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The results have agreed with our initial hypothesis. 
The coefficient matrices (Figures 4–7) revealed spe-
cific patterns demonstrating TN-specific diffusivity 
changes in the cistern and MS-TN-specific changes in 
the peri-lesional regions. In the TN REZ, FA changes 
are similar to the results found by DeSouza et al.,31  
where the FA of the TN(+; pain-affected side) CN V is 
lower than that of TN(–; non-affected side). 
Additionally, while RD and MD changes in the TN 
REZ showed significant differences, no AD differ-
ences in the REZ were detected, suggesting that the 
nature of the diffusivity changes may be due to demy-
elination of the central myelin within the REZ. 
Interestingly, the cisternal TN(+) FA is demonstrably 
higher than the TN(–) segment, and also the cisternal 
FA of all other groups, suggesting that cisternal and 
REZ FA changes in TN are not homogenous along the 
nerve segment. Although there has been reports of 
hyperintensities in the cisternal CN V T1 image with 
gadolinium contrast in MS,38 the lack of MS cistern 
findings in this study may be due to the limit of the 
sampled MS population. MS plaque locations are 
highly variable, and MS-TN patients were not filtered 
specifically for cistern region plaques.

Diffusivity disruptions of CN V in MS-TN patients 
are likely due to MS plaques at the regions proximal 
to the main sensory nucleus. While AD has been asso-
ciated with neurological disruptions in MS,18,26 the 
present study showed a lack of change in AD. This 
may relate to the observation that we did not select 
subjects based on their disease severity, but based on 
their pain. Disease severity was in fact variable in this 
group. Future studies will be able to address this point 
in more detail, by taking into account other MS mani-
festations in addition to pain, and correlation with dif-
fusion metrics. Lower REZ FA in MS-TN compared 
to controls suggests that global neural tissue diffusiv-
ity in MS-TN is significantly different from that of 
healthy controls. Similar findings can be seen in the 
pontine region, where only the MS-TN AD measures 
are distinctly different from the other groups. 
However, while AD is commonly correlated with 
axonal integrity, the high concentration of crossing 
fibers in the pontine region may introduce confounds 
into these correlations. Improvements in diffusivity 
metric measurements in such tissues are needed to 
further understand these findings.

Limitations and future directions
The study aimed to demonstrate that diffusion MRI 
can detect localized CN V differences in MS-TN, and 
to evaluate the feasibility of this novel approach in a 
group of patients. Therefore we did not explore the 

course of MS disease progression and other details in 
the MS-TN patient group in this study. However, it 
has demonstrated that by utilizing MTT to not only 
visualize, but also to assist in nerve segmentation and 
statistical analysis, more complete insights into the 
changes of white matter anatomy can be gained.  
We have found that peripheral CN V does not change 
homogeneously in pathology. Other white matter 
pathways are also likely to be differentially affected 
in varying segments in other pathological states such 
as MS.

With this approach, future longitudinal studies may 
reveal more about white matter changes and associ-
ated pain, cognitive, and motor-related measures 
across the disease’s progression. Moreover, this strat-
egy may allow for pre- and post-treatment predictions 
in white matter changes, ultimately aiding in clinical 
prognostication and the identification of high-risk 
subjects. Therefore, this study paves the way for a 
more systematic approach to the understanding of 
pain and white matter anatomy using non-invasive 
neuroimaging techniques.

Conclusion
The study demonstrates that MS-TN and TN have dif-
ferentially localized pathophysiology at the level of CN 
V in the brainstem. MS plaques disrupt the diffusivity 
of brainstem CN V fibers near the CN V nucleus, while 
TN diffusivity disruptions are focused on the cistern 
and REZ segments. The regions affected by MS and 
TN REZ suggest changes in myelination of the affected 
CN V segment. Using this imaging technique, TN and 
MS-TN can be distinguished by unique localized dif-
fusivity changes in the different CN V segments.
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