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5 and Alań Aspuru-Guzik*

Cite This: https://dx.doi.org/10.1021/acs.accounts.0c00785 Read Online

ACCESS Metrics & More Article Recommendations

6 CONSPECTUS: The ongoing revolution of the natural sciences by the advent of machine
7 learning and artificial intelligence sparked significant interest in the material science community
8 in recent years. The intrinsically high dimensionality of the space of realizable materials makes
9 traditional approaches ineffective for large-scale explorations. Modern data science and
10 machine learning tools developed for increasingly complicated problems are an attractive
11 alternative. An imminent climate catastrophe calls for a clean energy transformation by
12 overhauling current technologies within only several years of possible action available. Tackling
13 this crisis requires the development of new materials at an unprecedented pace and scale. For
14 example, organic photovoltaics have the potential to replace existing silicon-based materials to a
15 large extent and open up new fields of application. In recent years, organic light-emitting diodes
16 have emerged as state-of-the-art technology for digital screens and portable devices and are
17 enabling new applications with flexible displays. Reticular frameworks allow the atom-precise
18 synthesis of nanomaterials and promise to revolutionize the field by the potential to realize
19 multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to
20 nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application
21 of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by
22 considerable advances in computing power and algorithmic efficiency.
23 In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science.
24 We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as
25 organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up
26 discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has
27 developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and
28 supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful
29 implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining
30 challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation
31 of large scale data-driven approaches in material discovery and design campaigns.
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53 reticular chemical space and inverse design of reticular
54 materials with desired functions like gas separation.
55 • Nigam, A.; Friederich, P.; Krenn, M.; Aspuru-Guzik, A.
56 Augmenting Genetic Algorithms with Deep Neural
57 Networks for Exploring the Chemical Space. In Interna-
58 tional Conference on Learning Representations; 2020..3 The
59 proposal of a genetic algorithm enhanced by a neural network
60 for inverse molecular design that can avoid convergence and
61 bias molecule generation based on existing data sets.
62 • Has̈e, F.; Roch, L. M.; Kreisbeck, C.; Aspuru-Guzik, A.
63 Phoenics: A BayesianOptimizer for Chemistry.ACS Cent.
64 Sci. 20184 (9), 1134−1145.4 A probabilistic global
65 optimization algorithm based on Bayesian kernel density
66 estimation for the ef f icient parallel search of optimal
67 experimental conditions.

68 ■ INTRODUCTION
69 The tremendous rise of data science andmachine learning (ML)
70 in the last decades led to the suggestion that it constitutes the
71 fourth pillar of science.5 While data has always been at the heart
72 of research, current hardware enables its utilization at an
73 unprecedented scale.5 Accordingly, our group, the Matter Lab,
74 has been usingML extensively to accelerate the discovery of new
75 materials, especially for clean energy technologies to combat
76 climate catastrophe and enable innovative technologies.
77 In this Account, we define discovery as observing a previously
78 unknown natural phenomenon or object,6,7 and design as
79 rationally devising an object based on a particular plan.8

80 Typically, discovery precedes and inspires materials design, as
81 design requires at least minimal knowledge of the necessary
82 features. Therefore, large scale discovery helps to speed up the
83 establishment of material design principles, i.e., heuristics to
84 realize particular designs, because they enable identifying

85patterns in known matter with desired properties. In turn,
86successful design catalyzes the realization of new materials by
87restricting the search space to only themost promising regions in
88subsequent campaigns.
89Herein, we review our work on organic electronic materials,
90crystalline materials, and data-driven methodologies for
91materials discovery and design, particularly high-throughput
92virtual screening, supervised learning, inverse molecular design,
93and Bayesian optimization. Moreover, we formulate general
94strategies for data-driven materials design our lab has adopted
95over the years and show how to implement them using ML.
96Finally, investigating these approaches critically, we propose
97typical use cases and highlight unsolved challenges.

98■ APPLICATIONS

99Organic Electronic Materials

100One of our research foci has been organic electronic materials.9

101Compared to silicon-based electronics, they offer several
102advantages, including low cost, low density, high mechanical
103flexibility and toughness, low energy consumption, and easy
104processability. Further, chemical derivatization is well-estab-
105lished, making the accessible candidate space vast.
106Accordingly, solar cells have experienced a remarkable surge
107because of the vast energy available from the sun and increasing
108efforts against a climate catastrophe. Organic photovoltaics10

109(OPVs) could replace commercial silicon-based devices if their
110power conversion efficiencies (PCEs) surpassed 10% and their
111lifetimes exceeded several thousands of hours. Notably, state-of-
112the-art OPVs reach 18% PCE in laboratory devices.11 The
113Harvard Clean Energy Project (CEP) was initiated to find
114photoactive organic materials with high efficiencies.12 Starting
115from 26 building blocks, selected based on expert knowledge to
116maximize performance and synthesizability,13 107 potential
117donors were generated. They were evaluated using high-

Figure 1. Inverse design workflow for thermally activated delayed fluorescence organic emitters from selecting fragments to device integration and
testing.
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118 throughput virtual screening (HTVS, vide inf ra) via increasingly
119 expensive property predictions. First, the library was assessed
120 using linear descriptor models constructed from experimental
121 data. Subsequently, electronic structure calculations were
122 performed, and PCEs were estimated using the Scharber
123 model with a fullerene as acceptor.14 That way, about 1000
124 candidates with estimated PCEs of 11% and higher were
125 identified.
126 Additionally, statistical analysis of the top-performing
127 molecules revealed design principles for photoactive donors
128 identifying building blocks more likely to exhibit high perform-
129 ance. Notably, the screening efforts led to the experimental
130 characterization of an organic crystal with one of the highest
131 reported hole mobilities reported at the time.15 Subsequently,
132 extending the CEP to nonfullerene acceptors, over 51 000
133 candidates were generated based on 107 expertly chosen
134 fragments.16 More sophisticated property calibration with
135 Gaussian processes and a modified Scharber model improved
136 PCE predictions with a well-studied electron donor. Overall,
137 838 molecules with predicted PCEs of 8% or larger were found.
138 Moreover, statistical analysis of the candidate structures was
139 performed with respect to both Morgan fingerprints and the
140 building blocks, establishing a general architecture for non-
141 fullerene acceptors.
142 Similarly, organic light-emitting diodes17 (OLEDs) have
143 found wide adoption in small displays, are becoming prevalent in
144 screens and lighting applications, and are entering the market in
145 flexible displays. Thermally activated delayed fluorescence
146 (TADF) emitters have become the main OLED class because
147 of their high quantum efficiency, operational stability, and low
148 cost. Their essential property is a small energy gap between the
149 first excited singlet and triplet states so that energetically favored
150 but nonemissive, triplet excitons can be upconverted to emissive
151 singlet excitons. Based on knowledge about the TADF
152 mechanism, our group carried out HTVS of emitters covering

f1 153 106 candidates (Figure 1).1 Key methodology included efficient
154 quantum chemistry, calibrated against experiment via supervised
155 learning (vide inf ra). Linear regression and neural networks were
156 used for property predictions across the entire space.
157 Exploration was performed iteratively using a neural network
158 to predict the most promising candidates, which were then
159 simulated, minimizing evaluations. Not only were known
160 emitters rediscovered, but new structures were also uncovered.
161 Additionally, the systematic exploration exposed both estab-
162 lished property trade-offs and unknown property limits.
163 Moreover, the best leads were evaluated by human experts
164 concerning synthesizability and novelty. Consequently, the most
165 promising molecules after both computer and human-based
166 evaluations were synthesized and incorporated into devices
167 leading to high external quantum efficiencies of over 20%. This
168 study serves as a prototype for the entire data-driven discovery
169 pipeline from defining the candidate space to device integration.
170 Finally, renewable energy like wind and solar is intermittent,
171 requiring large storage capacities to meet consumer demands.
172 Redox-flow batteries (RFBs) resolve that by separating energy
173 from power, enabling large grids to store immense amounts of
174 energy scalable to varying demand loads.18 Organic RFBs19

175 (ORFBs) represent a sensible advancement, as redox-active
176 organic electrolytes are tunable and cheaper than inorganic
177 alternatives.20 To identify ideal organic electrolytes, our group
178 performed HTVS of quinones, which are well-known for their
179 single-electron redox pairs.21 The screening spanned 1710

180single- and double-electron redox pairs to validate existing
181studies and find new redox couples.
182The results indicated that quinone-exclusive electrolytes were
183promising aqueous ORFBs and revealed that functionalizations
184near the carbonyl groups largely affected redox potential and
185those away largely affected solubility. Subsequently, several
186experimental studies verified these predictions.22,23 However,
187decomposition was found to deteriorate battery capacity
188irreversibly.24 Hence, our group performed combined computa-
189tional and experimental studies on the decomposition of
190quinones in aqueous environments.18 HTVS was performed
191for over 140 000 redox pairs, including decomposition product
192analysis. The results identified a trade-off between redox
193potential, with a maximum near 0.95 V, close to experimental
194results at 0.85 V,25 and stability. These results provide roadmaps
195for future studies, which are ongoing in our group, as the trade-
196off suggests that electrolyte stability must be considered.

197Crystalline Materials

198Crystalline energy storage materials with high energy density at
199low cost are cornerstones of renewable energy applications. For
200instance, multivalent calcium ion batteries26 (CIBs) improve
201upon monovalent lithium-ion counterparts through increased
202capacities and higher material abundance while maintaining
203comparable operating voltages.27 However, the development of
204CIBs is hindered by the failure of traditional graphite and
205calcium metal anodes due to the intercalation difficulty and the
206lack of efficient electrolytes. Recently, a high voltage (4.45 V)
207CIB cell using tin as the anode was reported to achieve a
208remarkable cyclability (over 300 cycles).28

209Importantly, designing CIB anodes with improved perform-
210ance requires a thorough exploration of the alloying space as
211calcium mixes with many elements. Hence, our group
212constructed a workflow to discover novel multivalent CIBs.29

213First, the tin electrochemical calciation reaction was investigated
214computationally and the reaction driving force as a function of
215calcium content was simulated. This exploration allowed the
216identification of threshold voltages governing the calciation
217limits. Consequently, a four-step screening strategy was adopted
218to look for high-performance CIB anodes. First, 357 metal−
219calcium binary and ternary compounds were identified from the
220Inorganic Crystal Structure Database (ICSD)30 and further
221filtered to 115 candidates with existing decalciated metal/
222metalloid or binary intermetallic compounds. The calciation
223voltage profiles were calculated, and two threshold calciation
224voltages were defined, one stricter, based on the tin−calcium
225system, and the other more relaxed to account for potential
226differences in the driving force requirements. For each
227threshold, the maximum capacities, output voltages, volume
228expansions, and energy densities of the respective material were
229determined. Finally, metal−calcium systems with higher energy
230density than tin−calcium were identified, in which metalloids
231(Si, As, Sb, Ge), post-transition metals (Al, Pb, Cu, Cd, CdCu2,
232Ga, Bi, In, Tl, Hg), and noble metals (Ag, Pt, Pd, Au) showed
233promise as alloying candidates for CIB anodes and calls for
234further experimental validations.
235Additionally, reticular frameworks31 (RFs), which include
236metal−organic frameworks (MOFs), are crystalline porous
237materials with high internal surface area and high stability and
238can be used for gas storage, gas separation, and electrochemical
239energy storage. They are constructed via self-assembly of
240molecular building blocks and exhibit a near-infinite combina-
241torial space, complicating their systematic exploration.
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242 Recently, our group developed an invertible and efficient RF
f2 243 representation (Figure 2).2,32 MOF fragments were extracted

244 from the computation-ready, experimental (CoRE) MOF
245 database33 and augmented randomly with common functional
246 groups. Furthermore, we added sets of multiconnected metal or
247 organic nodes and sets of known MOF topologies generating a
248 data set with around 2 × 106 MOF structures. Moreover,
249 property simulations were performed for a random subset of
250 about 40 000 MOF structures. The supramolecular variational
251 autoencoder (SmVAE) with a MOF structure encoder-decoder,
252 property predictionmodel, and framework generation algorithm
253 was constructed with these structures (Figure 2), which can
254 locate high performing MOFs through property optimization in
255 the latent space. We demonstrated its capabilities for automatic
256 design by proposing top candidates for gas separation adsorbent
257 materials. We believe that the MOFs discovered are highly
258 competitive against the best-performing MOFs/zeolites ever
259 reported. Currently, their performance was validated using
260 computational methods. Nevertheless, experimental verification

261is under way. Furthermore, the as-built platform can be applied
262to various supramolecular systems (e.g., covalent-organic
263frameworks, coordination polymers, etc.) and applications
264(e.g., batteries, catalysis, drug delivery).

265■ METHODOLOGY

266High-Throughput Virtual Screening (HTVS)

267Virtual screening34 denotes a selection process of candidate
268materials. Chemicals, either generated on-the-fly or from
269databases, are subject to simulations that estimate application-
270specific properties. Candidates failing computational tests are
271rejected, with the proviso that predicted performance is likely
272translatable to experimental performance. Thus, HTVS is a
273technique that reduces large candidate spaces to a manageable
274 f3set of promising materials (Figure 3). In our search for new
275TADF emitters (vide supra),1 the candidate space was narrowed
276down by 5 orders of magnitude via HTVS. Importantly, HTVS
277on large chemical spaces is inverse molecular design (vide inf ra)
278because, rather than designing structures directly, the computa-

Figure 2. Automated reticular framework (RF) discovery platform using the supramolecular variational autoencoder (SmVAE). We construct the
intermediate representation, RFcode, using unique, decomposed nets as a tuple of edges, vertices, and topologies. We consider the edges as SMILES,
while vertices and topologies are categorical variables from known structures. SmVAE is a multicomponent variational autoencoder encoding and
decoding each part of the RFcode separately (xedge → x̃edge, xRFcom → x ̃RFcom). Structures are converted into/back from RFcode using the
deconstructor/reconstructor, then transferred into continuous vectors (z). To organize the latent space based on properties, we add a supervised
model to predict properties (y ̃property) based on labeled data (y). Data from ref 2.

Figure 3. High-throughput virtual screening starts from a large space of candidates (e.g., generated combinatorically, as illustrated). Using virtual
screening, most candidates are eliminated, such that fewer (more expensive and time-consuming) experimental tests can be performed.
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279 tional tests and the candidate space are designed, which leads to
280 the final hits based on the predicted properties.35 Moreover, it
281 can provide the basis for both generative and supervised models
282 (vide inf ra), as they all rely on validated data.
283 Accordingly, HTVS is a powerful accelerator because
284 computer simulation can be significantly less expensive than
285 the respective experiments.34 The continuing growth in
286 computational power, which will soon reach the exascale, has
287 made virtual screening highly scalable as it is embarrassingly
288 parallel. Although HTVS is at least almost 20 years old,36 it only
289 recently started transforming materials science by advances in
290 the accuracy and efficiency of density functional theory
291 (DFT).37 Besides computational cost, the main appeal of DFT
292 was the possibility to tailor functional parameters to reproduce
293 experiments, which increased its predictive power significantly.
294 For instance, linear response time-dependent DFT (TD-
295 DFT) is accurate and computationally inexpensive for excited
296 state properties. More importantly, it is robust, can be used in a
297 black-box manner, and is readily deployed in simulations of tens
298 of thousands of molecules with minimal failure rates.14

299 However, one pernicious failure mode of TD-DFT is the
300 description of excited states with significant double-excitation
301 character, which is, inter alia, important in describing molecules

302with inverted singlet−triplet gaps,38,39 such as the INVEST
303emitters recently described by our group.40 Nevertheless, as
304computing power is increasing, more sophisticated ab initio
305approaches can be used in HTVS, allowing one to tackle ever
306more complicated problems and new material classes.
307Yet, the impact of HTVS has been hampered by the difficulty
308in scaling the experimental confirmation of candidates,1 as
309simulations feasible for high-throughput are still largely
310qualitative for condensed-phase properties.41 A loose screen
311that accounts for computational inaccuracies minimizes false
312negatives, but the high cost of experimental validation means
313that almost all candidates must be rejected. The accuracy of
314computational screening can be maximized by implementing
315self-correcting filters such as checking whether simulations
316showed proper convergence catching false positives early on in
317the workflow. Nevertheless, ultimately, improvements in the
318experimental throughput are essential, calling for self-driving
319laboratories and closed-loop experimentation.42,43

320AI-Powered Inverse Molecular Design

321Inverse molecular design35 starts at the desired properties and
322explores the chemical space to identify molecules optimizing
323them. Recently, various ML techniques have been employed to
324improve inverse molecular design, motivated by advances both

Figure 4. Inverse molecular design based on desired properties (F), with variational autoencoders (VAEs, a), generative adversarial networks (GANs,
b), and genetic algorithms (GAs, c). Adapted with permission from ref 44. Copyright 2018 American Chemical Society.

Accounts of Chemical Research pubs.acs.org/accounts Article

https://dx.doi.org/10.1021/acs.accounts.0c00785
Acc. Chem. Res. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/accounts?ref=pdf
https://dx.doi.org/10.1021/acs.accounts.0c00785?ref=pdf


325 on the algorithmic (powerful ML libraries) and the hardware
326 sides (GPU improvements for large neural networks).
327 Importantly, inverse molecular design approaches can be
328 separated roughly into two classes: model-based ML algorithms
329 and evolutionary techniques.
330 Model-based ML algorithms for inverse design models use
331 neural networks to learn patterns in molecular structures from
332 existing data. After training, these models suggest newmolecules
333 covering important chemical features from the data set. Several
334 methodologies exist. Herein we will discuss variational
335 autoencoders (VAEs) and generative adversarial networks
336 (GANs) because our group, to the best of our knowledge, was

f4 337 the first to apply these tools in chemistry. VAEs (Figure 4a) are
338 capable of forming continuous (latent) spaces from discrete
339 representations. They are trained to minimize the combined
340 losses of latent space smoothness and input reconstruction
341 enabling gradient-based optimization in the latent space. For
342 inverse design, the latent space of VAEs is coupled with a
343 property estimation model using supervised learning (vide
344 inf ra).44 Consequently, the latent space is arranged based on the
345 property values allowing for a direct search of desired materials.
346 GANs (Figure 4b) are generative models with joint training of
347 two competing networks, a generator, and a discriminator. The
348 generator produces examples from a high dimensional (often
349 Gaussian) space, attempting to fool the discriminator, which
350 tries to distinguish generated samples from reference structures.
351 For molecules, our group proposed a sequential GAN
352 (ORGAN), where the model is trained using reinforcement

353learning.45 Desired molecular properties are used as a reward for
354generating good structures.
355Notably, both VAEs and GANs are trained in a supervised
356way. Hence, they rely on existing data and mimic their
357distribution. Thus, they are limited in the exploration of the
358chemical space as compared to evolutionary techniques such as
359genetic algorithms (GAs, cf. Figure 4c). As its name implies, GAs
360are inspired by natural evolution. An initial population seeds the
361algorithm, each member being evaluated. The top-performing
362members proceed to the next iteration, the worst members are
363removed or replaced by better offspring. For inverse molecular
364design, the fitness function corresponds to the determination of
365desired molecular properties.
366In contrast to deep learning-based models, GAs are not biased
367by user-defined data sets. Therefore, they are superior in
368unbiased explorations.3 Recently, we have shown that GAs
369augmented with neural networks to estimate the similarity of a
370molecule with a given data set can explore specific structural
371classes without the large data requirements of GANs and VAEs.
372Additionally, neural network-based learning was used to detect
373and avoid local minima trapping the GA to amplify exploration
374by avoiding convergence.3 Notably, this shows that ML-based
375inverse design techniques can be effectively combined with
376evolutionary algorithms.
377Importantly, in all these approaches, molecular representation
378plays a crucial role. Molecular graphs are used for computational
379efficiency, as they avoid conformations. Simplified Molecular
380Input Line Entry System (SMILES)46 strings are commonly
381used as a flat encoding of molecular graphs. However, they have

Figure 5. (a) General pseudocode for Bayesian optimization. (b) Visualization of Bayesian optimization of an objective function (red curve) using
Gaussian processes. (c) Examples of continuous-valued parameters compatible with Phoenics, along with a sample surrogate model and acquisition
functions generated by the algorithm. Adapted with permission from ref 4. Copyright 2018 American Chemical Society. (d) Depiction of the
representation of a categorical variable in Gryf f in with three options (e.g., three ligands) on a simplex.51 (e) Example of a multiobjective optimization
problem for a chemical reaction, along with the construction of Chimera (bottom panel) from three 1-dimensional objective functions. Reproduced
with permission from ref 52. Copyright 2018 Royal Society of Chemistry.
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382 a complex structure making a large fraction of molecules
383 decoded from arbitrary SMILES invalid. This problem was
384 solved recently by our group in a fundamental way by replacing
385 SMILES with SELFIES (Self-Referencing Embedded Strings),47

386 which is available on GitHub.48 SELFIES is a 100% valid
387 molecular string representation suitable as input for any inverse-
388 design algorithm that outperformed alternative approaches in
389 many benchmarks, such as validity and diversity of generated
390 molecules, molecular density in the latent space of VAEs, or
391 molecular optimization tasks with GAs.3

392 Bayesian Optimization

393 Several tasks across chemistry can be framed as optimization
394 problems, where controllable parameters optimizing a desired
395 objective are sought. For materials, such optimizations are
396 challenging, as they are typically high-dimensional, nonconvex,
397 and subject to noise and the objectives are expensive to evaluate.
398 Suitable optimization strategies ought to be sample-efficient,
399 global, and noise-tolerant. That is, they need to identify optimal
400 parameter choices with as fewmeasurements as possible, be able
401 to escape local minima, and mitigate the detrimental effect of
402 noise. A plethora of experiment planning strategies for
403 optimization are currently available,49 from traditional design
404 of experiment to evolutionary and heuristic approaches. Among
405 these, Bayesian optimization50 (BO) has emerged as the strategy
406 that best meets these requirements.
407 BO is an experiment planning algorithm that, in contrast to
408 most other approaches, uses an ML model to learn from
409 previous observations before suggesting the next iteration

f5 410 (Figure 5a).50 In its most widely adopted form, BO employs
411 techniques such as Gaussian processes to build a surrogatemodel
412 that captures the features of the underlying objective function.
413 Based on this surrogate, an acquisition function is defined, which
414 determines the strategy used to propose new experiments
415 (Figure 5b). Just like BO formulations using different ML
416 models exist, various acquisition functions have been developed.
417 Due to the use of an ML model, BO is sample-efficient. It is also
418 noise-tolerant, as these models explicitly account for it. Finally,
419 BO is a global approach that balances the exploitation of the best
420 local optima identified with the exploration of unprobed areas of
421 parameter space.
422 Typical BO approaches are inherently sequential and require
423 heavy computations for each iteration. Therefore, BO can be
424 unduly expensive when used in conjunction with high-
425 throughput evaluations. Thus, our group has developed Phoenics
426 (Figure 5c), a linear-scaling BO approach that supports parallel

427experiments.4 Phoenics employs Bayesian neural networks
428(BNNs) to build a kernel density estimate of the objective
429function, and its acquisition function allows to select batches of
430evaluations to be run in parallel. Importantly, Phoenics is suitable
431for the optimization of continuous parameters, such as
432temperature and concentration. To also optimize categorical
433parameters, such as the choice of solvent, we developed Gryf f in
434(Figure 5d), which uses categorical kernel densities that can be
435relaxed to continuous ones.51 In addition, Gryf f in allows for
436expert knowledge, in the form of descriptors for each categorical
437choice, to be provided to improve the optimization efficiency.
438Often, multiple competing objectives are present in materials
439science. Chimera (Figure 5e) is a general-purpose approach to
440multiobjective optimization.52 It allows defining a hierarchy of
441objective preferences, which are combined into a single function
442to be optimized with any algorithm of choice.
443Importantly, all the aforementioned algorithms can be
444combined with automated laboratories to enable autonomous
445experimentation.42 These self-driving platforms are able to
446execute closed-loop workflows for the self-optimization of
447materials and processes. However, this requires robust software
448connections between automated hardware and experiment
449planning methods. ChemOS is a flexible, modular, open source
450and portable Python package that provides this interface between
451experiment planning and automated experiments.53,54 Accord-
452ingly, in our laboratory, we have deployed ChemOS, together
453with Phoenics, Gryf f in, and Chimera, for the autonomous
454optimization of manufacturing processes of thin-film materi-
455als,55 multicomponent polymer OPV blends,56 and reaction
456conditions of stereoselective Suzuki coupling.57

457Supervised Learning

458The costs associated with property measurement, from both
459experiments and simulations, are a major obstacle to the
460widespread expansion of HTVS, optimization, and inverse
461design. All of these techniques require some form of data
462acquisition, i.e., simulations, measurements, or data mining.
463However, adapting experimental design to suit the needs of
464automated protocols is challenging, despite self-driving
465approaches likely being overall cost-effective. The promise of
466accurate and practically free inference of new results from
467existing data via supervised learning is a major driver of the
468ongoing ML revolution in the physical sciences.58

469Supervised learning requires a data set of features and labels.59

470For molecular property prediction, this data set contains
471molecules in a specific representation (features) and their

Figure 6.Workflow for supervised learning of molecular properties. A known (labeled) data set is used to optimize amodel, which is subsequently used
to estimate molecular properties for an unknown (unlabeled) data set.
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472 corresponding properties (labels). First, the data set is split into
473 three, training, validation and holdout sets. The model is trained
474 stepwise on the training set, usually by gradient descent or
475 related algorithms. In general, hyperparameters, i.e., choice of
476 features, training set, and model architecture, influence
477 predictive performance. These hyperparameters are optimized
478 by maximizing prediction accuracy on the validation set.
479 Eventually, model performance is evaluated via prediction
480 accuracy for the holdout set, and the final model can be used to
481 predict properties for unlabeled molecules. The entire workflow

f6 482 is illustrated in Figure 6. Our group developed several model
483 architectures for supervised learning of molecular properties,
484 most notably graph convolutional neural networks.60,61

485 Importantly, supervised learning has been used successfully
486 for materials discovery. For example, our group used the CEP
487 data set for property prediction.62 After training on more than
488 200 000molecules, a neural network predicted the result of DFT
489 calculations consistently at a fraction of the computational
490 expense. Additionally, our group applied this approach to reduce
491 the number of simulations in HTVS significantly, with training
492 on a set of similar size.1 Moreover, our group also used Gaussian
493 process regression to calibrate for systematic errors in DFT.16

494 Crucially, in these studies, ML algorithms, representations,
495 acquisition of training data, and validation procedures for
496 models were tightly integrated with an understanding of the
497 problem space, as opposed to sole reliance on existing data from
498 various sources. We believe these considerations are key when it
499 comes to the practical application of ML in chemistry.
500 Moreover, fruitful applications of supervised learning in
501 materials science start from well-defined scientific goals. In
502 contrast, the excitement brought upon by ML has generated
503 many studies that focus on learning performance rather than
504 scientific objectives. Generally, this is based on the (debatable
505 and often unsupported) idea that performance metrics on one
506 data set are transferable to other data sets or related problems.
507 However, ML algorithms are highly parametrized and thus can
508 readily overfit.63 Indeed, the model choice can itself become a
509 form of overfitting, especially when done on performance
510 considerations alone.64 Moreover, training data bias can
511 contaminate predictions65 but accounting for these biases
512 appropriately is problem-specific. Furthermore, many studies
513 are focused on error estimates obtained from statistical measures
514 such as cross-validation. Although validation error can be a
515 useful guide to the true prediction error on new data, it is not a
516 replacement for it66 and is often too optimistic.67 In many ways,
517 these issues arise when focus on the scientific goals is lost, as
518 ultimately the best test of supervised learning is whether it solves
519 problems.

520 ■ CONCLUSION AND OUTLOOK
521 In this Account, we have reviewed data-driven approaches our
522 group has employed for the design of materials, especially for
523 clean energy applications, in the past decade. One of the first
524 large scale campaigns our group embarked on was the CEP,
525 where we implemented supervised learning together with HTVS
526 using quantum chemistry simulations to investigate 107

527 potential donor molecules for organic solar cells and devised
528 design principles by statistical analysis of structure−function
529 relationships.12 In the subsequent years, we refined these ML
530 strategies and expanded our efforts toward other important
531 materials such as OLEDs, OFRBs, multivalent CIBs, and RFs. In
532 all these projects, data-driven workflows were key to speed up
533 both the discovery and the design of new materials.

534However, we believe that the full potential of data-driven
535strategies is yet to be unleashed. For instance, many properties
536are currently not investigated in HTVS because of their
537prohibitive computational cost. One such property is molecular
538stability with respect to common decomposition pathways. The
539associated problem is the huge dimensionality of potential
540reactions molecules can undergo, which greatly exceeds the
541chemical compound space in complexity. Recently, our group
542developed a method for the automatic discovery of chemical
543reactions based on the selection of reactive internal coordinates
544such as weak chemical bonds.68 We believe this approach,
545together with empirical rules or heuristics for selecting reactive
546internal coordinates, could be used for HTVS of reactivity and
547stability of materials, and research in that direction is ongoing.
548Other properties too prohibitive for HTVS include the influence
549of explicit solvation on spectroscopic properties and the direct
550simulation of amorphous solid-state structures and properties.
551The main challenge therein is the large number of particles and
552degrees of freedom in the model systems and the associated
553multitude of interactions.
554Furthermore, some of the methodologies we developed have
555only been tested on benchmark problems but are yet to be
556employed in real applications. Particularly, the genetic algorithm
557augmented with neural networks using SELFIES as molecular
558representation47 our group proposed recently has outperformed
559most alternative generative models in benchmarks. However, it
560has yet to be implemented for designing functional materials,
561and we are actively working on that.3 Finally, one of the most
562critical challenges of ML is model interpretability. Typically,
563supervised learning approaches are employed in a black box
564fashion without gaining insight into what the model actually
565learned. However, our group has shown recently that regression
566methods such as gradient boosting, when trained on molecular
567graph features, can be used to reveal important chemical
568moieties influencing the properties.69,70 The trained model can
569be interpreted by human experts and rationalizing the feature
570importance can lead to new scientific understanding. We believe
571that similar approaches have the potential to change the way
572science is carried out in the near future.
573However, the bottleneck of materials design campaigns is
574experimental synthesis and characterization, usually by a large
575margin.71 Any material, no matter how good its (predicted)
576performance, needs to be synthesized for it to be used in real life.
577In particular for clean energy applications, material syntheses
578need to be performed on a huge scale requiring reliable, safe and
579green chemical processes. Accordingly, the continuing speed-up
580in computer power providing unprecedented prediction
581capabilities needs to be paralleled by increased experimental
582throughput. Accelerating materials design ultimately requires
583close integration of computer simulation, ML and experimenta-
584tion in self-driving platforms, which our group termed Materials
585Acceleration Platforms (MAPs).43

586One essential feature of MAPs is a closed-loop materials
587discovery workflow incorporating experimentation, computa-
588tion, and human intuition. Online characterization techniques in
589conjunction with automated robotic synthesis72−74 are central
590enabling technologies in these platforms. Making andmeasuring
591molecules on-demand in a feedback loop with self-correcting
592computational screening and ML is key to finding true “needle-
593in-a-haystack” materials. Currently, our group is implementing
594such a MAP for the realization of innovative materials making
595use of robust cross coupling chemistry, parallel robotic synthesis,
596and in-line characterization of spectroscopic properties coupled
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597 with computer simulation and ML. Details of this implementa-
598 tion will be described in an upcoming Account our group is
599 working on in due course. Accordingly, the data-driven methods
600 described above are a stepping stone to accelerate materials
601 design. However, to realize their true potential, they need to
602 percolate into experimental systems, and we are looking forward
603 to witnessing applications of these methods in closed-loop
604 experimental material design campaigns in the near future.
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767 Evrenk, S.; Sańchez-Carrera, R. S.; Vogt, L.; Aspuru-Guzik, A.
768 Accelerated Computational Discovery of High-Performance Materials
769 for Organic Photovoltaics by Means of Cheminformatics. Energy
770 Environ. Sci. 2011, 4 (12), 4849−4861.

(14)771 Hachmann, J.; Olivares-Amaya, R.; Jinich, A.; Appleton, A. L.;
772 Blood-Forsythe, M. A.; Seress, L. R.; Romań-Salgado, C.; Trepte, K.;
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