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Dynamic imaging of crystalline defects
in lithium-manganese oxide electrodes during
electrochemical activation to high voltage
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Crystalline defects are commonly generated in lithium-metal-oxide electrodes during cycling

of lithium-ion batteries. Their role in electrochemical reactions is not yet fully understood

because, until recently, there has not been an effective operando technique to image dynamic

processes at the atomic level. In this study, two types of defects were monitored dynamically

during delithiation and concomitant oxidation of oxygen ions by using in situ high-resolution

transmission electron microscopy supported by density functional theory calculations. One

stacking fault with a fault vector b/6[110] and low mobility contributes minimally to oxygen

release from the structure. In contrast, dissociated dislocations with Burgers vector of

c/2[001] have high gliding and transverse mobility; they lead to the formation, transport

and release subsequently of oxygen related species at the surface of the electrode particles.

This work advances the scientific understanding of how oxygen participates and the struc-

tural response during the activation process at high potentials.
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Lithium-ion batteries are today’s dominant electrical energy
storage technology; they continue to attract research and
development support to improve their specific energy,

power, durability, cycling stability, and safety for emerging
markets such as electric vehicles1,2. Conventional cathode mate-
rials are typically lithium transition metal oxides and phosphates,
such as LiCoO2 (LCO)3, LiNi1− x− yMnxCoyO2 (NMC)4,
LiMn2O4 (LMO)5, and LiFePO4 (LFP)6, that operate typically by
(de-)intercalation of lithium during charge and discharge when
the transition metal ions are oxidized and reduced, respectively,
to store and release electrical energy. In this case, the specific
capacity of the cathode, and hence the energy of the cell, is limited
by the number of electrons per transition metal ion that can
participate in the redox reactions. Lithium-rich metal-oxide
electrodes that operate by both cationic (e.g., Mn3+↔Mn4+) and
anionic (e.g., O2−↔O1−) or hybridized redox reactions are
attractive materials because they have the potential to increase
the energy storage capacity of lithium-ion batteries. Examples
of materials that operate by anionic electrochemical reactions are
Li2Ru1−ySnyO3

7,8, Li3NbO4
9, Li3IrO4

10, Li5FeO4
11, Li2Mn1−y

MyO2F12, Li4Mn2O5
13, and Li4(Mn,M)2O5

14. The reversible
capacity of these reactions in lithium-rich materials is enabled
by highly covalent metal-oxygen bonding10 or by non-bonding
oxygen p orbitals generated by local lithium-excess configurations
around O in the structure11,14–16.

Li2MnO3 has a theoretical capacity of 459 mAh/g, which cor-
responds to the extraction of 2 Li per formula unit, when
Li2MnO3 is activated chemically with acid17 or electrochemically
above 4.5 V vs. Li+/Li in lithium cells18. Lithium extraction,
hydrogen-ion exchange, and oxygen loss reactions trigger a
conversion of the parent layered structure to one with spinel-like
features, which severely compromises the practical capacity,
electrochemical potential, and cycling stability of the electrode
and cell17–21. However, when integrated with a LiMO2 compo-
nent, the resulting xLi2MnO3·(1− x)LiMO2 composite structures
deliver a rechargeable capacity of more than 250 mAh/g after
electrochemical activation of the Li2MnO3 component above
4.5 V22. Unfortunately, structural instabilities and voltage fade of
these high capacity electrodes during cycling have thus far pre-
cluded their use in commercial lithium-ion battery products23–29.
Although pure Li2MnO3 is now viewed as an unrealistic cathode
material for commercial lithium-ion battery applications due to
its rapid degradation, the underlying mechanism of the failure is
unclear. Here we reported experimental finding and theoretical
modeling results, which provides deeper insights on the under-
lying failure mechanisms.

Despite the progress made, a comprehensive understanding of
the complex reaction mechanisms that occur during the electro-
chemical activation of structurally integrated xLi2MnO3·(1− x)
LiMO2 electrodes is still lacking. Such knowledge is critical if the
limitations of anionic reactions are to be overcome. For this rea-
son, in situ transmission electron microscopy (TEM) images of a
Li2MnO3 electrode were recorded to monitor the dynamic struc-
tural changes that occur during the initial charge of the cell. A
particular objective was to search for clues that might unravel the
mechanism by which oxygen is lost from the Li2MnO3 electrode
structure, while maintaining the tetravalent oxidation state of the
manganese ions according to a simplified, ideal anodic electro-
chemical reaction22,30–33:

Li2MnO3 ! MnO2 þ 2 Liþ þ 1=2 O2 þ 2e�: ð1Þ
Structural changes and oxygen loss that occur during deli-

thiation of Li2MnO3 have already been reported by several
groups, for example, by Rana et al.30 and Yu et al34. These studies
disclose, without specifying a mechanism, that delithiation occurs
concurrently from both the lithium layer and the transition metal

layer of the Li2MnO3 structure with the speculation that oxygen
diffusion occurs sluggishly throughout the charged Li2MnO3

structure before O2 gas is released at the particle surface35–37.
Although defects are commonly observed in electrochemically

cycled lithium-metal-oxide electrodes38,39, they are often not
mentioned when describing reaction mechanisms40. While it
is still not clear if there is a connection between crystalline
defects and oxygen redox and evolution reactions, defects
induced into electrochemically cycled Li2MnO3 electrodes have
been widely observed38,39. Stacking faults in the Mn-rich
layers have been detected through X-ray diffraction and TEM
measurements in both pristine Li2MnO3

34,41,42 and in partially
delithiated “Li2− xMnO3” samples39. Other crystallographic
defects, such as partial dislocations, have also been identified
during the charging of Li2MnO3

40. While these planar defects
are generated to release mechanical strain and stress, their
contribution to electrical energy storage and oxygen release in
lithium-ion batteries remains unclear.

In this study, the relationship between crystalline defects and
lithium extraction and oxygen evolution reactions in Li2MnO3

has been probed in detail. In situ TEM combined with density
functional theory (DFT) calculations have been used to study
the structural evolution of a Li2MnO3 electrode during the
first charge (delithiation) and the mechanism of oxygen loss.
The in situ TEM complemented by DFT calculation approach
has proved to be an effective method for observing and
analyzing the dynamic evolution of microstructure in battery
electrodes during lithiation/delithiation cycles43–46. First, it
allowed us to identify dynamic defects that appear in the
Li2MnO3 structure during the electrochemical reaction, which
are different to those that exist in the pristine state. Second, the
results shed light on the reversibility of oxygen redox reactions
at the atomic scale and the irreversibility of reactions that
are associated with oxygen loss, which have significant impli-
cations for lowering the cycling efficiency of the electrode,
particularly on the first cycle. Given the nature of electro-
chemical lithium extraction reactions, we presume that these
dynamically formed defects result from changes in localized
lithium-ion concentration. Two types of defects were observed:
One is a stacking defect with a fault vector of b/6[110], which
has low activation energy for mobility that we tentatively
associate with a reversible oxygen redox reaction (i.e., without
oxygen loss). The second is a dissociated dislocation with
Burgers vector of c/2[001] that prompts the formation and
release of O2 at high electrochemical potentials (above 4.5 V),
thereby contributing to capacity loss during the initial charge/
discharge cycle. These discoveries and observations have pos-
sible implications for designing new materials and controlling
reversible oxygen redox reactions in high capacity lithium-
metal-oxide electrodes, notably those containing a Li2MnO3

component.

Results
As synthesized Li2MnO3 and its defects. Li2MnO3 has a layered
monoclinic structure (space group C2/m), with an atomic con-
figuration, Li[Li1/3Mn2/3]O2, in which layers of lithium (Li)
alternate with layers of lithium and manganese (Li1/3Mn2/3)
wherein the Li:Mn ratio is 1:2. (Supplementary Fig. 1). In the
manganese-rich layer, the Li and Mn ions are arranged in a
honeycomb fashion as illustrated in Supplementary Fig. 2a.
Varying the stacking order of the manganese-rich (Li1/3Mn2/3)
layers influences the crystal symmetry of the system. For example,
as shown in the Supplementary Fig. 2b, the addition of a second
manganese-rich layer generates “close-packed” AB stacking
(note: with reference to the metal cation layers only)47. The
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addition of the third layer41 would provide ABC1 and ABC2

orderings, corresponding to two basic stacking sequences:
C2/m (ABC1) and P3112 (ABC2). More complex stacking order-
ings (e.g., well-ordered C2/c48 and other faulting arrangements39)
can be achieved by combining these two basic sequences in
different ways.

Stacking faults exist in pristine Li2MnO3 samples when
synthesized at 800 °C in air39,40,42,49. These planar defects can
clearly be seen at the domain boundaries of two orientation
variants, namely the [100] and [110] domains in Fig. 1a; the
stacking fault disorder in pristine Li2MnO3 is confirmed by the
offset and streaking of the diffraction spots in the corresponding
TEM diffraction pattern shown in Fig. 1b. The defect shown in
Fig. 1b is the result of a shear of the (001) layers; this defect can be
described alternatively as a stacking fault bounded by a partial
dislocation with a Burgers vector b/6[110]50. These planar defects
release and accommodate strain and stress in the Li2MnO3

crystals. Similar defects have been observed by others in partially
delithiated and relithiated samples39, implying that these defects
are active sites during charge and discharge reactions but might
not participate significantly in oxygen loss reactions.

Dynamic defects generated in delithiation. In situ TEM images
recorded during the initial stages of electrochemical delithiation,
that is, after 0, 301, and 408 s, are depicted in Fig. 1c–e. A
description of the cell design, which we have used effectively in
previous studies of lithium insertion electrodes, such as Co3O4

45,
is provided in detail in the Supplementary Information section.
The structural changes that occur by the glide of the b/6[110]
dislocation during delithiation (Fig. 1c–e) were interpreted with
the aid of structural models predicted by DFT calculations
(Fig. 1f–h). The data show that, on gliding, the stacking sequence
of a (001) lattice plane in a [100] domain changes from ABC1 in
pristine Li2MnO3 to an intermediate AC2C1 arrangement and
subsequently to AC2B. During this process, the (001) lattice
spacing increases from ~0.47 to ~0.52 nm. The DFT models
show, as expected, that the stacking fault defects are induced by

lithium-ion deficiencies and resulting crystal strain, making it
energetically favorable for the (001) lattice planes to glide during
the early stages of delithiation (Fig. 1f–h).

The in situ TEM studies revealed another defect type, not
observed in the pristine Li2MnO3 electrode, but uniquely
generated by the delithiation process. It can be described as a
dissociated partial dislocation with Burgers vector c/2[001] with
a simultaneous transverse movement or “climbing” of the partial
dislocation. More precisely speaking, the defect is a dissociated
dislocation consisting of an antiphase boundary (with fault
vector of 1/2[001]) and the partial dislocation bounded to the
antiphase boundary. The “fault plane” of the antiphase boundary
is in the (100) plane with the atomic structure of the defect
shown in Fig. 2b. Climbing of the dislocation refers to the
movement of the defect across the (100) plane, while gliding
refers to the movement in the (100) plane. This information
leads us to believe that this active defect motion is largely
responsible for the transport of an oxidized oxygen species within
the Li2MnO3 crystal and the ultimate release of oxygen gas at the
surface. Experimental (TEM) and computational evidence for
this hypothesis is provided in Figs. 2–4.

As shown in the TEM image (Fig. 2a) and the computer model
of a slightly delithiated Li2− xMnO3−δ structure (Fig. 2b), in
which x and δ are both small, defects exist as dissociated
dislocations, or stacking faults, bounded by two partial disloca-
tions. As the c/2[001] Burgers displacement vector is perpendi-
cular to the (001) lattice plane, the defect cuts the Li2MnO3

crystal into small fractions along the (001) plane. When further
lithium ions are electrochemically removed from the structure,
the density of defects increases significantly, as indicated by the
growing number of green arrowheads in Fig. 2c–f. Along the fault
plane (100), contrast of the white spots corresponding to Mn
columns becomes weak, possibly due to the Mn migration in the
Li layer. It is thus suspected that the Mn migration is related to
formation of the defect, as the migration happens in the core of
the defect.

A comparison of an experimental voltage-composition plot of a
Li/Li2MnO3 cell (black line) with the calculated plot of a cell
(colored lines) with a Li2MnO3 electrode containing defects is
provided in Fig. 2g. The b/6[110] defects are believed to be
associated predominantly with the first step (4.89 V), that is,
without oxygen loss, whereas the c/2[001] defects are believed to
be associated predominantly with the second step (5.03 V), that
is, with oxygen loss. Without the c/2[001] defects, the second step
was calculated to occur at a slightly higher voltage (5.13 V).
Figure 2h illustrates a schematic evolution of the c/2[001] defects
and a generalized mechanism by which oxygen species can be
transported through a highly defective and faulted Li2MnO3

electrode structure before being released as fully oxidized O2 gas
at the surface.

Although dislocations that move transversely to a glide plane
in metal-oxide structures are unusual, the c/2[001] dislocation
formed dynamically during electrochemical delithiation of
Li2MnO3 can glide and climb with apparent ease. The evolution
of these defects (indicated by the green bars) as delithiation
progresses is highlighted in Fig. 3a–d; corresponding Fourier
filtered images, showing only the (001) lattice planes to
emphasize the perpendicular movement of the defects relative
to the (001) planes, are shown in Fig. 3e–h. The dislocations
glide progressively toward the right surface, as indicated by
the changing position of the blue “half-cross” markers with
increasing delithiation (reaction time). During this process,
the distance between defects narrows until they merge and
become one (Fig. 3d, h). The Li compositional gradient between
the surface and the core (and thus the strain caused) could be the
driving force for the climbing and gliding of the defects.
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Fig. 1 The exitance form and motion of stacking faults in lithium extraction
process. a Transmission electron microscopy (TEM) image of (001)
stacking faults in pristine Li2MnO3 with fault vector of b/6[110], which are
confirmed by a corresponding electron diffraction (b). During delithiation,
the gliding of the b/6[110] partial dislocation shears the stacking of the
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The creation of these defects during electrochemical delithia-
tion are dependent on lithium-ion vacancies and, in the absence
of oxidized manganese above 4+, on oxidized O2− species, as
proposed in Fig. 2b and referred to as O0 for simplicity and
convenience. The extent to which the O2− species is oxidized

(or hybridized) is not yet known. Furthermore, because the
c/2[001] dislocations are mobile and migrate towards the
surface upon further delithiation, “trapped” oxidized O2− species
in these structural defects can be transported from the interior of
a Li2MnO3 crystal to the surface, where they can either be
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released as O2 gas or, alternatively in the case of a conventional
lithium-ion cell, react with an organic liquid electrolyte solvent.
With this information, we tentatively propose that a dislocation-
assisted electrochemical reaction in which lithium is extracted
from Li2MnO3 ultimately with oxygen release could proceed as
follows:

(i) the formation of c/2[001]-induced defects during lithium
extraction,

(ii) the formation of oxygen vacancies within the defects with
oxidized O2− species residing at defect boundaries,

(iii) the gliding and “climbing” of the defects that transport
the oxidized O2− species to the crystal surface and,

(iv) combination reactions between O0 species and the release
of O2 molecules at the surface.

A computerized schematic of this process is provided in
Fig. 2h. Readers are encouraged to watch the videos of the in situ
TEM experiments provided in the Supplementary Information
section, in which the evolution and dynamic behavior of defects
during electrochemical delithiation of Li2MnO3 electrodes can be
observed in real time.

Oxygen release confirmed by DFT calculations. The release of
oxygen from Li2MnO3 was also assessed by calculating the O0

vacancy formation energy as a function of Li removal—a lower
ΔEForm

Vac value implying a more facile O extraction process, while a
negative ΔEForm

Vac value implies a spontaneous release of oxygen.
The calculations, mapped graphically in Fig. 4a, show that the
calculated oxygen-vacancy formation energy decreases with
increasing Li removal, but remains largely positive over the
compositional range (0.0 < x < 1.0), suggesting that lithium
extraction would have to be charge compensated by a partial
oxidation of the oxygen ions without any oxygen release. Spon-
taneous oxygen release is predicted to occur only after a large
amount of lithium has been extracted from an ideal Li2MnO3

structure, that is, Li2− xMnO3, x > 1.5. Such structural stability
seems highly unlikely particularly in a practical lithium cell
environment in which the highly oxidizing Li2− xMnO3 electrode
would be in direct contact with a reactive electrolyte solvent.
Figure 4b shows that the energy difference of Li2-xMnO3 with and
without c/2[001] defects becomes negative once approximately

one-half of the lithium ions have been extracted from Li2MnO3,
thereby providing clues about the composition at which energe-
tically favorable defects would form in an inert environment. The
formation of the c/2[001] defects will promote the O2 release at
a earlier stage. Of particular significance, however, is that the
calculations indicate that the c/2[001] defect boundary and the
lithium-depleted structure (e.g., x=1.875) contains short O-O
bonding distances (~1.5 Å) (Fig. 4c) relative to the non-bonding
distance of ~3.1 Å in pristine Li2MnO3, consistent with earlier
calculations reported by Benedek et al.51, thereby giving credence
to the mechanism suggested in this study.

Discussion
In summary, two types of stacking faults and corresponding
partial dislocations, formed during the electrochemical delithia-
tion of Li2MnO3 electrodes have been identified by in situ TEM
studies supported by DFT calculations. Defects with fault vector
of b/6[110] appear to have low activation energy and may con-
tribute to reversible oxygen redox behavior. On the other hand,
dissociated dislocations with Burgers vector of c/2[001] are cre-
ated at higher voltage (>4.5 V) and assist the transport of oxidized
oxygen species to the electrode surface where O2 is formed and
released irreversibly. The study reveals an important connection
between crystalline defects and the electrochemical behavior of
lithium-rich metal-oxide materials, which may pave the way for
further understanding and control of oxygen redox reactions,
particularly in high capacity Li2MnO3-stabilized electrodes for
lithium-ion batteries.

Methods
Synthesis of nanostructured Li2MnO3. All the chemicals used in the work are
analytically pure grade. Stoichiometric amounts of Li2CO3 and MnCO3 precursor
powders were thoroughly mixed and fired at 800 °C for 12 h. The heating rate was
2 °C/min and cooling rate was not controlled (furnace cooling). The obtained
powder sample was ground and sieved for the subsequent characterization and
electrochemical measurements.

In situ TEM. The open half-cell was constructed in an in situ electrical probing
TEM holder (Nanofactory Instrument). This holder has a dual-probe design, that
is, one Au rod is used as the sample holder with a small amount of nanostructured
Li2MnO3 attached to its tip; on the other side, a STM tungsten (W) probe driven by
Piezo-motor capable of 3D positioning with a step size of 1 nm was used to mount
Li metal. The W probe tip was scratched by Li metal strip and then affixed on the
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TEM holder inside an Ar-filled glove box. With an airtight cover, the TEM
holder was transferred to TEM column with limited exposure to air (~10 s), where
a layer of lithium oxide was grown on the surface of Li metal and acted as a solid
electrolyte for the nano-cell lithium-ion batteries. When the Au rod was positively
biased to 5 V, discharging for nanostructured Li2MnO3 nanoparticles occurred,
corresponding to the electrochemical delithiation. The in situ TEM is performed
on a field-emission JEOL-2100F transmission electron microscope, operated at
200 kV. The images are collected by a Gatan GIF Camera. The drift of the collected
images is corrected mathematically by the IMOD software.

First-principle calculations. DFT calculations reported in this study were con-
ducted via the Vienna Ab-initio Simulation Package with the projector augmented
wave potentials and the Perdew–Becke–Ernzerhof approximation was employed
to the exchange-correlation potential. A plane wave basis with a cutoff energy of
520 eV and Г-centered k-meshes with a density of 8000 k-points per reciprocal
atom were used for all calculations. All calculations were spin polarized, with Mn
atoms initialized in a high-spin configuration and relaxed to self-consistency.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its Supplementary Information files.
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