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A B S T R A C T   

Structural symmetry variations of two-dimensional materials may significantly affect their reaction process and 
kinetics with alkali ions. Here, SnS2 with different structural symmetry is used as the target to be comparatively 
investigated the phase transition pathway and ionic diffusion upon (de)sodiation in sodium-ion batteries using in 
situ transmission electron microscopy and ex situ x-ray photoelectron spectroscopy in combination with first- 
principles calculations. Different intermediate phases, AA1 NaSnS2 for trigonal SnS2 and AB1 NaSnS2 for hex
agonal SnS2, are observed after sodium ions fully occupy all Oh sites. While the coming conversion/alloying 
reaction processes are relatively similar. The AA1/AB1 NaSnS2 sequentially transits to SnS, β-Sn and Na15Sn4 
phases starting from Td sites of SnS2 being held. Reversible reactions occur among SnS, Na15Sn4 and Na2Sm 
(2<m<8) in following cycles. Our works provide a deep understanding of the ionic diffusion and electrochemical 
reaction mechanisms for two-dimensional materials with different symmetry, and offer some guidance for the 
design of the high energy two-dimensional electrode materials.   

1. Introduction 

Sodium-ion batteries are promising energy storage techniques 
especially for large-scale renewable energy sources such as solar and 
wind because of their lower cost and relative abundance of Na [1,2]. 
Layered two-dimensional (2D) transition metal sulfides like tin sulfides 
(SnS2) have drawn much attention due to its remarkable electrochemical 
capacity as anodes in sodium ion batteries [3,4]. The improving 2D 
transition metal sulfides anodes mainly demand a comprehensive un
derstanding of their electrochemical reaction mechanisms and kinetics. 

SnS2 has a sandwich-like structure, consisting of two alternated 
hexagonally coordinated S planes and one sandwiched Sn planes. The 

layers interact with each other through weak van der Waals force, like 
MoS2, which allows different stackings between layers, and enables 
diffusion channels for ions [5]. According to the distinct structural 
symmetry of adjacent layers, there are two different common polytypes 
of SnS2: the trigonal P3m1 SnS2 [6] and the hexagonal P63mc SnS2 [7,8]. 
SnS2 anode usually undergoes alkali ion insertion [9], conversion, and 
alloying as the sequence in the discharge process. Sooyeon Hwang et al. 
discovered two intermediate phases, i.e. layered LixSnS2 and rock-salt 
LiySnS2 before the conversion reaction, and then the intermediate pha
ses convert to Li2S and Sn after full lithiation [10]. Crystalline Sn 
nanoparticles are well arranged within an amorphous Li2S “matrix”, 
which leads to better electrochemical performance [11]. The structural 
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transformation of conversion/alloying-type electrodes usually signifi
cantly affect the electrochemical performance of the sodium ion batte
ries. However, the influence of structural symmetry of SnS2 on the 
structural evolution remains elusive. 

Here, we perform a comparative mechanistic study on the sodiation 
and desodiation processes of different structural symmetry of SnS2, i.e. 
trigonal and hexagonal, using in situ TEM techniques in combination 
with the first-principles calculations. We are able to identify distinct 
intercalated intermediate AA1 NaSnS2 and AB1 NaSnS2 phases during 
the first sodiation of trigonal P3m1 SnS2 and hexagonal P63mc SnS2 
respectively. Both of two SnS2 are suffering anisotropic expansion phe
nomena along [001] and [100] upon Na insertion. After the first 
sodiation, these two kinds of SnS2 electrodes show a similar conversion 
reaction between Na2S and polysulfides, and reversible alloying reaction 
between SnS and Na15Sn4 during cycling. Meanwhile, these two phases 
exhibit similar electrochemical performance. 

2. Material and methods 

2.1. Synthesis of SnS2 nanoplates 

The procedures for synthesizing trigonal SnS2 are listed as follows. 
Firstly, 1 mmol SnCl4⋅5H2O and 6 mmol thiourea were added to 20 ml 
deionized water. The mixed solution was subjected to mechanical stir
ring for 20 min. Then the obtained solution was placed in a 50 ml Teflon- 
lined autoclave and heated at 160 �C for 24 h. Finally, the precipitates 
were centrifuged and washed with deionized water and anhydrous 
ethanol for several times. The SnS2 samples can be obtained after the 
final drying in a vacuum freeze drier for 5 h. For hexagonal SnS2, the 
reagents are 1 mmol SnCl2⋅2H2O and 10 mmol thioacetamide instead of 
SnCl4⋅5H2O and thiourea, and the temperature of heating is 190 �C. The 
other procedures are as same as trigonal samples in exception of the 
extra purifying process (SnS2 tends to agglomerate and precipitate, so 
this process involves several times by repeated rinsing and 
precipitating). 

2.2. Structural and physical characterizations 

The phase-structural composition of the products was characterized 
using powder X-ray diffraction (XRD, Cu Ka1 radiation, at 30 kV, 
Bruker). The details of the morphology were further characterized by 
transmission electron microscopy (TEM, JEOL 2100 TEM). The surface 
topography of the SnS2 samples and electrodes were characterized by 
the scanning electron microscope (SEM, ZEISS). The ACTEM images are 
characterized by FEI Themis Z microscopes. The binding energies of the 
products of elements Sn, S before and after (de)sodiation reaction have 
been identified by X-ray photoelectron spectroscopy (XPS, Thermo
Fisher EscaLab 250Xi, Al Ka). 

2.3. Cell assembly and electrochemical testing 

The electrochemical performances of the SnS2 electrodes were 
evaluated by employing CR2032 coin-type cells. The electrodes 
comprised the trigonal/hexagonal SnS2, ketjen black and binder (CMC- 
Na) in a 7:2:1 wt ratio and dried in a vacuum oven at 65 �C for 5 h. The 
coin cells were assembled in an argon-filled glove-box with sodium 
metal as the counter electrodes and reference electrodes. 1 M NaClO4 
(PC: EC¼ 1:1 with 5% FEC by volume) was used as the electrolyte, and a 
glass fiber film served as a separator. 

Galvanostatic charging and discharging measurements of the 
assembled cells were carried out at different current densities of the 
voltage range of 0.005 V–2.0 V versus Naþ/Na by using a Land 
(CT2001A, Wuhan) battery cycling machine. Cyclic voltammetry (CV) 
was executed by using a Solartron analytical electrochemical worksta
tion at a scan rate of 0.1 mV s� 1 between 0 and 2.5 V (vs. Naþ/Na) at 

room temperature. 

2.4. Nanobattery setup 

The sodiation reaction was conducted inside TEM by the nanobattery 
setup on one homemade holder (Fig. S9), which is developed at the 
Center for X-Mechanics, Zhejiang University. It is composited by a 
compact four-degree freedom (positioning in X, Y, Z-directions plus self- 
rotation) nano-manipulator and in situ electrical biasing functions. Two 
kinds of SnS2 nanoparticles were held with semicircular carbon film 
after shearing on one end of Au rod. Sodium metals were sketched by a 
tungsten probe and acted as the counter electrode in the Na ion batte
ries. The sodiation reaction occurs when a negative bias of ~2.5 V was 
applied between the two electrodes, and on the contrary, the des
odiation reaction would be triggered once turn the bias to be positive. 
The whole morphology and microstructure evolutions were studied by 
in situ TEM mode and diffraction mode in real time with the dosage rate 
of ~100 e-/(nm2 S). 

2.5. First-principles calculations 

All the first-principles density functional theory (DFT) calculations 
were conducted using the Vienna Ab initio Simulation Package (VASP) 
[12–15] within the projector augmented wave (PAW) formalism [16] 
and the Perdew-Becke-Ernzerhof (PBE) approximation [17] was 
employed to deal with the exchange-correlation potential and vdW-D2 
functional was adopted including a self-consistent van der Waals 
(vdW) correction [18]. Two different sets of parameters were used for 
configuration energy sampling and accurate total energy determination. 
For accurate total energy determination, a plane wave basis with a cut 
off energy of 520 eV and Γ-centered k-meshes with a density of 8000 
k-points per reciprocal atom were used. For coarse energy sampling, 
energy cutoffs of 300 eV for the plane wave basis set was used with 
Γ-centered grids of approximately 4000 k-points per reciprocal atom. 

2.6. Search for the non-equilibrium intercalation phases during sodiation 

We used the Non-Equilibrium Phase Search (NEPS) method [19–21] 
to search for the non-equilibrium phases during the intercalation reac
tion process of SnS2 by exploring geometrically distinct Na/Vacancy 
configurations on possible insertion sites of SnS2 at different composi
tions (Na/vacancy ratios). It is assumed that during the non-equilibrium 
sodiation reaction, Na-ion diffusion is faster than Sn/S ions and there
fore, Na-ion(s) can take any energetically favorable unoccupied sites 
while the migration/relocation of Sn/S ions is limited. The method then 
proceeded as follows: i) Identify all possible insertion sites in the SnS2 
structure using Materials Interface (MINT) [22]. We built a supercell 
containing 6 Sn4þ and S2� ions with 12 empty sites in total. ii) All 
symmetrically different configurations were then generated using Enum 
[23,24] for a series of compositions Nax V3-xSnS2 (0 < x < 3, V denotes 
vacancy). iii) Total energies of all configurations were sampled using 
settings described in the method section. iv) For each composition, 
corresponding structures were ranked by their total energies with the 
lowest three structures further relaxed in DFT with the accurate settings. 
We then calculated the formation energies of selected structures 
following reaction: SnS2 þ xNa → NaxSnS2. v) Build the sodiation 
convex hull using the formation energies with the composition points on 
the hull were determined to be the non-equilibrium intermediate 
phases. 

2.7. Voltage profile calculations 

The average sodiation voltage (relative to Na/Naþ) can be computed 
using the negative of the reaction free energy per Na added/removed, as 
shown in Equation (1) [25]: 

Z. Ma et al.                                                                                                                                                                                                                                      



Nano Energy 67 (2020) 104276

3

V ¼
ΔGf

FΔNNa
(1)  

where F is the Faraday constant, ΔNNa I s the amount of Na added/ 
removed and ΔGf is the (molar) change in free energy of the reaction. 
Considering a two-phase reaction between NaxSnS2 and NaySnS2: 
NaxSnS2 þ (y - x) Na ➝ NaySnS2, ΔGf can be approximated by the total 
internal energies from DFT calculations neglecting the entropic contri
butions (0 K), 

ΔE¼E
�
NaySnS2

�
� EðNaxSnS2Þ � ðy � xÞEðNametalÞ (2)  

where EðNaySnS2Þ and EðNaxSnS2Þ are the DFT total energies at the 
respective compositions. The neglect of entropic contributions means 
that the lithiation voltage profiles will follow the T¼0K ground state 
convex hull and consist of a series of constant voltage steps along the 
two-phase regions of the convex hull, separated by discontinuities which 
indicate the single phase compounds on the hull. It is worth mentioning 
here that, in practice, sodiation/desodiation do not necessarily proceed 
through two-phase reactions. Thus, the calculated T ¼ 0 K voltage pro
files should be viewed as an approximation to the actual voltage profiles 
[26]. The voltage drops in the profile become more rounded at finite 
temperatures (e.g., room temperature) due to entropic effects [27]. 

3. Results and discussion 

These two kinds of as-synthesized powders are identified by X-ray 
diffraction (XRD) pattern as trigonal SnS2 phase (JCPDS No. 23–0677) 
with space group: P3m1, lattice constants: a ¼ 3.645 Å and c ¼ 5.8911 Å 
(Fig. S1a); and hexagonal SnS2 structure (JCPDS No. 89–3198), showing 
space group: P63mc, lattice constants: a ¼ 3.645 Å and c ¼ 11.802 Å 

(Fig. S1c). Meanwhile, the XRD patterns indicate the high purity and 
well crystallization of both the two kinds of SnS2 powders. 

The atomic arrangements of Sn and S in both trigonal and hexagonal 
SnS2 along [001] and [110] axis zone are representatively revealed by 
scanning TEM high-angle annular dark-field (STEM-HAADF) observa
tions (Fig. 1a-b and e-f), respectively. In Fig. 1a, the brighter atoms are 
determined to be Sn atoms due to their larger atomic number compared 
to that of S [28], while the brighter atoms belong to Sn-S atom groups in 
Fig. 1e. According to Fig. 1b and f, the sandwich-like Sn-S group cor
responds to a well-defined layered structure along [001] directions, 
providing open channels to facilitate fast alkali ion intercalation and 
diffusion. As shown in Fig. 1c and Fig. S1b, the trigonal SnS2 plates have 
the width of 400–600 nm and thickness around 50 nm, which is some
what smaller than that of hexagonal SnS2 plates in Fig. 1g and Fig. S1d. 
One individual plate has an excellent single crystal structure revealed 
clearly by the inset SAED pattern taken from [001] zone axis of both 
trigonal and hexagonal phases, as shown in Fig. 1c and Fig. 1g. Trigonal 
SnS2 is 2H polytype due to two sulfur layers in one unit cell [29], and the 
structural symmetry of S and Sn atom layers is [(cBa)]n when viewed 
along [110] direction (see Fig. 1d), where Sn atom layer (labeled with B) 
locates at bilevel S atom layers (labeled with c and a). However, 4H 
polytype of hexagonal SnS2 has four sulfur layers in one unit cell, S and 
Sn atom layers are stacking with the order of [(bCa)(cBa)]n, where two 
Sn atom layers (C and B) are situated between the two nearest-neighbor 
S atom layers (b and a, c and a), respectively. Even though the interlayer 
distances are same for the 2H and 4H SnS2 [30], the structural symmetry 
difference in the polytype periodicity will directly affect the physical 
and chemical properties of materials like variation of the bandgap [31]. 
Alkali ions can intercalate into the octahedral and tetrahedral sites of S-S 
interlayers in 2D layer SnS2 in sequence, because the octahedral sites 
have the lowest energy for ions intercalation [9,32]. 

Fig. 1. Characterization of SnS2 nanoplate with 
different structural symmetry. The structural and 
morphological image of trigonal (a–d) and hexago
nal (e–h) SnS2 nanoplate. (a) and (e) are the atomic 
scale ACTEM images are observed along [001] di
rection, (b) and (f) are along [110] direction. (c) and 
(g) are the typical TEM topographies of an individual 
trigonal and hexagonal SnS2 nanoplate, respectively, 
the insets in (c) and (g) are the corresponding 
selected area electron diffraction (SAED) pattern 
viewed along zone axis [001]. The Atomic model of 
the 2H trigonal P3m1 SnS2 in (d) and 4H hexagonal 
P63mc SnS2 in (h), showing a [(cBa)]n and [(bCa) 
(cBa)]n structural symmetry of S and Sn atom layers, 
respectively.   
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Density functional theory (DFT) calculation predicts the formation of 
possible intermediate phases of trigonal and hexagonal SnS2 in Na 
insertion processes, as shown in Fig. 2. It is generally believed that the 
sodiation of 2D metal sulfides will start from the intercalation of Na ions 
into the S-S interlayers bonded by the weak van der Waals force [33]. 
Three intermediate phases may form during first sodiation of trigonal 
P3m1 SnS2, which are denoted as AA1 (NaSnS2), AA2 (NaSnS2) and AA3 
(NaSnS2). Hereinto, AA1 structure has the lowest relative energy and is 
the most stable (Fig. 2). As to hexagonal P63mc SnS2, AB1 (NaSnS2) is 
much more stable than AB2 (NaSnS2). For both AA1 and AB1 NaSnS2, all 
sodium ions are inserted into octahedral sites of two different SnS2 unit 
cells. The main difference between these two structures are the stacking 
sequence of S, Sn and Na atoms in their corresponding unit cell. For AA1 
NaSnS2, Na ions are respectively inserted into one quarter and three 
quarters height of the four edges along c axis, the atomic stacking 
sequence is Sn-S-Na from the side-view direction. From top-view di
rection, Na atoms are lined in one column with Sn atoms, two column of 
S atoms are respectively located at one quarter and three quarters of the 
crosscourt direction of two Sn atoms with acute angle. Whereas for AB1 
NaSnS2, Na ions are intercalated into the unit cell body with stacking 
sequence of S-Sn-S-Na along side-view direction. From top-view direc
tion observation, sodium ions are located at one quarter (Sn-Na-S col
umn) and three quarters (S-Sn-Na column) of the crosscourt direction of 
two S atoms with acute angle under different depth, respectively. 

Fig. 3 and Movie S1a show the real-time microstructure evolutions of 
SnS2 in Na insertion through in situ selected area electron diffraction 
(SAED), which are collected at a low electron beam dose to reduce the 
radiation damage to the sample [33]. As indicated in Fig. 3a, the 
real-time SAED pattern reveals d-spacing of 3.135 Å and 1.810 Å belong 
to the (100) and (110) of pristine trigonal SnS2, respectively. As Na ion 
insertion, the lattice spacing keeps constantly enlarging. That means the 
formation of semi-stable intermediate phases before initially trig
onal/hexagonal SnS2 phase completely transforms to AA1/AB1 NaSnS2. 
They are separately denoted as NaxSnS2 (0<x<1) and NaySnS2 (0<y<1). 
After reacting to 1min 21s, the diffraction spot (110) splits to two weak 
spots, as shown in the inset picture of Fig. 3b, indicating a characteristic 
of the two-phase coexistence. They can be ascribed to the SnS2’s d110 
(1.803 Å) and NaxSnS2’s d110 (1.922 Å), respectively. When the reaction 
proceeds to 2 min, the spot with the spacing of 1.803 Å disappeared and 
the spacing of remained spot can be calculated to 1.947 Å (Fig. 3c). With 
sodium further intercalation to 2min 27s, the diffraction spot of (100) 
splits to two spots with respective d-spacing of 3.309 Å and 3.328 Å, and 
the (110) d-spacing are enlarged to 1.973 Å. Moreover, these three 
diffraction spots keep moving close toward (000) (Fig. 3d), meaning that 
the value of x in the corresponding NaxSnS2 phase keeps increasing. 
Finally, after 2min 34s, the spacings of diffraction spots of (100) and 
(110) extend to 3.367 Å and 1.985 Å, and the AA1 NaSnS2 (x¼1) phase is 

entirely formed with theoretical volume expansion of 42.27%. 
Supplementary video related to this article can be found at https 

://doi.org/10.1016/j.nanoen.2019.104276. 
Similarly, Fig. 3f–j and Movie S1b demonstrate real-time SAED 

evolution of hexagonal SnS2. Fig. 3f shows the [001] SAED pattern of 
pristine hexagonal SnS2. When Na ion intercalation lasts for 6s, the 
(110) diffraction spot splits to two corresponding to SnS2’s d110 
(1.843 Å) and NaySnS2’s d110 (1.896 Å), respectively. After 3min 59s, 
the d110 of NaySnS2 enlarges to 1.850 Å and 1.942 Å (Fig. 3h). As the 
intercalation reaction carries out for 5min 30s, one spot totally disap
pears and the spacing of remaining spot increase to 1.954 Å (Fig. 3i), 
accompanying with the value of y in NaySnS2 further magnifying. 
Finally, after 6min 38s (Fig. 3j), the d-spacings of (110) and (100) in
crease to 1.983 Å and 3.328 Å respectively, which can be indexed to 
hexagonal AB1 NaSnS2 phase with theoretical volume expansion of 
42.27%. Slightly moving closer to {000} of all of the diffraction spots in 
Fig. 3, mainly results from the expansion of the unit cell (trigonal SnS2: 
10.33% for a axis, and 18.6% for c axis; hexagonal SnS2: 10.29% for a 
axis, 16.96% for c axis). The initial phase transits from layered SnS2 to 
AA1 or AB1 NaSnS2. Besides, the theoretical calculation results further 
prove that the electrochemical sodiation starts from Na ions successively 
taking up octahedral and tetrahedral sites between two single SnS2 
layers in both trigonal and hexagonal SnS2 phases (Fig. S2). 

When the intercalation number of Na ions archive to the critical 
value, SnS2 single crystal is generally rearranged and then finally 
collapsed, indicated by the disappearance of the ordered diffraction 
spots and appearance of the broad diffraction rings. That stands for the 
happening of the following conversion and alloying reactions upon 
further sodiation. The yellow arrows in Fig. 4 represent the sodiation 
processes, while the blue arrows represent the desodiation processes. 
The diffused diffraction rings appeared outside of {100} can be indexed 
to SnS (Orthorhombic, Pbnm, JCPDS No. 39–0354), and it shows up in 
both trigonal and hexagonal SnS2 (Fig. 4, Stage I; Movie S1a, b). With 
the vanishing of the single crystal matrix, the diffraction ring become 
β-Sn polycrystals and gets clearer and sharper, implying the β-Sn phase 
gradually grows up (Fig. 4, Stage II), the amorphous Na2S may form in 
the meantime [34]. Continually reacting with Na ions, amorphous 
Na15Sn4 (green ring) and polycrystal Na2S (yellow ring) are forming 
with the occurrence of the blur diffraction rings (Fig. 4, Stage III), as 
seen in Movie S2. This kind of phase transformation is similar to the 
previous reports [35,36]. And further proved with identifying Na15Sn4 
by the ex-situ XRD characterization in half-cell testing in our experi
ments, as shown in Fig. S3. However, due to the incomplete reaction of 
the electrode materials, some metallic β-Sn phases remain after 
discharge to 0.005 V in the half-cell testing. When an opposite voltage is 
applied, the broaden diffraction ring is successively replaced by sharper 
ones, implying that Na15Sn4 are gradually dealloyed to Na metal and SnS 

Fig. 2. DFT-calculated prediction atomic models of Na insertion intermediate phases of trigonal and hexagonal SnS2 and the corresponding energies of different 
simulated phases. 
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Fig. 3. Real-time SAED patterns of trigonal (a–e) and hexagonal SnS2 (f–j) individual nanoplate upon Na insertion.  

Fig. 4. Real-time SAED patterns of trigonal and hexagonal SnS2 individual nanoplate upon Na insertion in conversion-alloying reaction. The yellow arrows represent 
sodium ion insertion and the blue arrows indicate sodium ion extraction. 
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phase. The early report showed that controllable removal of chalcogen 
atoms due to electron irradiation may cause rhombohedral layered SnS2 
transform into highly anisotropic orthorhombic layered SnS [37], so XPS 
and XRD are used here in addition to identify the chemical state of Sn 
and S in Stage V, indicating the existence of Sn2þ and S2� (Fig. 5, Fig. S4 
and Fig. S10). Thus the final phase after desodiation can be ascribed to 
SnS. Moreover, Na2S phase vanishes and may transform to amorphous 
polysulfides (a-polysulfides) [38], as shown in Stage IV - V of Fig. 4 and 
Movie S3. In the following cycles, the reversible alloying reaction is 
taken place between SnS and Na15Sn4 phase (Fig. 4, Stage VI and Movie 
S4). Generally, the conversion reaction between NaxSnS2 and Sn, Na2S 
phase is considered to be irreversible [39,40]. However, the Na2S phase 
is reversibly transformed to polysulfides (Na2Sm, 2<m<8) in des
odiation. This may originate from better reaction kinetics with short 
diffusion distance owing to individual nanoparticle testing. Similar 
phenomenon has been found in other kinds of metal sulfides, such as CuS 
[41] and MoS2 [42] electrodes. 

Supplementary video related to this article can be found at https 
://doi.org/10.1016/j.nanoen.2019.104276. 

Na-ion diffusion difference has been studied by monitoring the axis 
change along [001] and [100] directions, revealing anisotropic volume 
expansion in both trigonal and hexagonal SnS2 phases during sodiation 
process. As shown in Fig. S5, the dimensional increment along [001] 
direction is almost four times larger than that of [100] direction due to 
the diffusion path preference and insertion in S-S interlayers of Na ions 
in 2D materials [43]. It is worthy of mentioning that hexagonal SnS2 
plates can’t shrink to the original size after full desodiation (Fig. S6). The 
spacing of lattice plane vertical to incident beam ([001] direction), is 
identified as 4.19% larger than that in full sodiation states. That means 
the closed-packed single-crystal is dramatically loosened by many de
fects forming and involvement in the (de)sodiation reaction. 

Fig. 5a shows of CVs of trigonal/hexagonal SnS2 electrodes of half- 
cell examined from 0 to 2.5 V at a scanning rate of 0.1 mV s� 1. Three 
visibly reduction peaks exist in the first cathodic process, i.e. 1.7 V, 
1.1 V, and the range from 0.3 V to 0.7 V. They are respectively related to 
the Na-ion intercalation, the formation of solid electrolyte interphase 
(SEI) layer, and the synergetic conversion and alloying reactions [44, 
45]. Meantime, three corresponding oxidation peaks appear at around of 
0.3 V, 0.7 V, and 1.2 V, corresponding to the desodiation of Na-Sn and 
Na-S phases; reformation of SnS nanoparticles and polysulfides. All the 
reaction steps have also been identified in the charge/discharge voltage 

plateaus in Fig. S7. 
To confirm the chemical state of S in the (de)sodiation process, X-ray 

photoelectron spectroscopy (XPS) has been used to investigate the 
valence changes of sulfur at different states in cycles, as shown in 
Fig. 5b. The binding energy (BE) of S 2p doublets in SnS2 electrode of 
open-circuit voltage (OCV) is found to be 161.9 � 0.1 eV (S 2p3/2) and 
163.3 (S 2p1/2) in agreement with the former study [46,47]. When it is 
reduced, the main peak position shifts as expected from S2� to lower 
oxidation states to lower BE [48,49]. After discharging to 0.005 V, a shift 
in the sulfur peak is observed to 160.16 (S 2p3/2) and 161.23 eV (S 
2p1/2), which can be ascribed to the formation of Na2S [50–52]. And the 
conversion reaction leads to the broadening of the peaks, the region 
within the binding energy between Na2S and elemental sulfur is most 
reasonably assigned to the sodium polysulfides Na2Sm (2<m<8) [49]. 
When the electrode is charged to 2.5 V, one dual peak at 161.0 eV and 
162.4 eV corresponds to S 2p3/2 and S 2p1/2 of SnS [53], respectively. 
The other dual peaks have higher BE of 161.8 eV and 163.1 eV, which 
means the formation of polysulfides [Sm]2- [54]. 

Based on the analysis for the discharge/charge process above, the 
chemical reactions to electrochemical cycles can be written as below,  

SnS2 þ Na → NaSnS2                                                                      (3)  

NaSnS2 → SnS þ Na2S                                                                    (4)  

SnS þ 2Na ↔ β-Sn þ Na2S                                                              (5)  

4β-Sn þ 15Na ↔ Na15Sn4                                                                 (6)  

Na2S ↔ Na2Sm (2<m<8)                                                                 (7) 

To investigate the phase transformation of SnS2, density functional 
theory (DFT) calculations are introduced to calculate the computional 
formation energy of all compounds in a ternary Na-Sn-S ground state 
convex hull. All compounds within the Na-Sn-S phase space were 
adopted from the Inorganic Crystal Structure Database (ICSD) [55]. 
Fig. 6a shows the Na-Sn-S phase diagram (0 K) which is constructed by 
calculations within the Open Quantum Materials Database (OQMD) 
framework [56]. All thermodynamically stable compounds are marked 
on the phase diagram. The tie-line between SnS2 and Na, which goes 
through various intermediate phases and multi-phase zones, is the 
equilibrium sodiation reaction pathway of SnS2. These intermediate 
phases correspond to various sodiation reactions as listed in Table S1, 
where the voltages and capacities are calculated as well. 

Fig. 6c shows calculated equilibrium voltage profile has a great 
agreement with the experimental curves at high Na-content (4 < x < 31/ 
4) which corresponds to the alloying reactions. However, the initial 
sodiation voltage segment exhibits large difference with the experi
mental counterpart. Non-equilibrium sodiation process of ground state 
SnS2 (trigonal) has been involved to ulteriorly fit the results by using an 
in-house code described in the method section. Elemental reference 
states (Na, Sn, S) were obtained by fitting to experimental formation 
energies, from the SGTE substance database (SSUB) and a database 
constructed by P. Nash et al. [57–60]. Two kinds of intermediate 
intercalation phases, i.e. NaxSnS2 with x of 0.25, and 1, are identified as 
shown in Fig. 6b. Initially (x ¼ 0.25), Na-ions are predicted to occupy the 
Oh empty sites and the system reaches the NaSnS2 phase when all the Oh 
sites are taken (Fig. 6c). Na-ions then start to occupy the empty Td sites 
and the system begins to lose structural stability, triggering the subse
quent conversion reactions. At x ¼ 2, the system is predicted to be phase 
separated to SnS and Na2S. Calculated non-equilibrium voltage profile 
(0 < x < 2) shows great agreement with the experimental curve as 
shown in Fig. 6c and Fig. S8. Since the non-equilibrium intercalation 
sodiation lowers the voltage level, the following conversion stage 
(2 < x < 4) also occurs at a lowered voltage, which also agrees with the 
experimental plateau (Fig. 6c). After all the Sn-ions being reduced to 
their metallic states, the sodiation proceeds in the alloying manner with 
stable intermediate phases including NaSn2, NaSn, Na9Sn4, Na15Sn4, and 

Fig. 5. (a) CVs of the first three cycles of electrodes using trigonal/hexagonal 
SnS2 as active materials; (b) XPS spectra for S 2p levels of hexagonal SnS2 at 
open circuit voltage, first sodiation to 0.005 V, and first desodiation to 2.5 V. 
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the voltage profile keep decreasing as observed in the experiment 
(Fig. 6c). 

4. Conclusions 

A comparative mechanistic study and reaction dynamics research of 
two kinds of SnS2 with different structural symmetry, i.e. trigonal 
(P3m1) and hexagonal (P63mc), have been deeply conducted in the (de) 
sodiation processes by the combing techniques of in situ TEM, ex situ XPS 
and the first-principles calculations. Upon Na ion insertion, two-phase 
coexistence phenomenon is observed in both trigonal and hexagonal 
SnS2. When all the Oh sites are occupied by Na-ions, stable intermediate 
phase of AA1 NaSnS2 is formed based on the trigonal SnS2 and, however, 
AB1 NaSnS2 shows up based on the hexagonal SnS2 matrix. Na ions tend 
to insert into the S-S layers along [001] direction, leading to much larger 
increment along [001] than other directions. After the empty Td sites are 
taken up by Na ions, the system begins to lose structural stability, trig
gering the subsequent conversion and alloying reactions. The 

intercalation phases of AA1/AB1 NaSnS2 sequentially transit to SnS/ 
β-Sn and Na2S, then to Na15Sn4 and Na2S upon full sodiation. On the 
contrary, they return to SnS and Na2Sm (2<m<8) phases when Na ions 
complete extraction. Our findings lead to a mechanistic understanding 
of nanoscale (de)sodiation behavior of SnS2 with different structures and 
may provide valuable implications to other 2D metal chalcogenides. 
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