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Reticular frameworks (which include metal–organic frame-
works (MOFs) and covalent organic frameworks) are crys-
talline porous materials, many of which feature high internal 

surface area and high stability. They are formed via the self-assembly 
of molecular building blocks (that is, nodes and linkers) in differ-
ent topologies. The notable variety of the possible building blocks 
and the diverse ways they can be assembled endow reticular frame-
works with exceptional geometrical and chemical tunability1. Since 
the first MOF2, thousands of reticular frameworks have been made 
towards various applications with remarkable advances achieved in 
fields such as gas storage3, molecular separation4,5, catalysis6, sens-
ing7, electrochemical energy storage8 and drug delivery9. Aiming at 
a particular application, novel reticular frameworks can be designed 
in a trial-and-test manner through selecting plausible building 
blocks that assemble in a desired topology10. Given the vastness of 
chemical space for small molecules11 that can potentially be used 
as linkers, reticular frameworks show a near-infinite combinatorial 
design space. The boundless design space substantially expands the 
scope of useful materials for prospective applications, yet its enor-
mousness also complicates its systematic exploration. Therefore, the 
search for new materials becomes a constrained global optimization 
problem in the high-dimension space.

One powerful approach developed to assist the discovery of  
reticular frameworks is high-throughput computational12 and 
experimental13 screening. High-throughput screening proceeds via 
generating/synthesizing and evaluating all the frameworks (building 
block combinations) from a selected library. The high-throughput 
computational methodology has enabled the examination of a 
design space on the order of 103–105. One main drawback of this 
approach is the low coverage and restriction of the search space 
according to the combinatorics of the building blocks. In addition 

to high-throughput screening, heuristic optimization approaches 
include genetic algorithms and evolutionary strategies. Given a 
score metric and a set of candidates, these methods can transform/
evolve/mutate the candidates based on their scored performance, 
eventually leading to higher scoring structures. This approach 
allows the search of larger spaces and has been successful at iden-
tifying top-performing MOFs in recent studies14,15. The down-
side of this approach is that it requires specifying prior rules on  
how to transform the frameworks, which then creates a preceding 
constraint of the types of framework that can be explored.

Another promising approach for optimizing frameworks lies 
with machine learning algorithms that are able to learn from data 
and improve their performance automatically through experience. 
Among them, predictive algorithms (that is, discriminative models),  
those that given a datapoint x aim to predict a property y, have 
been used to aid or even replace physical simulations under certain 
circumstances. Discriminative models have been widely applied 
to accelerate the high-throughput screening process of reticular 
frameworks for properties such as storage16, mechanical stability17, 
synthesizability18 and so on. Another class of algorithms that do not 
necessarily deal with predicting a property y but modelling the data 
itself are generative models. For example, a Bernoulli probability 
distribution can be used as a model to generate a coin flip. With 
more complicated data distributions, we can use deep generative 
models such as variational autoencoders19 and generative adver-
sarial networks20. In these cases, the mapping between probability 
distributions and data is learned via a deep neural network; and this 
map can be further enhanced with additional information (physical 
properties) to condition or bias the generative process. By condi-
tioning the generative process on a property of interest, the models 
can be employed to generate preferentially molecules with a given 
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property. This property-to-structure approach is called inverse 
design21. Generative models can be used as a key component to 
realize the automated ‘closed loop’ design of materials towards tar-
geted performances. These models have been successfully applied 
to a variety of molecular22,23 and material design applications24,25. 
In the context of reticular frameworks, we can design and gener-
ate a framework by sampling a random vector and mapping it back 
to a learned data distribution. Other challenges relevant to closing 
the loop are the planned synthesis of a reticular framework given a  
set of materials and the potential automatic robotic realization of 
this procedure.

The primary goal in the reticular framework design presented in 
this work is the guided optimization of crystal structures according 
to a targeted functionality. In a simplified manner, a reticular frame-
work could be seen as a large collection of regularly bonded par-
ticles (atoms) in three-dimensional space. Optimization with this 
representation corresponds to optimizing the number of particles, 
the identities of these particles and their positions. The realization 
of this optimization is then quite challenging due to the high and 
variable dimensionality, large particle number, and mix of discrete 
and continuous variables. Therefore, finding an efficient representa-
tion becomes the essential step for machine learning-based reticular 
framework optimization. One way to attack the problem is reduc-
tion approximation through exploiting symmetries and hierarchical 
structures of the systems. An ideal representation would encode the 
degrees of freedom, physical symmetries and constraints of a sys-
tem and be amenable to gradient-based optimization techniques. 
The representation should also be decodable such that a framework 
can be reconstructed or decoded back. With proper representation, 
deep generative models show great promise for reticular frame-
work optimization because of their potential capability to map these 
frameworks into a continuous vector representation. Variational 
autoencoders (VAEs), in particular—which can learn an invertible 
mapping, encode a material to a vector (that is, its latent vector) 
and decode it back to a framework—are a compelling solution. 
Optimization of materials can be ultimately made in the latent  
vector space within the VAE framework, which then lays the ground 
for the design of reticular frameworks with desired properties.

In this Article, we build an automated nanoporous materials 
discovery platform for the property-orientated generative design of 
reticular frameworks, empowered by a supramolecular variational 
autoencoder. We develop a semantically constrained graph-based 
canonical code for the efficient representation of reticular frame-
works (RFcode). With MOF structures from the computation- 
ready, experimental MOF 2019 all-solvent removed (CoRE MOF 
2019-ASR) database26 as inputs and clean-energy applications (that 
is, CO2/N2 and CO2/CH4 separations) as the exemplified targets, we 
demonstrate the automated design process using a discovery plat-
form for novel MOF structures with remarkably improved perfor-
mance. By examining the latent space of our model, we illustrate that 
our representation captures structural features while also organized 
around properties. We demonstrate its capabilities for automatic 
targeted generation by proposing top candidates for gas-separation 
adsorbent materials. We believe that the MOFs discovered here are 
strongly competitive against some of the best-performing MOFs/
zeolites ever reported in the literature. We make our trained models,  
results and code available as open source to aid reproducibility and 
adoption to broader applications (for example, covalent organic 
frameworks, metal–organic polyhedra, hydrogen-bonded organic 
frameworks and coordinational polymers).

Reticular framework representation and identification
All crystalline materials can be seen as a collection of particles 
with different identities arranged periodically in three-dimensional 
space. Given the identities and positions of the atoms, in principle,  
any property can be computed for the framework from the 

Schrödinger equation. However, in practice, this may be difficult 
due to computational complexity and cost, which lead to trade
offs generally made in the form of approximations. Another 
approach is to estimate material properties using models such as 
linear models or neural networks that learn transformations on 
their input representations. Ideally, the representation would con-
tain the same symmetries that the Schrödinger equation presents: 
translational, rotational and permutational invariance with respect 
to its atomic identities21. Meanwhile, representations and models 
are coupled such that different types of input will lead to distinct 
choices of preferred models (for example, images and convolu-
tional networks). Materials representation currently is an open 
research problem, while for non-periodic chemical systems (for 
example, molecules), several representations have been proven 
successful, such as fingerprints27, SMILES (simplified molecular 
input line entry system)22, SELFIES (self-referencing embedded 
strings)28 and graphs23. Defining a representation for periodic crys-
talline materials is more challenging because of the necessity to 
deal with the extra-dimensional connections at the border of unit 
cells. Particularly for reticular frameworks, their generally larger 
cell sizes (102–104 atoms29 versus common crystalline materials with 
101–102 atoms30) bring further difficulties in representing them effi-
ciently. Methods such as the smooth overlap of atomic positions31, 
Voronoi tessellation32, diffraction images33 and multi-perspective 
fingerprints34 have been suggested for crystalline materials classifi-
cation, property prediction and so on. Some of the most promising 
representations under development are graph-based35,36 algorithms, 
where atoms are encoded as vertices and atom pairs (that is, bonds) 
as edges. They can be effective without encoding positional coor-
dinates explicitly. However, applying this representation to typical 
reticular frameworks results in graphs with 102–104 vertices and 
3–5 edges per vertex29, leading to a space with billions of potential 
configurations. Barely any effective optimizations can be done in 
a space of this size using the graph models, and thus reductions 
are called for. Tiling, net and graph theories37–39 can be used to aid  
the reduction by replacing atom-based vertices with motif-based 
vertices and bond-based edges with polyatomic-branch-based 
edges that connect these motifs.

Inspired by these reduction theories, we construct our repre
sentation of the reticular frameworks (that is, RFcode) using  
their unique, decomposed nets as a tuple: edges|vertices|topologies. 
Edges are molecular fragments with two connection points, vertices 
are multi-connected metal or organic nodes, and topologies define 
how these components are connected to form a specific reticular 
framework. Note that in the RFcode and throughout this paper, 
topologies are indicated by a three-letter code in bold font. Within 
the RFcode, we consider the edges as semantically constrained 
graphs28, while vertices and topologies are categorical variables from 
known frameworks considering their relatively limited variety. In 
addition, we consider metal and organic vertices separately in the 
RFcode. The advantages of the RFcode are: (1) efficiency, as there 
is no redundant information, edges and vertices are only described 
once in the RFcode; (2) uniqueness, each representation encodes a 
unique framework; and (3) invertibility, as all components can be 
readily translated back and forth. Moreover, for each component of 
the RFcode, generative models have been effectively developed, and 
therefore a model that takes the full RFcode is realizable. To illus-
trate this method, we use MOF-11740 as an example, and its repre-
sentation is shown in Fig. 1a.

The RFcode representations of reticular frameworks can be 
determined automatically using a previously developed identifi-
cation algorithm supplemented with framework deconstruction41 
and reconstruction tools42. As a demonstration of our method, we 
decomposed all MOF structures from the CoRE 2019-ASR MOF 
database into their building blocks and identified all their RFcodes. 
Meanwhile, collections of edges, vertices (metal and organic) and 
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Fig. 1 | Reticular framework identification and representation, exemplified with MOF structures from the CoRE MOF database26. a, Reticular frameworks 
(for example, MOF-117)40 are: (1) decomposed to their building blocks (edges, organic/metal vertices) and topology using a previously developed 
identification method41, which are then recognized and labelled; and (2) the labels are further converted to semantically constrained graph-based 
canonical sequences, namely the RFcode (edge | organic vertex | metal vertex | topology). b, A fragmentation analysis was conducted on the linkers of  
all MOF structures from the CoRE MOF database. Here we illustrate all the basic building fragments of state-of-the-art MOFs with high occurrence rate 
(the inner circle) and linkers derived from them (the second and third circles) in a scaffold tree plot.
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topologies were also built. To have a sense of the chemical variety 
of all linkers in the CoRE database, we conducted a fragmentation 
analysis of them using molBLOCKS43, and the derivations of differ-
ent linkers are illustrated using a scaffold tree plot shown in Fig. 1b. 
Note that here and in the traditional MOF terminology, an organic 
‘linker’ may be a single edge (connecting two metal vertices) or may 
contain an organic vertex and several edges.

Reticular framework (MOF) library generation
While there are no established rules on the sufficient size of train-
ing datasets for deep generative models, empirically these models  
start to be useful when input datasets are on the order of 106. With 
the correct architecture, at this scale, the model can begin to gen-
erate new data that are likely to come from the empirical data  
distribution. Considering that there are only around 14,000 MOFs 
in the CoRE MOF database, a training data augmentation is neces-
sary. Starting with all the MOF edges obtained from CoRE MOF 
identification (372 edges), we did random functionalizations 
(Supplementary Fig. 2) with selected common functional groups 
of known MOF structures (Supplementary Table 1). An augmented 
edges dataset of ~300,000 was generated. Vertex and topology data-
sets are constructed during the identification of the CoRE data-
base as mentioned in the previous section by selecting vertices and 
topologies that are compatible with the current reticular framework 
reconstructor42,44. Therefore, all these datasets are subject to further 
expansions in the future with improvements of the reconstructor. 
We then used this augmented edge dataset with the vertex dataset 
(metal: 14, Supplementary Fig. 3; organic: 47, Supplementary Fig. 4)  
and topology dataset (153, Supplementary Fig. 5), resulting in an 
augmented dataset with around two million MOF structures. An 
underlying assumption in our dataset is that the current vertex 
and topology pools represent plausible and realizable structures  
for reticular frameworks. Our search space does not include new 
vertices and topologies.

Besides generating new structures, we are interested in making 
our model aware of properties of interests. Doing so with deep neural  
networks requires having a large dataset of reticular frameworks 
(RFcodes) as well as properties, preferably experimental. However, 
such a dataset is currently lacking; therefore, we resorted to com-
putational simulations on around 45,000 randomly selected MOF 
structures. The randomness allows coverage of multiple types of 
framework, and the quantity is to keep the computational cost at a 
reasonable level. We considered properties as follows: four textural 
properties (pore-limiting diameter (PLD), largest cavity diameter 
(LCD), density and accessible gravimetric surface area (AGSA)), 
three properties related to natural gas separation (CO2 uptake, CH4 
uptake and CO2/CH4 selectivity, all at 5 bar and 300 K for a 10/90 
mole fraction mixture of CO2/CH4) and three properties related 
to flue gas separation (CO2 uptake, N2 uptake and CO2/N2 selec-
tivity, all at 1 bar and 313 K for a 15/85 mole fraction mixture of 
CO2/N2). Textural properties were calculated geometrically, and 
gas uptake properties were calculated using grand canonical Monte 
Carlo simulations. Gas-separation selectivities, which are entirely 
dependent on the uptake values of the mixed-gas phases from the 
mixed-gas simulations, were then derived numerically. We use pore 
blocking to prevent insertions into cavities that are inaccessible to 
the adsorbate molecules due to narrow windows. Therefore, some 
reticular frameworks may have extremely small or even zero uptakes 
of the larger radius molecules such as CH4 and N2. As a result, these 
frameworks are predicted to have enormous or even infinite (∞) 
selectivity of CO2 against CH4 and N2. In reality, the observed selec-
tivities may not be perfect (infinite) because the frameworks may 
not be completely rigid and large adsorbate molecules may not be 
totally blocked. The gas adsorption simulation of flexible reticular 
frameworks is still an open question that goes beyond the scope of 
this study. As a result, these infinite selectivity numbers should be 

seen as a sign of gas-separation performance that is predicted to 
be outstanding compared with frameworks with lower selectivity  
values, rather than truly infinite selectivity. Further details are 
described in Supplementary Note 1. The distributions of the tex-
tural properties for these 45,000 MOFs are shown in Supplementary 
Fig. 6 and the distributions of gas uptake properties for these 45,000 
MOFs are shown in Supplementary Fig. 7.

Supramolecular variational autoencoder
For our deep generative model, we utilize a VAE45. A VAE is trained 
to process and reconstruct non-labelled data in an unsupervised 
manner. In its simplest form, a VAE is composed of two compo-
nents: an encoder and a decoder. For a given datapoint x, the 
encoder compresses the information to a vector z, and the decoder 
decompresses the data into a reconstructed sample ~x. To learn 
these transformations, neural networks are used as computational 
and optimizable building blocks for the encoder and decoder. The 
encoder and decoder are then optimized according to a loss, which 
is a low reconstruction error ( x � ~xk k

I
). To generalize to new data 

points, a VAE imposes a prior over the structure of the vector space z,  
and this lower-dimensional space, namely the latent space, is in 
our case normally distributed. To enforce this constraint, an addi-
tional term is introduced in the loss function, the Kullback–Leibler 
(KL) divergence of the variational approximation22. This term can  
also be interpreted as a regularization term. It measures how our 
latent space resembles a normal Gaussian distribution. A cyclical 
annealing scheduler, which has been proven to be effective in boost-
ing the training performance and mitigating KL vanishing46, was 
also adopted.

Considering that our reticular framework representation,  
namely the RFcode, is a multiple component input, we build our 
supramolecular variational autoencoder (SmVAE) with several cor-
responding components that are in charge of encoding and decod-
ing each part of the RFcode. When properly trained, this model 
allows us to map the frameworks with discrete representations 
(RFcodes) into continuous vectors (z) and then back. As the latent 
space is a vector space, continuous optimization and search algo-
rithms will be used to find local minima or maxima. By decoding, 
we can sample and reconstruct new frameworks. To posit informa-
tion relating structure to physical properties in our latent space, the 
SmVAE has a property prediction component and is jointly trained 
for property prediction and framework generation. As the size of 
our property dataset is much smaller than our structural dataset, 
we train this component in a semi-supervised fashion. In the joint 
training, SmVAE was fed with 45,000 MOFs with the property data 
(textural and gas uptake properties) and another ~2 million MOFs 
without property data. Predictive network parameters are only  
optimized when labelled data are observed during training47.  
When the model is correctly trained, we can identify principal axes 
that align with increasing and decreasing values of physical prop-
erties. This feature improves the optimization capabilities of our 
model. Gas-separation selectivities are then derived using the cor-
responding uptake values of the gas phases. Taking all the compo-
nents into account, we propose a multi-component loss function 
Ltotal
I

 as follows:

Ltotal ¼ Ledge þ Lvertex þ Ltopo þ Lproperty þ LKL
¼ LRFcodeRecon: þ LSemi�superProp: þ LVAEConstraint

ð1Þ

After the realization of property prediction, we ultimately add 
one property-guided optimization component to the SmVAE for 
automated reticular framework inverse design. A Gaussian pro-
cess (GP) model is built and trained with labelled frameworks from  
the jointly trained latent space from the SmVAE to predict the  
targeted properties. The entire structure of our SmVAE with all 
components is illustrated in Fig. 2. GP models are known to be 
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effective in prediction with even a limited amount of training data48. 
The detailed SmVAE architecture and hyperparameter tuning pro-
cess are described in Supplementary Note 2.

Demonstration of SmVAE on MOF design and optimization
To evaluate the fidelity of the trained SmVAE and the capability of its 
latent space to capture MOF structure information, we estimate the 
kernel density of each dimension in the latent space (288 in total). 
As shown in Supplementary Fig. 8, all data distributions in differ-
ent dimensions are normal, indicating the effectiveness of the varia-
tional regularizer as implemented in the SmVAE. Furthermore, we 
use MOF-11740 as an example by feeding its RFcode to the encoder 
to obtain its latent representation and sampling its neighbouring 
latent points at various distances. We check the decoding results of 
the original representation and neighbouring points. We are able to 
get the original MOF-117 back at the original point, and decoded 
MOF structures at the sampled neighbouring points demonstrate 
more and more variations with increasing distance as shown in 
Fig. 3c. The autoencoder also provides us a critical opportunity to 
explore the geometrical correlation between different MOF struc-
tures. We encode two well-known yet topologically distinct (topol-
ogy: ftw, csq) MOF structures (that is, cubic, ftw NU-110449 and 
hexagonal, csq NU-100050) and perform an interpolation between 
their latent points in space (Fig. 3d). The intermediate frameworks 
along the interpolation path are then decoded, which demonstrate 
a clear geometrical evolution from the cubic framework to the hex-
agonal framework.

Discovering systems with improved properties is the essential 
goal of materials design. We examine the mapping of property 

values to the latent representation in the jointly trained SmVAE 
latent space using PCA (principal component analysis) (Fig. 3a,b), 
and we find that the distribution of frameworks shows an explicit 
gradient, with high-performance MOFs located in one domain 
and low-performance MOFs in other domains. For comparison,  
another SmVAE was trained with about two million MOFs with-
out any property as a control group. The resulting latent repre-
sentation distribution shows no noticeable pattern with respect 
to property values (Supplementary Fig. 9), confirming the ability 
of the SmVAE to organize the latent space according to property 
values. Performance metrics such as prior and posterior scores for 
sampling and constructing valid MOFs, as well as the mean abso-
lute error (MAE) on predicting MOF properties, are computed and 
shown in Supplementary Table 2. Our SmVAE demonstrates superb 
accuracy in designing MOFs and predicting their properties.

Ultimately, we optimize MOF structures in the latent space of the 
jointly trained autoencoder. We build a GP model, which has been 
proven to be lightweight and effective for smooth function predic-
tion48, to learn the property landscape of the latent representations. 
A GP model is then trained to predict the target property of the 
latent vector of a given MOF RFcode. We then choose CO2 uptake in 
the natural gas separation (CO2/CH4) as the target and demonstrate 
two optimization processes: (1) isoreticular MOF design, where the 
topology is constrained; and (2) globally optimized MOF design 
(Fig. 4), with maximized property frameworks identified and inter-
mediate structures interpolated. In the isoreticular design process, 
we pick the MOF NU-110449 (CO2 uptake of 0.65 mol kg−1) as the 
starting point and optimized the framework with constrained ftw 
topology. Going through a series of intermediate linkers (Fig. 4b), 
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we are able to optimize the targeted CO2 uptake to 4.33 mol kg−1. 
In the global optimization process without topology constraint, 
we begin with MOF-551 (CO2 uptake of 2.80 mol kg−1 (ref. 52)) and 

search for MOFs with optimized uptake (Fig. 4c). At the end, we 
discover a spn (topology) MOF with a remarkably high CO2 uptake 
of 7.55 mol kg−1 for natural gas separation.
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Top MOF candidates proposed for gas separation
Aiming at CO2 loading in natural gas (5 bar, 300 K, 10/90 CO2/CH4) 
and flue gas separation (1 bar, 313 K, 15/85 CO2/N2), we repeat the 
globally optimized design process and select the top candidates for 
further validations. When we rank all the generatively designed 
MOFs (GMOFs), we consider their gas-separation properties as 
well as the MOF synthesizability to make suggestions for further 
experimental measurements. To estimate the latter, we calculate 
the synthetic complexity score (SCScore)53 of the organic linkers 
used in the GMOFs. Complete linkers of all MOF candidates are 
assembled using the appropriate edge and organic vertex, as shown 
in Supplementary Fig. 10. The ranking procedure for the designed 
MOFs proceeds as follows: (1) sort them by their CO2 uptakes in 
CO2/CH4 separation and then select the top nine high-capacity 
candidate systems; (2) sort them by their synthesizability (reversed 
SCScore order since higher means more challenging to synthe-
size). The top candidates with superior performance are shown in  
Table 1 sorted according to decreasing SCScore. We are able to 
identify multiple MOFs with enhanced gas-separation proper-
ties, including GMOF-9, which shows the highest 7.55 mol kg−1 
CO2 uptake and reasonably large selectivity of 16.0 for CO2/CH4 
separation. All candidate MOF structures are stable through relax-
ation, and corresponding properties predicted have been recon-
firmed with grand canonical Monte Carlo (GCMC) simulations 
(Supplementary Fig. 11).

By examining the corresponding porosities, we identify two 
types of promising MOF with distinct gas-separation mechanisms:

(1) Size exclusion frameworks (GMOF-1, -2, -3 and -4) with 
small PLD (3.40–3.71 Å)) that fall between CO2 (3.3 Å) and CH4 
(3.8 Å) or N2 (3.64 Å), therefore effectively permitting CO2 to dif-
fuse into the MOF while excluding CH4 or N2. The MOFs we have 
identified here (GMOF-1, -2, -3 and -4) have very small PLDs that 

do not permit the adsorption of N2 or CH4, resulting in a theoreti-
cally infinite selectivity. In our GCMC simulations, the MOF atoms 
are held fixed at their crystallographic positions; however, in real-
ity, some of these MOFs might exhibit a degree of flexibility. This 
flexibility might permit some adsorption of N2 or CH4, which 
would then bring the selectivities down to high yet finite values. For  
CO2/CH4 separation, they exhibit remarkable CO2 uptakes (4.64, 
4.33, 4.22 and 3.97 mol kg−1, respectively). They are also strong CO2/
N2 separation candidates with high CO2 uptakes (3.06, 2.09, 2.47 
and 2.51 mol kg−1, respectively) and high selectivities.

(2) Thermodynamic separation frameworks (GMOF-5, -6, -7, -8 
and -9), which show large pores (LCD, 62.61–81.08 Å; PLD, 55.99–
68.92 Å), compared with the size of the targeted molecules. These 
MOFs all have high AGSAs (>5,000 m2 g−1), offering many binding 
sites for CO2, which results in high capacity. They exhibit strong 
selective CO2 adsorption as a result of the stronger van der Waals 
interactions between CO2 and the frameworks versus CH4 and N2. 
For CO2/CH4 separation, we observe notably high CO2 uptakes 
(4.80, 4.51, 4.34, 7.21 and 7.55 mol kg−1, respectively) at reasonably 
high CO2/CH4 selectivities (10.0–17.5). They are also competent 
flue gas-separation materials with reasonable CO2 uptakes (1.29, 
1.26, 1.45, 2.61 and 2.80 mol kg−1, respectively) and good CO2/N2 
selectivities (11.7–27.1).

Performance comparison on gas separations between MOFs is 
practically difficult as the measurements are often conducted at 
different experimental conditions (for example, temperature, pres-
sure and gas phase composition). However, we believe that the 
MOFs discovered here are strongly competitive against some of  
the best-performing MOFs/zeolites ever reported in the litera-
ture (Table 2). Our top candidates show high-performance for 
natural gas separation (that is, GMOF-8, 7.21 mol kg−1; GMOF-9, 
7.55 mol kg−1) at a condition of 5 bar, 300 K with a low CO2:CH4 

Table 1 | Top GMOF candidates targeted at gas separations (natural gas, CO2/CH4; flue gas, CO2/N2) sorted with increasing 
synthesizability SCScore (increasing synthesis complexity)

GMOF-1 GMOF-2 GMOF-3 GMOF-4 GMOF-5 GMOF-6 GMOF-7 GMOF-8 GMOF-9

Topology

lcsb ftw ftw tpt spn spn spn spn spn

Linker

(SCScore) 1.6 3.2 3.5 3.8 4.8 4.9 4.9 4.9 5.0

Metal
node

Zn Zr6O8H4
(COO)12

Zr6O8H4
(COO)12

Cr3O4
(COO)6

Zr6O20H16
(COO)6

Zr6O20H16
(COO)6

Zr6O20H16
(COO)6

Zr6O20H16
(COO)6

Zr6O20H16
(COO)6

CO2
capacity 
(mol kg–1)
Selectivity

CO2/CH4 separation (10:90, 5 bar, 300 K)

4.64 4.33 4.22 3.97 4.80 4.51 4.34 7.21 7.55

3058.0 10.8 10.0 11.4 17.5 16.0

CO2
capacity 
(mol kg–1)
Selectivity

CO2/N2 separation (15:85, 1 bar, 313 K)

3.06 2.09 2.47 2.51 1.29 1.26 1.45 2.61 2.80

48.5 3157.2 12.3 11.7 16.3 27.1 24.6

LCD (Å) 5.79 8.73 9.49 5.56 71.16 70.86 62.61 74.06 81.08

PLD (Å) 3.59 3.46 3.71 3.40 58.63 60.83 55.99 68.92 61.29

AGSA 
(m2 g–1) 1337 1184 1470 429 5261 5423 5076 5025 5233
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ratio of 1:9 while the notable Mg-MOF-74 and zeolite 13X 
show CO2 comparable or even lower capacities (8.0 mol kg−1,  
4.4 mol kg−1)54 at 5 bar, 313 K, with higher CO2:CH4 ratio of 1:1 (ref. 54).  
SIFSIX-2-Cu-i, SIFSIX-3-Zn and UTSA-16 exhibit capacities of 
4.16 mol kg−1 (ref. 5), 2.46 mol kg−1 (ref. 5) and 4.25 mol kg−1 (ref. 55), 
respectively, at lower-pressure conditions (1–2 bar, ~300 K) with a 
CO2:CH4 ratio of 1:1. Their selectivities against CH4 (29.8–231)5,54,55 
are all lower than our top selectivity candidates (that is, GMOF-1, 
-2, -3 and -4: 3,058–∞ with zero CH4 uptake). For flue gas separa-
tion at similar conditions as this study (1 bar, 313 K, 15/85 CO2/N2), 
our top candidate GMOF-1 exhibits CO2 uptake of 3.06 mol kg−1 
with extremely high selectivity (∞ with zero N2 uptake), which is 
only lower than the capacity of Mg-MOF-74: 4.43 mol kg−1 with 
a selectivity of 175 (0.9 bar, 313 K, 15/75 CO2/N2)56, while higher 
than SIFSIX-2-Cu-i (1.59 mol kg−1 at 140 selectivity)5, SIFSIX-3-Zn 
(2.27 mol kg−1 at 1,818 selectivity)5, UTSA-16 (2.37 mol kg−1 at 314.7 
selectivity)55, and 13X (3.0 mol kg−1 at 20 selectivity)57. Furthermore, 
our top candidates show potentially strong chemical and hydrother-
mal stabilities, with the exclusive usage of well-known stable metal 
nodes such as Zr6O8/Zr6O20, Cr3O4 and ZnN4 (ref. 58). This is par-
ticularly important for carbon capture applications in a harsh flue 
gas environment59.

Conclusions
We developed an automated nanoporous materials discovery plat-
form using a supramolecular variational autoencoder for the gen-
eration of reticular frameworks with optimized properties. We have 
demonstrated the automated design process with MOF structures 
starting from the computation-ready, experimental (CoRE) MOF 
database26 and generating new proposed structures with improved 
properties for CO2 separations. Our model exhibits high fidelity in 
capturing structural features and reconstructing MOF structures. 
The autoencoder shows great prediction and optimization capa-
bility when jointly trained with multiple top candidates identified 
for superior gas separation and confirmed via atomistic Monte 
Carlo simulations. We use this platform to design novel MOFs with 
improved capacity and good selectivity for CO2/N2 and CO2/CH4 
separations, which are important clean-energy-relevant applica-
tions. The top-performing MOF has a CO2 capacity of 7.55 mol kg−1 
and a selectivity over CH4 of 16. This platform can be applied to 
a broad range of materials (for example, covalent organic frame-
works, metal–organic polyhedra, hydrogen-bonded organic frame-
works and coordinational polymers) and lays the groundwork for 
the design of reticular frameworks for a variety of applications.

Methods
Reticular framework textural and gas-separation property calculations. We 
performed computational simulations on around 45,000 randomly selected MOF 
structures from the augmented MOF set of two million. We calculate the textural 

properties of the MOF crystals including PLD, LCD and AGSA using Zeo++60 with 
high-accuracy settings (-ha flag), and a hard sphere with a diameter of 3.31 Å (the 
Lennard–Jones σ parameter of nitrogen in the TraPPE model61). We optimize the 
geometry of the MOF structure in the Forcite module of Materials Studio62 using 
the universal force field (UFF)63 through a two-step process. In the first phase, the 
cell shape and size are held constant while the atom positions are moved, and then 
in the second phase, the cell shape is also allowed to change. The distribution of 
the sampled AGSAs are shown in Fig. 2, and the distributions of the remaining 
textural properties are shown in Supplementary Fig. 6. We select gas separations 
as the targeted applications (removal of CO2 from natural gas and flue gas) and 
calculated MOF properties for CO2/CH4 and CO2/N2 separation. Partial charges on 
the framework atoms are computed using the SQE-MEPO method of Collins and 
Woo64, which is an empirical charge model that has been fit to reproduce density 
functional theory (DFT) derived electrostatic potential fitted65 charges in MOFs 
and yields accurate results for CO2 adsorption. These charges are fed into GCMC 
simulations, which are performed using our in-house multipurpose simulation 
code RASPA66. We use the Lennard–Jones parameters from the UFF63 for the MOF 
framework atoms, and the MOF structures are held fixed during the simulations. 
We use the TraPPE models for CO2 (ref. 67), N2 (ref. 67) and CH4 (ref. 68). Van der 
Waals interactions beyond 12.8 Å are neglected, and tail corrections are not used. 
We use a sufficient number of unit cells so that the simulation box exceeds 25.6 Å 
in all dimensions. Coulomb interactions are computed using the Ewald summation 
method. For the GCMC simulations, we use 4,000 initialization cycles and 4,000 
production cycles. We use pore blocking to prevent insertions into cavities that are 
inaccessible to the adsorbate molecules. Therefore, some reticular frameworks may 
have extremely small or even zero uptakes of the larger radius molecules compared 
with CO2, like CH4 and N2. As a result, these frameworks will have derived 
enormous or infinite selectivity of CO2 against CH4 and N2. The pore-blocking 
spheres are computed in Zeo++61. The Monte Carlo moves are translation, regrow, 
swap (insert/delete) and identity change with a relative probability of 1, 1, 1 and 2,  
respectively. We compute the CO2 and N2 uptake from a 15/85 mole fraction 
mixture of CO2/N2 at 1 bar and 313 K, and we compute the CO2 and CH4 uptake 
from a 10/90 mole fraction mixture of CO2/CH4 at 5 bar and 300 K. To confirm the 
accuracy of our simulation methodology, we computed isotherms at 298 K for CO2 
adsorption in IRMOF-1 and IRMOF-3 and compared them with the experimental 
counterparts. Agreement between simulation and experiment is achieved, as 
shown in Supplementary Fig. 1.

Autoencoder architecture and hyperparameter tuning. The multi-component 
SmVAE consists of an edge encoder/decoder, a reticular framework information 
encoder/decoder and a property predictor. The edge encoder and decoder are 
paired recurrent neural networks. Edge molecular SMILES are converted to the 
semantically constrained graph-based strings (SELFIES)28, and the strings are then 
encoded and decoded in a sequence-to-sequence manner. There is no length limit 
set for the SMILES and SELFIES strings. In the edge encoder, one gated recurrent 
unit68 layer with a hidden dimension of 768 is implemented. In the edge decoder, 
another gated recurrent unit hidden layer of 704 is used. Reticular framework 
information, including the vertices (organic and metal) and topology types, are 
one-hot encoded as categories. The information is fed into the reticular framework 
encoder and decoder containing two and one fully connected hidden layers, 
respectively. For property prediction (that is, textural and gas uptake properties), 
three layers of networks are used to predict properties from the latent space. All  
the encoded edges, framework information and properties during joint training  
are passed to a comprehensive latent space with a dimension of 288. Considering 
that we only have properties for part of our training framework set (~45,000 of  
2 million), a masked function is used to colour only the latent points with 
properties determined and realize the semi-supervised learning.

During training, a cyclical annealing scheduler46 is adopted with a period of 
15 epochs, and the full training runs for 120 epochs in total. The property and 

Table 2 | Gas-separation performance of well-known MOFs and zeolites

SIFSIX-2-Cu-i SIFSIX-3-Zn Mg-MOF-74 UTSA-16 13X CuBTC ZIF-8 IRMOF-1

CO2/CH4 separation
(50:50, 1 bar, 
298 K)9a

(50:50, 1 bar, 
298 K)9a

(50:50, 5 bar, 
313 K)54

(50:50, 2 bar, 
296 K)5

(50:50, 5 bar, 
313 K)54a

(25:75, 5 bar, 
303 K)71

(10:90, 5 bar, 
293 K)72a

(10:90, 5 bar, 
298 K)73,74a

CO2 capacity (mol kg−1) 4.16 2.46 8.0 4.25 4.4 3.6 0.48 0.79
Selectivity 33 231 105.1 29.8 36 7.2 3.95 3.86

CO2/N2 separation
(10:90, 1 bar, 
298 K)9a

(10:90, 1 bar, 
298 K)9a

(15:75, 0.9 bar, 
313 K)56

(15:85, 1 bar, 
296 K)5

(16:84, 1.1 bar, 
288 K)57

(15:85, 1 bar, 
296 K)73,74a

(15:85, 1 bar, 
296 K)72a

(15:85, 1 bar, 
296 K)73,74a

CO2 capacity (mol kg−1) 1.59 2.27 4.43 2.37 3.0 0.85 0.15 0.26

Selectivity 140 1818 175 314.7 20 24 11.7 11.1
aIdeal adsorbed solution theory75,76.
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reticular framework information prediction loss annealing is initiated at the 
same time with the variational loss in the joint training and stops before the last 
ten epochs. A random optimization of 200 trials is conducted to optimize the 
key hyperparameters of the full model, using the prior and posterior validities 
as criteria. When evaluating the performance of the SmVAE, prior validity is 
calculated by randomly sampling 10,000 points from the trained latent space and 
counting the number of valid reticular frameworks decoded (simultaneously valid 
edge SMILES and reticular information). Posterior validity and reconstruction 
ratio are calculated by randomly sampling 1,000 MOF structures and feeding them 
into the SmVAE. Then the decoding is tried ten times, and we check how many of 
the decoded MOFs are valid and whether the original MOF can be reconstructed. 
Meanwhile, MAEs are computed for all properties to estimate the general accuracy 
of the SmVAE on property predictions compared with the geometric results 
(textural properties) from Zeo++60 or the gas adsorption results (gas uptake 
properties) from the GCMC simulations (Supplementary Table 2).

The GP model for the identification of reticular frameworks with the optimized 
target property is trained with the latent vectors of 5,000 randomly selected MOFs 
and their corresponding properties. With this model, we are able to search through 
the whole reticular framework latent space and maximize the target property. We 
decided to use a GP model instead due to the following reasons. (1) Empirically, 
we found that GP has fewer local minima and therefore tends to converge faster 
using an optimization algorithm22. (2) GP models provide prediction uncertainty 
estimates which are useful for Bayesian optimization settings. (3) We wish to 
showcase that other optimization strategies (evolution strategies and so on) can 
be adopted with the latent vectors. The regression statistics of GP are shown in 
Supplementary Table 3 with MAEs of all properties are no larger in magnitude 
compared with the counterparts of the property prediction networks in SmVAE, 
as shown in Supplementary Table 2. For the top candidates newly designed, as 
shown in Table 1, we calculated all their textural and gas uptake properties using 
Zeo++60 and GCMC simulations. Gas-separation selectivities of these candidates 
are then derived using the gas uptake values of corresponding phases. To further 
confirm the effectiveness of the GP property predictor, we made parity plots 
between GP predicted and GCMC computed textual and gas-separation properties 
(Supplementary Fig. 11) for all the simulated frameworks (45,000 structures + top 
candidates). Great agreements between the predicted and computed properties can 
be then observed.

We use the Pytorch packages69 to build and train this model and the RDKit70 
package for cheminformatics.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data for the training of the SmVAE including the augmented two million MOF 
set and the tabulated textural and gas-separation property data for the randomly 
selected MOF structures are available at https://github.com/zhenpengyao/
Supramolecular_VAE/tree/master/data.

Code availability
Code for the SmVAE is available at https://doi.org/10.24433/CO.8185164.v1.
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