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is implicated in the pathophysiology of anorexia nervosa.

Objectives: We examined whether those with treatment refractory anorexia nervosa undergoing deep
brain stimulation (DBS) of the subcallosal white matter (SCC) show: 1) altered anatomical SCC con-
nectivity compared to healthy controls, 2) white matter microstructural changes, and 3) microstructural
changes associated with clinically-measured affect.

geijf/f‘;v;gis'tensor imaging Methods: Diffusion magnetic resonance imaging (dMRI) and deterministic multi-tensor tractography
DTI were used to compare anatomical connectivity and microstructure in SCC-associated white matter tracts.
Eating disorder Eight women with treatment-refractory anorexia nervosa were compared to 8 age- and sex-matched
Mood disorder healthy controls. Anorexia nervosa patients also completed affect-related clinical assessments presur-
Fractional anisotropy gically and 12 months post-surgery.

Deep brain stimulation Results: 1) Higher (e.g. left parieto-occipital cortices) and lower (e.g. thalamus) connectivity in those with

anorexia nervosa compared to controls. 2) Decreases in fractional anisotropy, and alterations in axial and
radial diffusivities, in the left fornix crus, anterior limb of the internal capsule (ALIC), right anterior
cingulum and left inferior fronto-occipital fasciculus. 3) Correlations between dMRI metrics and clinical
assessments, such as low pre-surgical left fornix and right ALIC fractional anisotropy being related to
post-DBS improvements in quality-of-life and depressive symptoms, respectively.
Conclusions: We identified widely-distributed differences in SCC connectivity in anorexia nervosa pa-
tients consistent with heterogenous clinical disruptions, although these results should be considered
with caution given the low number of subjects. Future studies should further explore the use of affect-
related connectivity and behavioral assessments to assist with DBS target selection and treatment
outcome.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Anorexia nervosa is a challenging and heterogenous disorder
with the highest mortality rate of any psychiatric disease [1,2].
Characterized by a relentless pursuit of thinness and distorted body
perceptions, anorexia nervosa’s psychological impairments and
psychiatric comorbidities pose the greatest treatment challenge.
Although some treatments are available, few psycho- and phar-
macotherapeutic options are effective and enduring [3,4]. As a
result, an estimated one-third to a half of anorexia nervosa patients
are refractory to currently available treatments, resulting in high
rates of relapse, illness chronicity, and risk of mortality [5].

Brain imaging has contributed significantly to our understand-
ing of the neural correlates of the cardinal features of anorexia
nervosa, including affective disturbances. Studies have identified a
network of key regions linked to affective processing that function
differently in anorexia nervosa compared to healthy people [G]. For
example, those with anorexia nervosa have lower baseline activity
in the bilateral parietal and prefrontal cortices, specifically in
anterior cingulate and subcallosal cingulate cortices [7,8]. Anterior
cingulate activity also increases in response to food-related stimuli
in anorexia nervosa relative to controls [9,10]. Other studies have
shown that the dysregulated anorexia nervosa network also in-
cludes the thalamus, insula, amygdala, hippocampus, and striatum
[7,8,11—14]. These results underscore the importance of affective
brain processing in the symptomology of anorexia nervosa, and
suggest that affective regulation and disturbances play a key role in
the maintenance of symptoms [6].

Our group has investigated the use of deep brain stimulation
(DBS) in patients with chronic, treatment-resistant, anorexia nerv-
osa [15]. Subcallosal cingulate white matter (SCC) was chosen as the
DBS target given its role in affective regulation as well as anatomic
and physiologic links to important emotion and reward processing
[15—18], as well as abnormal serotonin receptor binding in people
with eating disorders [19,20]. Furthermore, the SCC is a widely-
connected hub that contains appetitive- and aversive-responsive
cells projecting to anorexia nervosa-affected regions, such as areas
of the prefrontal, parietal and temporal cortices, insula, striatum and
amygdala [6,21—-23]. Despite these findings, little is known about the
structural white matter abnormalities in anorexia nervosa related to
such functional and clinical abnormalities.

The present study used deterministic multi-tensor tractography
(MTT) and a region-of-interest (ROI) approach to investigate the
hypotheses that: 1) the SCC has differential connectivity in those
with anorexia nervosa compared to healthy controls; 2) areas along
the identified white matter tracts have altered diffusion magnetic
resonance imaging (dMRI) metrics, such as changes in fractional
anisotropy (FA), axial (AD) and radial (RD) diffusivity and 3) these
abnormalities correlate to clinically-measured affective dysfunction
in anorexia nervosa. We chose the MTT approach over others

because multiple tensors improve the detection of fibers that are
dense, highly crossing or angled, and/or travel over long distances
[24—26]. Although considered cautiously in light of a low sample
size, our findings help identify broad underlying changes in white
matter microstructure associated with the heterogenous clinical
profile of anorexia nervosa.

Material and methods
Participants

This study included eight female patients with treatment-
refractory anorexia nervosa (mean age: 35 + 11 years), age-matched
to eight female healthy controls (CN; 36 + 9 years). Participants
were identified by centers within the University Health Network
(Toronto, Canada). Patients were referred through the eating disor-
ders programme at Toronto General Hospital, and healthy partici-
pants recruited from advertisements in the Toronto Western Hospital.
Selected patients underwent implantation of bilateral electrodes in
the SCC. Ethics approval was granted by the University Health
Network Research Ethics Board and all subjects gave their informed
written consent. Inclusion and exclusion criteria have been detailed
elsewhere [15] and can be found in Supplementary Methods. Patient
demographic information is in Table 1.

Magnetic resonance acquisition and preprocessing of diffusion
weighted images

MR images were acquired using an 8-channel phased-array
head coil on a GE Signa HDxt 3T scanner (GE Healthcare, WI,
USA). Diffusion-weighted images were acquired using 60 non-
collinear directions over a 12 min period with a dual-spin echo
planar sequence, to reduce eddy-current distortions, using the
Array Spatial Sensitivity Encoding Technique (ASSET) factor of 2 and
the following parameters: 0.94 x 0.94 x 3.0 mm voxels, 128 x 128
matrix, FOV = 24 cm, TE = 86.4 ms, TR = 12 s, b = 1000 s/mmz.
Anatomical T1-weighted axial images were acquired with a 3D
Fast Spoiled Gradient Echo sequence (see full parameters in
Supplementary Methods).

Scans underwent preprocessing and registration using the FSL
v 5.0 (FMRIB Software Library, http://fmrib.ox.ac.uk/fsl) [27] and
3D Slicer v 4.3.1 (NA-MIC®, http://www.slicer.org) [28] suite of
brain imaging analysis tools in a Linux environment. Diffusion-
weighted scans were motion- and eddy-current corrected in FSL
and imported to 3D Slicer for T1 to diffusion-weighted baseline
linear registration and visualization, tensor estimation and the
creation of scalar maps for fractional anisotropy (FA), axial diffu-
sivity (AD), and radial diffusivity (RD) at the individual level.

Table 1
AN patient demographic data.
Patient Age at Age at Duration Lowest Highest Comorbidities Medications
number surgery Onset of illness lifetime lifetime
BMI BMI
A01 24 14 10 9.6 473 AN, MDD, Anxiety Zoloft, Seroquel, Cytomel, Lactulose, Colace, Co Pantoprozole
A02 39 18 21 123 21 AN-BP, MDD, Imovane, Clonazepam, Quetiapine, Pantoloc, Domperidone, Sertraline, Lactulose,
PTSD, OCD Colace, K-Dur, Tobramycin, Acetaminophin, Advil Cold & Sinus, Laxatives
A03 35 20 15 133 233 AN, MDD, PTSD  Celexa
A04 40 30 10 133 30 AN, MDD, PTSD Quetiapine, Fluoxetine, Pantoloc, Domperidone maleate, Docusate sodium, Nabilone,
Diclofenac sodium, Lithium carbonate, Lactulose
AO5 35 16 19 133 213 AN-BP, MDD, Fluoxetine, Gabapentin, Quetiapine, Acetaminophen, Docusate, Indian psyllium husks,
PTSD, GAD Calcium, Vitamin D
A06 57 30 27 13.7 194 AN Iron, Calcium, Vitamin D
A07 21 12 9 11.2 20.6 AN-R, MDD, GAD, Quetiapine, Trazodone, Venlafaxine, Maalox, Ibrupofen, Lactulose, Lactaid
OCD traits, BPD
A08 32 13 19 129 215 AN-BP, MDD, PTSD Venlafaxine, Seroquel, Trazodone, Zopiclone, Docusate Sodium, Lactulose
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As recommended by others [29], we corrected the b-matrices with
finite strain correction by averaging the rotational component
of the gradient affine transforms and then applied these to the
original b-matrices.

Multi-tensor tractography (MTT) using subcallosal cingulate (SCC)
region-of-interest (ROI)

The eXtended Streamline Tractography, or XST, algorithm was
used for whole-brain deterministic multi-tensor tractography
(MTT) implemented in 3D Slicer software [26]. The deterministic
MTT approach was chosen over others to improve the detection of
fibers that are dense, crossing, highly angled, and/or travel over
long distances [24—26]. Moreover, we were interested in whole-
brain connectivity to the SCC region and Khalsa et al. (2013)
recently showed that probabilistic tractography is inferior to
deterministic MTT in reconstructing longer pathways. MTT maps
were generated using a ROI that included the middle two of a four-
contact electrode and contained the active contact (model 3387,
Medtronic, Minneapolis, MN, USA). The patients’ co-registered
post-surgical T1 image was used to draw bilateral SCC ROIs
(located in the white matter below the genu of the corpus callosum)
in pre-surgical FA map space. This was achieved by co-registering
the post-surgical T1 image to the already FA-transformed pre-sur-
gical T1 image. SCC ROIs in healthy subjects were anatomically
matched to the patient’s (see Fig. 1, left panel). Bilateral whole-tract
and SCC ROI measures of FA, AD, and RD were compared statisti-
cally by Analysis of Variance (ANOVA), performed in SPSS 17.0
statistical software (SPSS, Chicago, IL, USA). Individual MTT models
(see Fig. 1, right panel) from patient and healthy groups were
combined, to create binarised and non-binarised group maps,
similar to that noted in a previous study of major depressive
disorder [30]. See Supplementary Methods for additional
parameters.
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ROI analysis along MTT maps

ROIs were selected based on MTT group map connectivity pat-
terns (Fig. 2A). Chosen ROIs were in areas showing indices of higher,
lower, and similar connectivity strength in anorexia nervosa sub-
jects compared to controls, on at least one side of the brain (Fig. 2B).
The following three groups of ROIs were selected: 1) increased
connectivity ROIs (anorexia nervosa greater than control subjects:
AN > CN) in the fornix crus, junction of the posterior thalamic ra-
diation/superior longitudinal fasciculus (PTR/SLF), and corpus cal-
losum splenium (CC Splen); 2) decreased connectivity ROIs
(AN < CN)in the anterior limb of the internal capsule (ALIC), anterior
cingulum (Ant Cing), and inferior fronto-occipital fasciculus (IFO); 3)
two control ROIs located in regions with apparent overlapping
connectivity (AN N CN) in the posterior cingulum (Post Cing) and
corpus callosum genu (CC Genu). A single CC Genu ROI was selected
along the midline, given the absence of asymmetry in the MTT maps.
dMRI metrics (i.e. FA, AD, RD) were extracted from each ROI, and
repeated measures ANOVAs (side x dMRI metric), with group as a
between-group measure, followed by appropriate post-hoc tests,
were performed. Briefly, 8 repeated measures ANOVAs (side x dMRI
metric), with group as a between-group measure, were used for each
ROI to test within- and between-group differences. Main
(side x dMRI metric x group; SDG) and subordinate interaction
terms were considered (i.e. side x dMRI, SD; side x group, SG;
dMRI x group, DG). Significant interaction results were followed
with appropriate post-hoc t-tests, and paired-samples t-tests were
used to investigate within-subject side differences.

Clinical assessment and exploratory dMRI-clinical correlation
analysis

Patients underwent psychometric assessments at baseline, prior
to surgery, and post-surgery at 1, 3, 6, and 12 months (only scores at

10149}S0d

Figure 1. Placement of SCC electrode/seed and individual MTT map. Left panel: Sample SCC seed placement. Individual T1 anatomical images following surgery were used to locate
the site of the electrode (MNI coordinates: 12, 24, -10) and to place the SCC seed in dMRI space (always in a cross-shaped pattern at the mid-electrode level using 24 voxels, with a
volume of 63 mm?>). Right panel: Sample individual multi-tensor tractography map for one subject with anorexia nervosa.
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Figure 2. A: Group MTT connectivity pattern maps in AN and healthy controls. B: Group MTT connectivity strength maps in AN and healthy controls. A: Connectivity pattern multi-
tensor tractography maps at the group level reveals connectivity which appears unique to anorexia nervosa (AN > CN; red) or healthy controls (CN > AN; green), implying an increase
and decrease in SCC connectivity in anorexia nervosa, respectively, relative to controls. Apparently overlapping connectivity (AN N CN; blue) between groups is also noted - though
given the spatial limitations of such data, it is important to note that this overlap does not necessarily imply similar connectivity. These maps are a spatial illustration of apparent
connectivity from the SCC seed at the group level, following the smoothing (1mm kernel), binarisation, and MNI space registration of individual deterministic MTT maps. B: Connectivity
strength group MTT maps emphasise findings from the connectivity pattern data, but also suggest increased connectivity to the medial prefrontal and left parieto-occipital cortices in
anorexia nervosa, and lower connectivity in thalamus. These results are supported further at the individual level (see Table 2). The color bar reflects the relative % difference or overlap
(i.e. relative strength of connectivity) of voxels based on the subtraction (i.e. AN > CN; CN > AN) or addition (AN N CN) of smoothed, non-binarised, and MNI space registered group tract

models (see Materials and Methods for details).

12 months and percent changes, from O to 12 months, are consid-
ered here). Assessments included: HAMD [31], BDI [32], BAI [33],
YBOCS [34], YBC-EDS (including subscales for ritualistic behaviors
and preoccupations related to food) [35] and QOL [36]. Given the a
priori hypothesis that structural differences in white matter may be
related to the affective disruptions noted in anorexia nervosa [6],
we correlated significant findings in ROl dMRI metrics with clinical
scores, using Pearson partial correlation analysis with brain volume
and BMI at the time of surgery as regressors-of-no-interest. Indi-
vidual brain volumes were estimated in 3D Slicer as the combined
volume of gray and white matter masks. Given the exploratory
nature of such correlations, due to our low sample size, we did not
correct for multiple comparisons.

Results

Multi-tensor tractography (MTT) maps show differential patterns of
connectivity in anorexia nervosa vs. control subjects

Deterministic MTT group maps identified differential structural
connectivity patterns and strengths from the SCC seed region in
healthy controls (CN) and patients with anorexia nervosa (Fig. 2).
Connectivity to common regions, identified by the conjunction of
each map (AN N CN), included: prefrontal (PFC), bilateral temporal,
left mid and posterior cingulate, and occipital cortices, and ventral
striatum (Fig. 2A). Anorexia nervosa-selective regions (AN > CN)
included: left occipital, parietal and dorsolateral prefrontal cortices,
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and left cerebellum. Anorexia nervosa-selective extensions also
noted were: bilateral orbitofrontal, right dorsomedial prefrontal
and left cingulate cortices (lateral to area noted above). Regions
noted in the healthy control group (CN > AN) included: thalamus,
mid and anterior cingulate, and left anterior temporal cortices, with
extensions in bilateral ventrolateral PFC, left medial occipital, right
anterior insular and midcingulate cortices.

Non-binarised MTT maps (Fig. 2B) suggested that connectivity
within the medial PFC and left parieto-occipital cortex may be
stronger, and thalamic connectivity weaker, in anorexia nervosa
subjects. Visual inspection of the MTT maps at the individual level
further emphasized these differences (Table 2). Moreover, parietal
cortex connectivity was predominantly ipsilateral, while thalamic
connectivity in controls appears bilateral.

Arepeated measures ANOVA revealed no significant interactions
across groups or brain sides for SCC ROI dMRI metrics (side x dMRI
metric x group: F339 = 0.001, P = 1.0; dMRI x side: F339 = 0.04,
P = 0.99; dMRI x group: F339 = 0.76, P = 0.52; side x group:
F339 = 0.003, P = 0.96). However, a significant interaction from
dMRI data extracted and averaged along the entire MTT pathways
was noted (side x dMRI metric x group: F339 = 8.65, P < 0.001).
Post-hoc paired t-tests revealed that while right side whole-tract FA
(0.344) was lower than the left (0.368) within-anorexia nervosa
subjects (P = 0.015), it was not significantly different (P = 0.087)
from the mean right FA in healthy subjects (FA = 0.366).

ROI analysis along MTT maps suggests regionally-selective
differences between groups

Selected ROIs are illustrated in Fig. 3A and associated dMRI
findings are summarized in Fig. 3B—D. The pattern of results (i.e.
changes in FA, AD, RD) was unique to each brain region. The
following are the interaction results of the repeated measures
ANOVAs (by side x dMRI metrics x group; SDG) across the 8 ROISs,
with significant interactions in bold: ALIC — SDG (F45; = 1.87,
P=0.13),SD (F45, = 0.77,P=0.55), DG (F4,52 = 16.44, P <0.001), SG
(Fas2 = 1.87, P = 0.19); Ant Cing — SDG (F45, = 0.62, P = 0.65), SD
(Fas2=0.34,P=0.85),DG (Fs52 = 6.62, P <0.001), SG (F45 = 0.63,
P = 0.44); CC Genu — DG (F45, = 0.54, P = 0.70); CC Splen — SDG
(Fas2 = 2.04, P =0.10), SD (F45, = 0.40, P = 0.81), DG (F452 = 0.04,
P= 0.99), SG (F4‘52 =2.03,P= 0.18); Fornix crus — SDG (F4_52 = 7.55,
P<0.0001), SD (F452 = 0.41, P=0.80), DG (F4 552 = 0.36, P = 0.84), SG
(Fa52 = 7.51, P = 0.017); IFO — SDG (F452 = 2.00, P = 0.11), SD
(Fa52=0.88,P = 0.48), DG (F4,52 = 7.33, P<0.001), SG (F4 5, = 2.00,
P = 0.18); Post Cing — SDG (F452 = 0.66, P = 0.62), SD (F452 = 0.12,

Table 2
Visual inspection of individual MTT maps.
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P=0.94),DG (F45,=0.03,P=0.99),SG (F4 5, =0.66, P=0.43); PTR —
SDG (F45, = 2.38, P = 0.063), SD (F45, = 0.04, P = 0.99), DG
(F452 = 0.91, P= 0.46), SG (F45, = 2.36, P = 0.15).

In brief, only the fornix crus was found significant for the
side x dMRI metric x group interaction (F45, = 7.55, P < 0.001),
while the PTR/SLF showed ‘trend-level’ significance (F45; = 2.38,
P < 0.06). Post-hoc analysis (P < 0.05) revealed that only the left
fornix crus showed a lower FA in patients compared to controls
which was accompanied by an increase in RD and no change in AD.
Among lower connectivity ROIs, all regions showed a significant
interaction of dMRI metric x group (ALIC: F45, = 16.44, P < 0.001;
Ant Cing: F455 = 6.62, P < 0.001; IFO: F45, = 7.33, P < 0.001). FA
values were lower compared to controls for the bilateral ALIC and
left IFO, and were accompanied by bilateral increases in ALIC and
IFO RD values. Right ALIC and Ant Cing showed decreased AD values
compared to controls.

Clinical assessment and exploratory dMRI-clinical correlation
analysis

All clinical measures were selectively correlated to ROIs previ-
ously shown to differ between control and anorexia nervosa sub-
jects (Table 3). Briefly, post-surgical clinical measures of affect
correlated with left fornix FA and RD, right ALIC FA, AD, and RD,
right Ant Cing AD, left IFO FA and RD, and right IFO RD. Selected
partial correlations are illustrated in Fig. 4. For illustrative purposes,
individual clinical improvements from pre- to post-surgery are
noted in Table 4.

Discussion

This study identified differential connectivity from the sub-
callosal cingulate white matter (SCC) in treatment-refractory pa-
tients with anorexia nervosa compared to controls. Connectivity
measures in anorexia nervosa, identified by deterministic multi-
tensor tractography (MTT) (Fig. 2, Table 2), suggest higher connec-
tivity in the prefrontal and left parieto-occipital cortices, and lower
connectivity in the thalamus. Decreases in fractional anisotropy (FA;
a metric of water diffusivity along tracts), and corresponding AD
decreases and RD increases, were seen within the anterior limb of
the internal capsule (ALIC), left fornix crus and inferior fronto-
occipital fasciculus (IFO), and right anterior cingulum (Ant Cing)
(Fig. 3). However, the SCC itself did not show differences in dMRI
metrics within or between groups. Although this might suggest that
the symptoms of anorexia nervosa are not related to white matter

Ipsilateral Contralateral Total # of subjects with
connection from
either ROI to brain
area on either side

L AN LCN R AN RCN L AN LCN R AN RCN AN CN AN CN

vmPFC 8 8 8 8 7 4 8 6 31 26 8 8
dmPFC 6 4 7 6 3 1 2 2 18 13 7 8
Parietal 6 1 5 1 1 1 2 2 14 5 8 3
Occipital 4 1 1 2 1 1 0 2 6 6 5 3
Temporal 6 3 6 4 2 1 1 2 15 10 7 5
Insula 6 6 3 6 0 1 1 0 10 13 6 7
V. striatum 6 4 4 7 2 1 0 2 12 14 8 8
Thalamus 1 3 0 5 0 2 0 2 1 12 1 8

MTT maps were inspected for individual connectivity from SCC seed to other macroscopic areas. Connectivity from the left and right SCC seed regions was investigated

separately, and ipsilateral and contralateral connections were counted and totalled.

Right column: The number of subjects showing connections from either SCC seed region to a brain region, either contra- or ipsi-laterally, was also summarized for illustrative
purposes. Note that apparent discrepancies between this column and others are because many subjects had both ipsilateral and contralateral projections from the SCC ROI. For
instance, 3 CN subjects showed bilateral SCC-occipital connectivity, while 6 similar connections noted in anorexia nervosa subjects were distributed across 5 people.
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Figure 3. A: Regions-of-interest (ROI) placement along tracts. B: Mean FA values for ROIs along group MTT maps. C: Mean AD values for ROIs along group MTT maps. D: Mean RD
values for ROIs along group MTT maps. A: ROIs were chosen based on findings noted in Figure 2. Regions were selected for their apparent increased (fornix crus, PTR, CC Splen),
decreased (ALIC, Ant Cing, IFO), or similar (Post Cing, CC Genu) connectivity levels in anorexia nervosa compared to controls. ROIs (8 voxels/64 mm® each) were drawn in two
adjacent axial slices (four voxels in each of two slices) on the MNI152 T1 anatomical template (representing the average of 152 healthy scans) along main white matter tracts, as
identified by the DTI-81 atlas, and back-projected to individual space for dMRI metric extractions. Numbers represent the MNI z-coordinate. B-D: Mean ROI-based fractional
anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) values between anorexia nervosa (black) and control (beige) groups. Blue bars = group difference; black bars =
within-anorexia nervosa-group difference; beige bars = within-CN-group difference; # is p = 0.07. Error bars are standard error of the mean.

deficits in the SCC region, this interpretation must be considered
with caution given the relatively low-powered nature of the study. It
is, for instance, possible that subtle but consistent changes in this
region in patients with AN are not detectable at this level (i.e. n = 8)
or even given the inherent signal-to-noise limitations in our dMRI
acquisitions. Nonetheless, the finding of white matter alterations
along a number of regions which appear connected to the SCC (i.e.
ALIC, IFO, Ant Cing, left fornix crus) further supports the possibility
that the SCC target is effective at least in part because of its con-
nectivity to regions with disorder-related white matter alterations.
Finally, an exploratory analysis found that FAvalues in left fornix and
IFO, and right ALIC were correlated to changes in clinical affective
measures related to eating behavior, quality of life, and anxiety as
well as depressive symptoms, respectively (Table 3).

Together, these results support the continued development of
connectivity profiles as individualized tools toward the improve-
ment of psychiatric treatments — for instance, in improving target
selection for those patients undergoing DBS. Moreover, these data
have wider implications relating to the study of affect, emotion, and

mood — as is underscored, for instance, by similar findings in major
depressive disorder [21,37].

SCC connectivity is different between anorexia nervosa and controls
subjects

The most prominent differences between anorexia nervosa and
controls were increased connectivity to the ipsilateral parietal
cortex and decreased connectivity to the thalamus bilaterally
(Fig. 2, Table 2). These differences are not likely driven by noise in
the data given that individual tract inspection revealed many
equally connected regions in AN and CN groups (e.g. vimPFC, ventral
striatum), as well as clear differences between the groups (e.g.
parietal cortex, thalamus), and there is no reason to suspect sys-
tematic differences in signal-to-noise between these two groups
(e.g. as acquisitions occurred at the same site/scanner). To our
knowledge, this is the first report identifying such differences and
these results are in line with known functional brain abnormalities
in anorexia nervosa subjects [38,39].
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Table 3
dMRI metrics and clinical affect-related measures.

dMRI metrics

Map-type ROI

FA (Clinical measure: r, P)

AD (Clinical measure: r, P) RD (Clinical measure: r, P)

AN > CN %_YBC_R: +0.826, 0.043
%_QOL: —0.904, 0.013

R Fornix (crus) —

L Fornix (crus)

L PTR -
R PTR -
L CC Splenium -
R CC Splenium -
CN > AN L ALIC YBC_P_00: —0.812, 0.05
R ALIC HAMD_12: +0.975, 0.001
L Ant Cingulum -
R Ant Cingulum NS
L IFO HAMD_00: +0.830, 0.041
BDI_00: +0.910, 0.012
BAI_00: +0.855, 0.03
BAI_12: +0.891, 0.017
YBOCS_00: +0.835, 0.039
YBOCS_12: +0.821, 0.045
YBC_P_12: +0.906, 0.013
%_YBC_P: +0.935, 0.006
RIFO -
AN N CN L Post Cingulum -

R Post Cingulum -
CC Genu -

— YBC_R_12: —0.884, 0.02
%_YBC_R: —0.917, 0.010

- NS

HAMD_12: +0.831, 0.041 HAMD_12: —-0.894, 0.016

HAMD_00: +0.882, 0.02 -

BDI_00: +0.855, 0.03

YBC_R_00: +0.956, 0.003

QOL_00: —0.818, 0.047

%_QOL: +0.865, 0.026

- BAI_12: —0.952, 0.003
YBOCS_12: —0.807, 0.052
YBC_P_12: —0.918, 0.01
%_YBC_P: —0.847, 0.033

_ %_BAI: —0.847, 0.033

Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI), Hamilton Depression Rating Scale (HAMD), Not significant (NS), Quality of life scale (QOL), Yale-Brown
Obsessive Compulsive Scale (YBOCS), Yale-Brown-Cornell Eating Disorder Scale in women (YBC-EDS, which contains subscales for assessing ritualistic behaviours, YBC_R, and
thought preoccupations related to food, YBC_P), - (Did not perform correlation given no between-group dMRI differences).

Significant ROI dMRI metrics (Fig. 3) were correlated to clinical affect-related scores (i.e. HAMD, BDI, BAI, QOL, YBOCS, YBC ritualistic/preoccupations subscales) at 12 months
postsurgical time (_12), and for the percent change between pre- and post-surgery (%), using Pearson partial correlations. Brain volume and BMI scores at the time of surgery

were included as control variables.

PET studies have shown bilateral, left-side dominant, reductions
in parieto-occipital baseline activity in anorexia nervosa [40] which
is increased following 6 months of SCC DBS [15]. Increased co-
activation of the left superior parietal cortex with somatosensory
and visuospatial resting state networks has also been noted, and
may be related to abnormal self-body-emotional processing in
anorexia nervosa [39]. Individual inspection of the MTT models
revealed bilateral parieto-occipital connectivity across anorexia
nervosa subjects (Table 2), although group findings show a left-side
dominance. The inferior fronto-occipital fasciculus (IFO) is the
longest associative bundle in the human brain [41], and decreased
FA in the left IFO (Fig. 3B), and increased RD in bilateral IFO (Fig. 3D)
are consistent with abnormal body perceptions and fronto-
occipito-parietal functionality in anorexia nervosa [42,43]. Similar
to others [44], our findings appear largely left-lateralized although
increased right IFO RD also supports right parietal involvement
[43,45].

The decrease in thalamic connectivity is consistent with this
region as a multimodal integrator and the dysregulation of multiple
brain processes in anorexia nervosa [46G]. Functional imaging
studies of baseline activity have identified both increases [8] and
decreases [47] in thalamic activity in anorexia nervosa, and poorer
behavioral flexibility is tied to lower thalamic activation along with
increased frontoparietal network activity [38]. Discrepancies may
be related to clinical differences in patient groups and limitations in
studying thalamic nuclei, as suggested in animal models of anorexia
nervosa [48,49]. Bilateral disruptions in the ALIC adjacent to the
thalami — involving decreased FA and AD, and increased RD — are
consistent with another dMRI study showing reduced mediodorsal
thalamic FA in anorexia nervosa [50].

Affective circuitry dysfunction in anorexia nervosa

These results are in line with anorexia nervosa as a disorder
involving affective circuit dysfunction [6,47]. The ventromedial
prefrontal cortex, including the SCC, has recently been described as
an integrative hub involved in the generation of affective meaning
[51], integrating and contextualizing multimodal sensory and af-
fective information. Recent studies have supported this role using
both aversive [52,53] and appetitive [54] stimuli in humans. The
SCC may be more involved in aversive, over appetitive, processing
in this regard [55—57], and altered aversion-related sensorimotor
and limbic area activity in anorexia nervosa is related to enhanced
aversive behaviors, such as rumination and increased sensitivity to
criticism and failure [58]. These findings raise the question of
whether altered medial prefrontal circuits in anorexia nervosa are
responsible for the misattribution of affective information to salient
stimuli, such as food (often reported as disgusting in anorexia
nervosa) [10] or body image (often reported as unpleasant and/or
highly distorted) [39].

Using an exploratory approach, the main relationships between
clinical affective measures and dMRI were noted for the left fornix
crus, IFO and right ALIC. Greater improvements in self-reported
quality-of-life (QOL) and aversive food-related behaviors were
associated with lower pre-DBS left forniceal crus FA, suggesting
that those who benefitted most from DBS originally had greater
white matter disturbances in this area (Table 3). While both hip-
pocampal and hypothalamic terminal regions of the fornix are
strongly associated with food- and emotion-related behaviors [59],
forniceal function is also related to improved cognitive and
emotional processing in neuropsychiatric disorders such as
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Figure 4. Partial correlations between fornix and ALIC ROIs and affect-related clinical measures. Selected Pearson partial correlations (controlling for brain volume and BMI scores at
the time of surgery) highlighting that lower pre-surgical left forniceal FA values are predictive of greater increases in quality-of-life (QOL) percent score changes (taken before, and
12 months following, surgery; top left panel); while higher pre-surgical right ALIC FA values are positively correlated to depression scores at 12 months following surgery (lower
right panel). These relationships do not hold for the contralateral sides of the brain. Anterior limb of the internal capsule (ALIC), l/r FA (left/right fornix crus), Hamilton depression
score at 12 months post-surgery (HAMD_12), Pearson’s partial correlation (r), p-value (p), Quality-of-Life score percent change from presurgery to 12 months post-surgery (%_QOL).

Alzheimer’s or addiction [60,61]. Greater R ALIC and L IFO distur-
bances in anorexia nervosa patients were correlated with post-DBS
improvements in depressive symptoms, or anxiety and eating-
related symptoms, respectively (Table 3). The ALIC, and nearby
medial forebrain bundle, are well-tied to reward-related processing
and the mediation of depressive symptoms [62—64], whereas al-
terations in IFO connectivity are consistent with findings from other
patient groups such as those with generalized anxiety, obsessive
compulsive, and body dysmorphic disorders [65—67]. These re-
lationships are unlikely due to general correlations with brain
volume or BMI, as similar correlations were not present on the
contralateral side (Fig. 4). As these exploratory clinical findings are
based on few subjects filling out many questionnaires, we did not

Table 4

correct for multiple comparisons (e.g. increasing the likelihood of
type I errors). Future studies should consider using these findings to
generate a priori hypotheses regarding potential relationships be-
tween specific tracts and clinical outcomes.

Implications for using dMRI and DBS in anorexia nervosa

Disruptions in forniceal white matter is a consistent finding in
anorexia nervosa studies [42,44,68]| while changes in the IFO and
ALIC are not well understood. These tracts are particularly impor-
tant in the interconnection of cortical (e.g. prefrontal and insular
cortices) and subcortical (e.g. ventral striatum) affective structures
implicated in the effects of DBS for psychiatric illness [69]. Studies

Summarized clinical outcomes by subject from pre-surgery to post-surgery (% score changes).

HAMD (%) BDI (%) BAI (%) YBOCS (%) YBC_P (%) YBC_R (%) QOL (%) BMI (12-base) (%) BMI (12-0) (%)
AO1 —35% —21% —16° —28% o> —-30° 70° 542 7°
A02 -76° —29° -17° —36° o° -26° —2b 1P —12¢
A03 —67° —287 -8 —657 —43° 377 —134 18% 14°
A04 234 -16° -11° —50° -13? —-9° 8P —-1° —27¢
AO5 —86% ~100° —76° 717 —46° —59% 179° 31° 17°
AO6 —50° —50° -100° —64° —552 -52% 1° 412 392
A07 -80% -82° —72° —54° 357 -61° 82° 312 25°
A0S —-70° 39¢ —48° —14° —15° —22° —344 5P —7¢

Clinical improvement.
No change.
Not relevant (i.e. subject’s score was subclinical).

a
b
C
4 Clinical worsening.
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in major depressive disorder — for which SCC DBS has been shown
effective — revealed that lower forniceal FA values are associated
with failure to achieve remission [70,71]. Although some studies
show unaltered forniceal white matter in depression [72], future
forniceal subregional analysis may help explain these discrepancies
[73]. Although the mechanisms through which DBS exerts its
impact are complex and incompletely understood [74], growing
evidence supports a greater influence on diffuse white matter
tracts, compared to gray matter, suggesting that methods focused
on improving tract visualization, such as tractography, will be of
great importance in DBS target planning in future [75].

Together, these results show that poorer pre-DBS dMRI metrics
(i.e. lower FA/AD or higher RD values) in affective circuitry are
associated with better post-surgical affective outcomes. Specif-
ically, they support the notion that poorer metrics in the left fornix
crus, IFO, and right ALIC are related to better affective clinical out-
comes following DBS, and that the positive effects of DBS in some
patients may be speculatively related to improvements in these
microstructural abnormalities. If these results are confirmed,
structural connectivity analyses may be used at the individual level
to help tailor appropriate treatment strategies for those with
anorexia nervosa.

The present approach is also relevant for the assessment of other
potential targets for use in treatment-resistant anorexia nervosa,
and the findings here are consistent with the hypothesis, consid-
ered previously by our group, that anorexia nervosa is intimately
related to wide-spread alterations in limbic circuitry [6]. Although
the SCC is a hub region with high connectivity to most limbic
structures, there are also other anatomical candidates in this regard.
The nucleus accumbens is one such target, particularly its associ-
ated medial forebrain white matter bundle which connects the
brainstem nuclei, cerebellum, and midbrain to the basal ganglia
(including the accumbens) and prefrontal cortex (including the
subgenual cingulate) [76]. Many targets used in treatment-
refractory major depressive disorder, such as the SCC, anterior
limb of the internal capsule, and nucleus accumbens, are all con-
nected by fibers of the medial forebrain bundle [62,63]. Also, as DBS
does not result in clinical improvements for all people with major
depressive disorder [62,77], it will be important going forward to
precisely determine which anorexia nervosa patients respond best
to DBS. Regardless, it appears that dMRI techniques, including
mutli-tensor tractography, will be key in determining the best
targeting for such effects and may eventually become part of
standard pre-surgical planning [75,78,79].

Limitations & future directions

Limitations include a low number of subjects with heterogenous
anorexia nervosa symptoms, co-morbidities, medication use, and
comparisons of healthy against chronically nutrient deficient peo-
ple [80]. We used total brain volumes and BMI values at the time of
surgery as covariates in our analyses to partially control for such
effects. Although medication use (e.g. SSRIs) alters the brain, some
studies have reported no differences between anorexia nervosa
patients taking or not taking SSRIs [81]. Future technical improve-
ments could include the acquisition of thinner slices (below the
3 mm slices acquired here) and the use of a 32 or 64 channel head
coil if possible. Additionally, although regionally-selective dMRI
metrics are correlated to some post-surgical improvements, we are
currently unable to determine if these improvements are related to
corresponding changes in white matter structure because dMRI
cannot be performed post-DBS due to the indwelling electrode.

Exploratory findings between the clinical effects of deep brain
stimulation and dMRI-based measures are promising, but did not
reveal a consistent pattern between structural abnormalities and

behaviour. For instance, regional differences between patients and
controls could relate to pre- or post-surgical affective psychomet-
rics and it is not clear if the pre-surgical dMRI values are predicting
affective changes or are correlated through other variables — such
as generally poorer white matter metrics being associated with a
greater chance of clinical improvement. Although unsurprising,
given the highly complex and heterogenous nature of the disorder,
future analyses will need to disentangle these results by including
psychometric data from healthy controls and those with differences
in AN symptom severity. Future studies should also consider
investigating whether gray matter differences exist in white matter
regions identified here — as this could not be explored in the
present study due to technical limitations (see Supplementary
Methods section).

Finally, the present study included one left-handed patient
without a corresponding left-handed healthy control. Although
there were no obvious differences in the individual MTT map, or
obvious lateral differences in the dMRI values, of the left-handed
subject, this should be considered in future studies given many
reports of differences in brain laterality in this patient group. For
example, how the current results are tied to findings of reduced
serotonin 2A receptor binding in the left subgenual and parietal,
and right occipital, cortices [19], or asymmetrical functional dif-
ferences in the temporal cortex, amygdala and insula during the
resting state [82], is unknown. It will, for instance, be interesting to
see if some of these anorexia-associated asymmetries in structure
and function are directly related to those seen in response to af-
fective stimuli [55].

These considerable limitations underscore the need for follow-
up study, both in AN patients undergoing DBS as well as those
undergoing non-DBS treatments for this disorder. Moreover, the
future application of dMRI before and after such treatments will
help to clarify the relationship, if any, of white matter alterations
within the SCC and its associated connections to clinical outcomes.
Nonetheless, the present study points to avenues of future inves-
tigation and helps to generate clear hypotheses around regional
white matter alterations and their potential clinical relevance.

Conclusion

The present study revealed differences between SCC connec-
tivity in anorexia nervosa compared to healthy controls. Differences
in dMRI metrics along affect-related tracts may point to wide-
spread structural abnormalities in this disorder. While the group
analysis suggested most differences in anorexia nervosa were on
the left side, ROI analysis revealed bilateral changes. Abnormalities
in tracts connecting the medial prefrontal cortex to other key
cortical (e.g. parietal, occipital, insular) and subcortical (e.g. striatal,
thalamic) regions identified in anorexia nervosa pathology are
largely consistent with a central role for dysfunctional affective
processing and broad clinical changes (e.g. alterations in the pro-
cessing of affective stimuli, self-perception, and interoception).

Appendix. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.brs.2015.03.005.
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