{V_0}^{t} \frac{Kdt}{m}$$

ii. Solve the integral to determine an equation that could be used to calculate the horizontal velocity of the car as a function of initial velocity  $v_0$ , k, m, and time t.



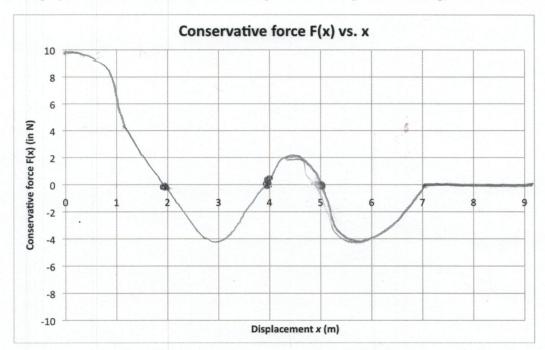


# Work, Energy, Conservation of Energy



- 8. A conservative force acts in the x-direction on a particle of mass m = 2.0 kg to produce a potential energy curve as shown above.
  - a. A particle is released from rest at the 0.5 meter position.
    - i. What is the potential energy of the particle at this position?

iii. Describe the point on the U curve at x = 4m briefly, and what happens when the released particle reaches this position.


U(4) = 15 and has a net force equal to zero since the slope is equal to zero. The mass will leep moving Slike IT has 45 OF KE.

iv. Does the released particle reach x = 7 m? If not, explain why not. If so, describe the particle's behavior. IT Can Reach This point since  $U_0 = 35$ 

b. A second particle, also of mass m, is released from rest at x = 8 m. Briefly describe the behavior of this particle.

This particle will have no acceleration and will Remain at Rest Since the Force = ON

c. Sketch a graph of the conservative force that produces this potential energy curve.

