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Abstract  

Experience of a prediction error recruits multiple motor learning processes: some that learn strongly 

from error but have weak retention, some that learn weakly from error but exhibit strong retention. 

These processes are not generally observable, but are inferred from their collective influence on 

behavior. Is there a robust way to uncover the hidden processes? A standard approach is to consider a 

state-space model where the hidden states change following experience of error, and then fit the 

measured data to the model by minimizing the squared error between measurement and model 

prediction. We found that this least-squares algorithm (LMSE) often yielded unrealistic predictions 

about the hidden states, possibly due to neglect of the stochastic nature of error-based learning. We 

found that behavioral data during adaptation was better explained by a system in which both error-

based learning and movement production were stochastic processes. To uncover the hidden states of 

learning, we developed a generalized Expectation Maximization (EM) algorithm. In simulation, we found 

that while LMSE tracked the measured data marginally better than EM, EM was far more accurate in 

unmasking the timecourses and properties of the hidden states of learning. In a power analysis designed 

to measure the effect of an intervention of sensorimotor learning, EM significantly reduced the number 

of subjects that were required for effective hypothesis testing. In summary, we developed a new 

approach for analysis of data in sensorimotor experiments. The new algorithm improved the ability to 

uncover the multiple processes that contribute to learning from error. 

 

New & Noteworthy 

Motor learning is supported by multiple adaptive processes, each with distinct error sensitivity and 

forgetting rates. We developed a generalized Expectation Maximization (EM) algorithm that uncovers 

these hidden processes in the context of modern sensorimotor learning experiments that include error-

clamp trials and set breaks. The resulting toolbox may improve the ability to identify the properties of 

these hidden processes and reduce the number of subjects needed to test the effectiveness of 

interventions on sensorimotor learning. 
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Introduction 

When people and other animals perform a movement that produces an unexpected outcome, they 

learn from the resulting error and retain a portion of this learning over time. Analysis of behavior in 

numerous contexts, including saccade paradigms (Kojima 2004; Ethier et al. 2008), reach paradigms 

(Smith et al. 2006; Criscimagna-Hemminger and Shadmehr 2008; Pekny et al. 2011), vestibular 

paradigms (Colagiorgio et al. 2015), and classical conditioning paradigms (Stollhoff 2005), has revealed 

an interesting behavioral property termed spontaneous recovery: following learning, washout, and then 

passage of time, behavior spontaneously reverts back to the previously learned state. That is, washout 

does not return memory to its baseline condition, but appears to engage a process that masks the 

previously acquired memory. With passage of time, this mask appears to lift, resulting in re-expression 

of the learned behavior. 

 Spontaneous recovery is consistent with a mathematical model of learning where experience of 

error engages two (or more) independent learning processes: a fast process that learns strongly from 

error but forgets rapidly, and a slow process that learns weakly from error but exhibits robust retention 

(Smith et al. 2006; Kording et al. 2007). It is possible that the putative learning processes represent 

interactions between distinct neural systems such as the cerebellum, the motor cortex, and the parietal 

cortex (Galea et al. 2011; Herzfeld et al. 2014b; Kim et al. 2015). The learning processes may also be 

represented in behavior as explicit and implicit processes (McDougle et al. 2015), body versus world 

estimation (Berniker and Kording 2011), temporally-labile versus temporally-stabile processes (Hadjiosif 

and Smith 2015), a memory of errors (Herzfeld et al. 2014b; Leow et al. 2016), and preparation-time 

dependent processes (Haith et al. 2015). In all of these approaches, experience of error engages 

multiple hidden processes that act in parallel, each responding to error with their own characteristic 

learning and retention properties, and then combining their outputs to jointly influence behavior.  

An example of a neural system that might implement such a learning model is the cerebellum 

and its principal cells, Purkinje cells (P-cells). Following experience of a visual error, some P-cells prefer 

that error (Kojima et al. 2010; Herzfeld et al. 2015) and experience a strong modulation of their complex 

spikes. Experience of a complex spike in a P-cell produces plasticity among some of the synapses, 

resulting in a reduction in the simple spikes that the P-cell produces on the subsequent trial (Yang and 

Lisberger 2014). This resembles a learning process that adapts strongly from error. Interestingly, these 

neurons also exhibit rapid forgetting; displaying little or no retention (in terms of change in their simple 

spikes) after 10 seconds of time has passed since experience of error (Yang and Lisberger 2014). Other P-

cells do not prefer that same error; for them, that error produces suppression of their complex spikes 
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below baseline, resulting in a weak potentiation of their simple spiking rate. This resembles a learning 

process that adapts weakly from error. With repeated trials, the experience of these errors produces 

two timescales of change in the simple spikes: fast change in the P-cells that prefer the error, slow 

change in the P-cells that do not prefer the error (Yang and Lisberger 2014). Therefore, one potential 

neural mechanism for the multiple learning processes may be in the cerebellum, where the various P-

cells learn differently from a given error based on their preference for the direction of that error.  

Here, our aim was to build a mathematical tool that could, in principle, extract the hidden 

processes from observed behavior. A common tool currently used for analysis of behavioral data in 

motor learning is a form of nonlinear optimization called least-mean-square-error estimation (LMSE). 

This algorithm begins with a state-space model of learning, and then searches the model’s parameter 

space in order to minimize the sum of squared differences between the observed behavior and the 

model’s predictions. LMSE has been widely applied to analyze trial-by-trial changes of behavior during 

motor learning (Trewartha et al. 2014; Colagiorgio et al. 2015; Galea et al. 2015; McDougle et al. 2015). 

However, we found that when we applied LMSE to behavioral data collected during a typical adaptation 

experiment, the algorithm fit the measured data well, but for many subjects, it yielded unrealistic 

predictions about the properties of the underlying hidden processes. We speculated that this problem 

was due to a fundamental limitation of LMSE: the likelihood function that is maximized by LMSE is 

equivalent to a maximum likelihood estimator that accounts for the stochastic nature of processes that 

produce a movement, but is ignorant of any stochasticity in the processes that learn from error. 

We therefore wondered if an algorithm that considered both of these sources of stochasticity, 

noise in the system that learned from error, and noise in the system that produced the motor output, 

could improve our ability to estimate the hidden processes. We derived a canonical form of the two-

state model that cast the learner in a framework where both learning from error, and the production of 

a movement, were stochastic processes (Cheng and Sabes 2006; Tanaka et al. 2012). In this framework 

there was uncertainty in both the evolution of hidden states and the observation of movement (Kording 

et al. 2007). 

To estimate parameters of this more general model of learning, we considered a maximum 

likelihood approach that was first applied to sensorimotor learning by Cheng and Sabes (Cheng and 

Sabes 2006), called expectation maximization (EM). Unfortunately, it is difficult to constrain EM to 

enforce traditional two-state dynamics. In addition, previous descriptions of the algorithm assumed 

time-invariant state-space transitions (Ghahramani and Hinton 1996). In contrast, a typical motor 
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control experiment relies on behavioral probes such as error-clamp trials (Scheidt et al. 2000) and set 

breaks. The latter type of probe can make the state-space transitions time-dependent. 

Here, we illustrate how a generalized EM algorithm can be used to estimate the hidden 

processes that may underlie a learning problem, even when constraints are applied to the model 

parameters, error-clamp trials are included in the experimental paradigm, and the generative model of 

learning varies in time due to the occurrence of set breaks. The result is a new mathematical toolbox.  

We demonstrate that EM fits observed human reaching behavior similarly to LMSE, but uses an 

underlying parameter set whose likelihood is more likely to explain the observed behavior. To further 

evaluate EM, we consider several simulated sensorimotor learning paradigms. Unlike behavioral data 

measured in the laboratory, the fast and slow learning processes were explicitly known in the simulated 

data sets, allowing us to objectively quantify performance of EM.  

Our work has two main results: 1) behavior during sensorimotor learning is better represented 

by a generative model in which both the generation of movement and learning from error are stochastic 

processes, and 2) in such a system, EM significantly improves the ability to uncover the hidden states of 

learning. The resulting algorithm has the practical implication of reducing the number of subjects that 

are needed for statistical testing of hypotheses.  

 

Methods 

Overview 

Our goal was to produce a mathematical toolbox that could robustly estimate the properties of a two-

state learning process from data collected in a typical adaptation experiment. We employed a statistical 

algorithm known as EM. EM is an iterative parameter estimation technique that can be used for system 

identification in the presence of latent variables. As its name suggests, EM is composed of two separate 

steps. In the expectation step (E-step), a Kalman filter is used to provide the best estimate of the hidden 

states under the current estimate of the model parameters. In the maximization step (M-step), 

maximum-likelihood estimation is used to identify a set of model parameters that maximizes an 

objective function known as the expected complete log-likelihood function. The E- and M-steps together 

are guaranteed to identify model parameters that improve the likelihood of observing the measured 

data. The E- and the M-steps are iterated until the likelihood of observing the measured data converges. 

Current application of EM in the sensorimotor literature is limited to linear time-invariant (LTI) 

systems (Cheng and Sabes 2006) where the generative model assumes no constraints on the dynamics 

of the hidden learning proceses. In this case, the E- and M-steps can be performed analytically via 
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closed-form equations. Although closed-form equations simplify one’s search for the optimal parameter 

set, performing this analytical formulation makes it difficult to enforce the conventional properties of a 

two-state model (e.g., the fast process forgets more rapidly than the slow process). In addition, closed-

form expressions for the M-step of the algorithm cannot always be derived for complicated likelihood 

functions, as is the case when set breaks are included in the generative model. To rectify these issues, 

we considered a more general form of the EM algorithm, aptly named generalized EM (Dempster et al., 

1977). Our version of this algorithm is similar to previous descriptions of EM in the sensorimotor 

literature, differing only in the implementation of the M-step. In our algorithm, numerical techniques 

are used to search for the maximum value attained by the expected complete log-likelihood function 

within a constrained parameter space. Our implementation is described in Appendix 1. 

To assess the performance of our approach, we tested EM against a different technique for 

fitting state-space models to behavioral data, LMSE. LMSE is a technique in which one identifies model 

parameters that minimize the mean-squared-error between the measured behavior and the model 

predicted behavior. LMSE is identical to a maximum likelihood estimator for a model that ignores noise 

in the state update process, and is described in detail in Appendix 2. 

We applied our EM and LMSE algorithms to data recorded from human subjects performing a 

visuomotor rotation task. Additionally, we simulated various paradigms and generated data sets in 

which the fast and slow states were known. Using these data, we asked how accurately EM and LMSE 

could uncover the true states. Finally, we used EM and LMSE to perform a power analysis, estimating 

how many subjects were needed in order to robustly test effectiveness of an intervention that modified 

error sensitivity and retention in a simulated population. 

 

State-space model of learning 

Here we derive a two-state model of learning. Our model possesses the same canonical form as 

previous models in the literature, but differs in a fundamental way: we mathematically formalize the 

inclusion of error-clamp trials and set breaks. This modification yields a more complicated time-varying 

form of the state-space equations, but also makes our approach compatible with general sensorimotor 

adaptation paradigms. 

A learner is presented with a sequence of trials where she is instructed to make a movement 

towards a target. On trial n she is presented with the target 
 n

g . To achieve this target, she produces a 

movement  n
u , and observes the consequences of her action  n

h . The consequence of her action (Eq. 
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1) is determined by her movement as well as any external perturbation to her movement, denoted by 

 n
r . 

      n n n
h u r   (1) 

The learner adjusts her movement towards the target according to her estimate of the perturbation  ˆ n
r

. The movement she produces is altered by motor execution noise 
 n
u , which has a normal distribution 

with mean 0 and variance 2
u . We have:  

 
       ˆn n n n

uu g r     (2) 

In a two-state model, we assume that the learner estimates the perturbation via two independent 

states, referred to as the slow and fast states of learning. The values of the two states on trial n are 

represented by the vector      nn n
s f

T

x x 
 

x where sx  and fx
 
are the scalar-valued slow and fast 

states. The learner’s estimate of the perturbation is related to these states according to:   

    ˆ n nTr  c x  (3) 

Here  1 1
T

c , meaning that the learner’s estimate is equal to the sum of the fast and slow states. 

 Over time, the learner adjusts her estimate of the perturbation according to the errors she 

experiences. Error, denoted by  n
e , is the difference between the observed outcome of the movement, 

and the target: 

 

     

     

 

  

n n n

n n nT
u

e h g

r c x
 (4) 

Note that this error could be further manipulated by the experimenter. In some cases, the experimenter 

can add additional noise to the observed movement to increase feedback uncertainty (Wei and Körding 

2010). One could also explicitly attempt to account for uncertainty in visual or proprioceptive 

transduction of error. We remark on these sources of noise further below. 

A common experimental manipulation is the occurrence of an error-clamp trial (Scheidt et al. 

2000). On these trials the learner is presented with an error that is independent of the movement she 

performed. Therefore, the error experienced by the learner can take different functional forms 

depending on the trial type according to: 
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  
     

 

  
 


, not an error-clamp trial

, error-clamp trial

n n nT
n u

n
c

r
e

e

c x
 (5) 

Here, the variable 
 n
ce  takes the value of the error imposed on trial n. 

Two separate processes determine how the learner’s estimate of the perturbation changes from 

one trial to the next: learning and forgetting. Together, learning and forgetting are captured by the state 

update equation. 

 
       1n n n n

xA e


  x x b   (6) 

The forgetting process is controlled by the matrix A  which encodes the rate at which states decay in 

the absence of error due to the passage of time. If we assume that each state evolves independently, we 

can represent A  as a diagonal matrix of the form 
0

0
s

f

a
A

a

 
  
 

. Here sa and fa  are retention factors 

for the slow and fast states, respectively. 

The learning process is controlled by the vector b  which encodes the learning rates of the fast 

and slow states. The parameter b  is a 2 x 1 vector of the form 
T

s fb b  b= , where sb and fb  are 

the error sensitivities of the slow and fast states, respectively. These error sensitivities determine the 

rate at which each state learns from error. 

The entire process of updating the learner’s estimate of the perturbation, like the process of 

generating a movement, is affected by noise, represented by x . This noise source represents the 

combined effect of many sources of noise that accumulate in afferent pathways involved in learning 

from error. These include, but are not limited to, noise in the proprioceptive and visual transduction of 

error, noise in an error stimulus itself, noise in the synaptic mechanisms that contribute to learning from 

a given error, etc. We will refer to the collection of these processes as state update noise, and assume 

that it is distributed according to a multivariate normal distribution with mean  0 0
T

 and variance-

covariance matrix Q . In accordance with our assumption that the two states evolve independently, we 

require that their covariance be equal to zero, implying that Q  is a 2 x 2 diagonal matrix. To simplify the 

model we assumed that the fast and slow state update variances were equal, yielding a variance-

covariance matrix of the form

2

2

0

0

x

x

Q




 
  
  

, where 2
x  represents the cumulative state update 



9 

 

variance described above. In a set of control analyses we also considered a model of learning where the 

fast and slow states had different noise variances (see Different noises in the fast and slow adaptive 

processes). 

Eq. (6) treats the errors experienced in error-clamp and non-error-clamp trials the same. That is, 

we assume that the learner does not differentiate from an error that was produced by her own 

behavior, and an error that was presented to her in an error-clamp trial. The validity of this assumption 

is currently under debate. Although blocks of error-clamp trials have been used extensively in the 

literature to assess decay properties of motor memory, two recent reports have found evidence that in 

some cases, error-clamp blocks appear to contain contextual cues that can affect the process of learning 

(Vaswani and Shadmehr 2013; Vaswani et al. 2015). In contrast, another report has found evidence that 

learning in error-clamp trials remains consistent with learning in non-error-clamp trials (Brennan and 

Smith 2015), or that differences in learning become evident only after long passages of time away from 

the task (Pekny and Shadmehr 2015). Given that this question remains unanswered, here we chose the 

simplest model wherein all errors were treated equally. 

We do not directly observe the states of the fast and slow processes. Instead, we measure the 

movement of the subject on each trial. In many experiments, to normalize across different targets that 

may be presented to the subject, it is useful to define the subject’s movement relative to the target 

location,
 n

y . 

 

     

    

 



n n n

n nT
u

y g u

c x
 (7) 

Substitution of the motor action in Eq. (7) into our expression for error in Eq. (5) yields the following 

simplification: 

  
   

 

 
 


, not an error-clamp trial

, error-clamp trial

n n
n

n
c

r y
e

e
 (8) 

Finally, we account for set breaks in our generative model of learning, noting that set breaks 

result in significant forgetting of previously learned behavior (Ethier et al. 2008). Therefore, we imagined 

that set breaks could be modeled as additional decay that elapses after the conclusion of the trial 

preceding a set break: 
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              

 

    
 

  
   
    
 
 
 

1
0 0 ,

0
trial n is followed by a set break

0
where

1 0
trial n is not followed by a set break

0 1

n n n n n n
x

T
x

d
sd

d
n f

D A e N Q

a
A

a
D

x x b  

 (9)   

The parameter d in Eq. (9) is a decay factor that parametrizes elapsed time between trials in order to 

account for additional forgetting of the fast and slow states (Joiner and Smith 2008) across a set break. A 

value of 0d   means that a set break results in no further forgetting beyond that which accompanies 

an experimental inter-trial-interval (ITI). A positive value of d indicates that a set break results in more 

forgetting than an experimental ITI. Here we assumed that all set breaks are an equal length of time, 

though Eq. (9) could be easily modified to allow for set breaks of variable length by replacing d by the 

product of d with the ratio of the duration of a set break to the average ITI.  

The form of Eq. (9) assumes that the rate of decay of the fast and slow states follows the 

retention properties that are observed trial-by-trial in the absence of set breaks. Our two-state model 

can now be represented as the following system of state-space equations that account for both error-

clamp trials and set breaks: 

 

                  
         

   

   
   

 

 





  

 

 
  
  

 
 


1

1

2

0 0 ,

0,

no set break  no set break

set break set break

 no set break  not an error-clamp trial

set break         

T

n n n n n n n n
x x

n n n nT
u u

n n

d d d

n n
n n

d n
c

T

u

A e N Q

y N

QA
A Q

A A QA

r y
e

A e

x x b

c x

b
b

b

 





     error-clamp trial

 (10)   

In Eq. (10), the ‘no set break’ condition indicates that trial n is not followed by a set break. The ‘set 

break’ condition indicates that trial n is followed by a set break. The ‘not an error-clamp trial’ condition 

indicates that trial n was not an error-clamp trial. The ‘error-clamp trial’ condition indicates that trial n 

was an error-clamp trial. Note that the sign of the motor noise in Eq. (10) was flipped; as this noise is 

Gaussian with mean zero, changing its sign describes an equivalent system. 

 

Experimental procedure 



11 

 

We recruited n=20 healthy right-handed subjects (ages 17 – 59, 8 males) to perform a visuomotor 

adaptation study. All subjects signed a consent form approved by the Johns Hopkins University School of 

Medicine Institutional Review Board before participating in the experiment. 

Subjects were seated in a chair and held the handle of a planar robotic manipulandum. The arm 

of the subject was obscured from view, and the position of the hand was represented by a white cursor 

projected onto the screen situated directly on top of the hand. The x and y positions of the 

manipulandum (i.e., the subject’s hand) were recorded at 200 Hz from optical encoders at a resolution 

of better than 0.1mm using custom C++ code.  Subjects were instructed to move their hand from a 

starting circle through a target circle (radius = 1cm). The target circle was presented in one of 8 positions 

in the workspace, at a displacement of 10 cm. On some trials, the subject was provided no visual 

feedback of the cursor. We term these trials “no-feedback trials”. Apart from these no-feedback trials, 

subjects had continual visual feedback of their hand position during the outward reach.  Our experiment 

employed a single perturbation condition.  The perturbation was a 30° CCW rotation to the cursor 

position, about the starting position. The subject was awarded a point each time the cursor passed 

through the target within 190-290 ms following movement onset. Subjects were instructed to obtain as 

many points as possible during the experiment.  

An epoch consisted of 8 trials, one to each of the 8 targets around the circle, chosen in a random 

sequence. The task began with a baseline period of 30 epochs where subjects reached without any 

perturbation (Fig. 1A). We interspersed 3 epochs of no-feedback trials within this baseline period, to 

familiarize subjects with this condition. The baseline period was followed by a block of 30 perturbation 

epochs. After the perturbation period, visual feedback was removed for 15 epochs. After this no-

feedback period, feedback was reinstated and the perturbation was removed (washout trials) for 30 

epochs. 

Our analysis focused on the hand endpoint error, which was taken as the angular displacement 

of the hand from the target when the subject’s hand displacement exceeded the 10 cm target 

displacement.  

 

Epoch vs. trial-by-trial analysis of behavior 

The two-state model described in Eq. (10) is readily applied to trial-by-trial data where only a single 

target is presented during the experiment. However, in our visuomotor rotation task, as in many 

experiments, the paradigm consisted of multiple targets. In paradigms with multiple targets, the 

learning process should be represented with different states for each target, that is, separate fast and 
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slow states of learning for each target in the workspace. This expansion of the hidden state 

dimensionality is further complicated by generalization of learning across targets. That is, the error 

experienced when the subject moves towards one target generalizes to other targets in the workspace, 

resulting in differential amounts of learning across the workspace (Krakauer et al., 2000). 

 In our task, we did not directly probe this generalization function. Therefore, we attempted to 

minimize the effect of generalization on the learning process by averaging behavior across the 8 

trials/targets visited in each epoch of the experiment. In this case, while the same target may not be 

visited from one trial to the next, the same set of targets is visited from one epoch to the next, reducing 

the effect of generalization on the recorded epoch-by-epoch behavior. Unless otherwise noted, all 

analysis of subject behavior in our visuomotor rotation task is based on application of the two-state 

model in Eq. (10) to epoch-by-epoch behavior. 

 However, we also considered two-state model fits to the raw trial-by-trial data. In order to apply 

our two-state model to the trial-by-trial data, we first had to decide how best to deal with 

generalization. We considered two extreme cases, (1) where learning generalized completely from one 

target to all other targets and (2) where there was no-generalization of learning to any other targets. We 

will refer to these trial-by-trial models as our full-generalization and no-generalization models, 

respectively. In the full-generalization model, we assumed that the learner used a single fast and slow 

state to account for the perturbation for all targets as in Eq. (10). The fast and slow states were ignorant 

of the target location and fully generalized learning that occurred from one target to all other targets. 

Therefore, in the full-generalization model we applied Eq. (10) to the trial-by-trial data as if the same 

target had been visited on each trial. 

 In the no-generalization trial-by-trial model, learning from one target did not generalize to other 

targets. This trial-by-trial model had 16 states, one fast and one slow state for each of the 8 targets. All 

fast/slow states experienced forgetting on every trial according to a common fast/slow retention factor. 

However, if target k was visited on trial n, then only the fast and slow states associated with target k 

learned from the error experienced on that trial (all fast/slow states had a common fast/slow error 

sensitivity). Furthermore, all fast and slow states were subject to a non-zero state noise on each trial. In 

Appendix 4 we provide a complete description of this model and show how it can be extended to 

account for generalization that might extend beyond the width of a single target.  

 To summarize, the majority of our analysis of behavioral data averaged in epochs of 8 trials 

where all 8 targets are visited once in the epoch. In a set of control analyses (see Trial-by-trial analysis of 

behavior) we considered two trial-by-trial models that covered the extremes of generalization: one 
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where learning generalized completely across targets and one where learning did not generalize at all 

across targets. For the simulations (see Simulating realistic data), we never performed averaging of the 

simulated behavior. 

 

Simulating realistic data 

To test our algorithm we simulated realistic data using the two-state system described in Eq. (10). We 

simulated four paradigms (Fig. 3, top row) commonly encountered in the literature. These paradigms 

differed with respect to the inclusion or exclusion of error-clamp trials, set breaks, as well as the manner 

in which the perturbation was introduced (i.e., abruptly versus gradually).  

All paradigms began with a baseline period in which the learner was simulated for many trials in 

the absence of any external perturbation to her movements. In Paradigm 1 (Fig. 3, Paradigm 1) this 

perturbation was followed by an abrupt introduction of a perturbation. We used a 30° perturbation to 

match our visuomotor rotation task. In Paradigm 2 (Fig. 3, Paradigm 2) we built upon Paradigm 1 by 

adding a prolonged error-clamp period that followed the perturbation, where error was completely 

eliminated. This type of intervention is a common way to isolate and measure retention of learned 

behavior. Paradigm 2 concluded with a washout period that allowed the simulated learner to return to 

baseline behavior. Paradigm 2 closely resembled our visuomotor task, considering that the simulated 

error-clamps trials produced qualitatively similar behavior to that demonstrated by our subjects during 

no-feedback trials. In Paradigm 3, we simulated a learner in a gradual perturbation environment, 

followed again by an error-clamp period. In Paradigm 4 we built upon the other paradigms by adding set 

breaks. In this simulated experiment we followed a trial structure that is known to promote 

spontaneous recovery of behavior (Smith et al. 2006; Ethier et al. 2008; McDougle et al. 2015). After 

being exposed to a positive 30° perturbation, the sign of the perturbation is abruptly switched until the 

learner expresses approximately baseline behavior. Then a block of error-clamp trials is provided to test 

for spontaneous recovery (Fig. 3, Paradigm 4). 

 For each paradigm we simulated subject behavior 1000 times using fixed model parameter 

values. On each run we varied the seed for the random number generator, which resulted in different 

learning profiles due to motor and state noise. To simulate realistic data sets, we selected retention 

factors and error sensitivities that matched parameters estimated from our experimental data: we fit 

each subject’s reaching behavior using EM and LMSE (described below) and used the mean parameter 

values across subjects and algorithms for the simulated retention factors and error sensitivities. For the 

state and motor noise variances, we selected the mean values obtained using the EM algorithm, as 
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LMSE does not provide an estimate of these two noise sources. The complete parameter set is reported 

in Table A3.1. Three additional parameters appear in Table A3.1 that were not discussed in our 

derivation of the two-state model. These parameters are related to the initial state of the learner (see 

Appendix 1). We modeled the initial fast and slow states of the learner as normally distributed random 

variables with mean 
 1
sx , 

 1
fx , respectively, and common variance 2

1 . For our simulations, we 

considered a naïve learner who had an initial slow and fast state equal to zero. 

 

Fitting EM and LMSE to data 

We fit our measured data collected in the visuomotor rotation experiment, and the simulated data, in 

an identical manner. Both the EM and LMSE algorithms were given the observed motor actions, y. Each 

algorithm then used its objective function to identify an estimate of the model parameters. This process 

is described in Appendix 1 for EM and Appendix 2 for LMSE. 

To obtain the model parameters, both algorithms were treated identically: they were 

numerically constrained to search an identical parameter space using the function fmincon in MATLAB 

R2016a. Our constrained parameter space was defined by upper and lower bounds, as well as linear 

inequality constraints relating some of the parameters. The upper and lower bounds for each parameter 

are provided in Table A3.2. Linear inequality constraints were specified to enforce traditional two-state 

model dynamics according to: 
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 
 (11) 

The first of these inequalities requires that the slow state be retained more strongly trial-by-trial than 

the fast state. The second of these inequalities requires that the fast state learn more rapidly from error 

than the slow state. 

 EM is an iterative algorithm that attempts to increase the value of the likelihood function from 

one iteration to the next (see Appendix 1). For each EM fit, we performed 100 iterations of the 

algorithm. The EM algorithm is sensitive to the initial conditions used to initialize the first iteration (see 

Appendix 1). For each simulation, we started the EM algorithm from 5 different initial guesses. For our 

experimental data, we used 10 different initial guesses for each subject. These initial guesses were 

randomly sampled from the constrained parameter space. We selected the parameter set with the 

greatest likelihood at the conclusion of the 100th iteration of the algorithm. Numerical implementation 

of the LMSE algorithm can also require different initial guesses for proper convergence of the fmincon 
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algorithm. For LMSE, we seeded the fmincon search using 50 different starting parameter sets, to better 

ensure the identification of minimal squared error within the constrained parameter space. As for the 

EM algorithm, these initial starting parameter sets were also sampled randomly from within the 

constrained parameter space. 

 

Measuring the performance of the algorithms 

We assessed how well EM and LMSE recovered the properties of the fast and slow states of learning in 

our simulated experiments, where the hidden states were explicitly known. After obtaining the 

parameter sets for EM and LMSE, we asked how well they predicted the time courses of the fast and 

slow states. To do this, we used each parameter set to simulate noise-free behavior. The noise-free 

version of our two-state model was obtained by removing the noise terms from Eq. (10): 
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This noise-free system is equivalent to the expected value of the hidden states and observed behavior at 

any point in time. We compared the noise-free time courses of the slow state, fast state, and overall 

behavior, predicted by EM and LMSE, to the actual time courses for each simulation. To determine how 

well the EM and LMSE time courses matched the actual time courses, we computed the root-mean-

squared-error (RMSE) between the model fit and the actual data. 

 We also asked how well the EM and LMSE parameters sets matched the true parameter set. For 

this, we computed the absolute error between the fitted parameters and the underlying two-state 

model parameters used to simulate the data. 

 

Sources of noise 

In our model, we assumed that both generation of action, and learning from error, are noisy processes. 

While noise in the motor output is a well-known property of behavior, noise in the learning process is 

less understood. From a theoretical standpoint, presence of noise in the state update equation is central 

to the dissociation of performance of EM and LMSE: with EM one can maximize the likelihood of a two-

state model that includes both state and motor noise, whereas with LMSE, one is limited to a likelihood 

model that only has motor noise (Appendix 2). Is the inclusion of state noise justified? In other words, 

what evidence is there that sensorimotor learning is affected by state noise?  

To ask this question, we turned to our experimental data. We computed the corrected Akaike 

Information Criterion (AICc) for the likelihood model maximized by EM (Eq. A1.25) and a likelihood 
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model that did not include state noise (the LMSE likelihood model provided in Eq. A2.6). AICc is a metric 

that can be used to compare the likelihoods associated with different models, discounted by the 

number of parameters contained by these models. The corrected AIC differs from the conventional AIC 

by further penalizing the number of parameters in the model. In this sense, it is a more conservative 

way to compare a model with and without state noise that differ by solely one parameter. AICc is 

defined by the following equation: 

    
1

2 1
2 2log

1

N

e

k k
AICc k y
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Here k refers to the number of model parameters and n is the number of data points used to fit the 

model. The smaller the value of AICc, the greater evidence for the corresponding model. We fit two 

different models to the experimental data. The first model corresponded to our full model in Eq. (10). 

The second model did not possess a state noise term, and therefore had one fewer parameter, the 

variance of the state noise. We searched for each model’s maximum log-likelihood, and along with the 

number of model parameters, computed the AICc for each subject. We compared the AICc for a model 

with state noise and without state noise using a paired t-test across subjects. 

 To compute the maximum log-likelihood of our model without state noise (LMSE), we searched 

its incomplete (marginal) log-likelihood function directly (Eq. A2.6). We performed this search from 50 

different initial points, using fmincon in MATLAB2016a. We used the same search space and model 

constraints for EM and LMSE as described previously. Note that in addition to state update noise, the 

likelihood model maximized by LMSE also neglects noise in the initial state of learning (see Appendix 2). 

We therefore excluded this initial state variance from both of our likelihood models. The total number 

of parameters for the models with and without state noise was 8 and 7, respectively. 

 

Power analysis 

One way to study the motor learning system is to compare how subjects perform in different 

experimental conditions, or at different points in time. For example, we may perform a savings 

experiment where we adapt subjects to a perturbation, wash out the adapted behavior, and then re-

adapt subjects to the same perturbation (Leow et al. 2016). Typically we find that subjects adapt to the 

perturbation faster the second time. We can ask how this savings is expressed: did subjects experience 

an increase in retention, an increase in error sensitivity, or perhaps both? In other words, our analyses 

typically involve comparisons. In order to determine if an intervention resulted in a change in behavior, 

we can ask how the model parameters that describe learning changed as the result of the intervention. 
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This statistical comparison is dependent on the variance in our estimates of two-state model 

parameters; as this variance increases, more subjects are required to obtain a statistically significant 

result. 

 Here we imagined that we performed an intervention that resulted in a change to the error 

sensitivity of a population, and a separate intervention that resulted in a change to the forgetting rate of 

the population. For the former, this is what is observed in savings paradigms (Smith and Shadmehr 2004; 

Herzfeld et al. 2014b; Leow et al. 2016). The latter has been observed in experiments that provide 

feedback in rewarding and punishing environments (Galea et al. 2015). We performed power analyses 

to determine how well EM and LMSE could detect changes in these two-state model parameters at 

different effect sizes. Our power analysis considered two forms of experiments: within-subject 

experiments, and between-subject experiments. For our within-subject experiment, we imagined that a 

set of subjects performed Paradigm 2 at two different time points, A and B. For our between-subject 

experiment, we imaged that different sets of subjects performed Paradigm 2 in contrasting 

experimental conditions A and B, like a randomized control trial.  

To generate data for the A condition, we simulated the behavior of 1000 subjects for Paradigm 

2, where each subject’s parameter vector was sampled from a multivariate normal distribution that we 

estimated from our experimental data (Table A3.1) by computing the mean and covariance matrix of the 

two-state model parameters estimated for our 20 individual subjects. To produce performance during 

Exposure B, we imagined that one of these parameters (i.e., a single entry in the parameter vector) had 

changed to a different value, and then re-simulated a new set of 1000 subjects. We fit each simulated 

behavior using EM and LMSE. From this subject pool we selected a certain number of subjects. For our 

within-subject experiment, we sampled the same subjects from Exposure A and Exposure B periods. For 

our between-subject experiment, we sampled subjects independently from the A and B distributions. 

We next identified the parameter values that EM and LMSE identified for the subjects in each exposure. 

For our within-subject experiment, we performed a paired t-test across the Exposure A and Exposure B 

parameter values to determine if either algorithm could be used to detect a statistically significant 

change in the parameter value, at a confidence level of 95%. For our between-subject experiment, we 

used a two sample t-test. We repeated this analysis for a given number of subjects a total of 10,000 

times, each time resampling subjects from our large 1000 subject pool. We tracked the percentage of 

times that EM and LMSE yielded a statistically significant difference in the parameter value across the 

10,000 experiments. We used this percentage as a measure of how reliably each algorithm detected 

statistical differences for a given group size. We used these data to ask how many subjects would be 
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required in order for EM and LMSE to detect a statistical difference for at least 85% of the simulated 

experiments. 

 The parameter values we selected for the Exposure B period were motivated by previous 

studies. For the slow state retention factor, we considered differences of -3% to +1.5% of the Exposure A 

retention factor, in agreement with the dynamic range seen across subjects adapting to visuomotor 

rotations with rewarding and punishing feedback (Galea et al. 2015). We speculate that the difference in 

retention factor for the single state fits in this study is most reflective of the slow state of learning during 

the error-clamp period. For the fast state error sensitivity, we selected ±15, 25, and 50% to cover the 

large differences in error sensitivity observed for individuals adapting in punishing and rewarding 

environments (Galea et al. 2015). This range in error sensitivity is also similar in magnitude to 

differences in error sensitivities of the slow and fast processes observed across the control and reporting 

groups in a study examining implicit and explicit components of learning in force field adaptation and 

visuomotor rotation learning (McDougle et al. 2015).   

 

Control studies 

We performed a set of control studies where we tested EM and LMSE identification accuracy in 

situations of greater noise, different dynamics for the fast and slow processes, and different 

assumptions about the structure of our two-state model of learning. For each of these control studies, 

we followed the same general approach: we simulated our two-state model and fit simulated behavior 

with EM and LMSE to determine how well each algorithm identified the slow and fast states of learning. 

For certain control analyses we reanalyzed our subject data. Each of our control studies is discussed in a 

separate section of Results. In the section Modeling higher levels of noise, we tested EM and LMSE on 

simulated data sets with much greater levels of state and motor noise. In the section Different noises in 

the fast and slow adaptive processes, we discuss evidence for the existence of two different variances 

for the update of the fast and slow states and perform a sensitivity analysis where we test EM and LMSE 

on simulated data sets with different levels of fast and slow state update variances. In the section, Other 

sources of noise, we consider a way to model internal noise in the sensory observation of an error. In the 

section, Changing the dynamics of the fast and slow adaptive processes, we tested EM and LMSE on data 

sets where the dynamics of the fast and slow properties differed from the average processes measured 

in the subject behavior investigated in our primary analysis. In the section Changing the bounds on the 

parameter space, we tested the identification accuracy of EM and LMSE if we further restrict the 

parameter space searched by both algorithms. And finally, in the section Trial-by-trial analysis of 
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behavior, we show that fitting our state-space model to the trial-by-trial subject behavior as opposed to 

8-trial epochs of subject behavior, does not have any effect on our primary conclusions. For brevity, we 

relegated further details of each of these control studies to the appropriate section in Results. 

 

Results 

Our aim was to design an algorithm that could uncover hidden processes that contribute to learning 

from error. We considered two algorithms: LMSE and EM. To perform our comparison, we asked 

volunteers (n=20) to participate in an adaptation experiment where they reached to 8 targets (Fig. 1A). 

The task consisted of a baseline period followed by a 30° visuomotor rotation to the cursor representing 

the subject’s hand position. After learning to compensate for the rotation, we removed visual feedback 

for an extended set of trials, and then reinstated feedback in the absence of any visual perturbation. 

The data, represented in epochs of 8 trials, are shown in Fig. 1B for 4 subjects. At first, each 

subject reached to the target accurately with some noise (top row, gray). Upon introduction of the 

perturbation, subjects rapidly learned to counter the imposed rotation, learning about 80% of the total 

rotation within 30 epochs. Upon removing visual feedback, the adapted behavior decayed gradually 

towards baseline, and then rapidly washed out during the last 30 epochs of the experiment when 

feedback was reinstated. 

 We assumed that experience of error engaged two learning processes that differed in their 

sensitivity to error, as well as retention properties  (Eq. 10). We fit this two-state model to the measured 

data from each subject to determine the properties of the hypothesized fast and slow states. To fit our 

model, we used two different algorithms, LMSE and EM. Each algorithm was provided with the noisy 

single subject epoch-by-epoch data (Fig. 1B, gray traces, top row). From this behavior, the algorithms 

estimated model parameters. We used these estimates to predict time courses of behavior (blue and 

red lines, Fig. 1B, top row), and the underlying slow and fast states (Fig. 1B, bottom row). The EM and 

LMSE time courses corresponded to the expected value of the behavior and hidden states, under each 

algorithm’s estimates of the model parameters (Eq. 12). 

We found that the two algorithms provided similar fits to the subject data (Fig. 1B, top row). 

However, differences between the algorithms emerged at the level of the fast and slow states of 

learning. For some subjects (Fig. 1B, bottom row, subject S9) EM and LMSE agreed quite well. However, 

for other subjects the predictions made by LMSE and EM differed considerably (Fig. 1B, bottom row, 

subjects S2 and S1). In these cases, the LMSE predictions often appeared to be unreasonable. For 

example, in subject S2, LMSE predicted large initial biases in the hidden states (Figure 1B, subject S2, 
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bottom). These large initial states were accompanied by a near zero error sensitivity in the slow state of 

learning. This near zero error sensitivity allowed LMSE to use the slow state of learning as a bias, 

accounting for the dynamics of subject S2’s behavior with the fast state alone. LMSE predicted that 5 of 

the 20 subjects possessed such an error-insensitive slow state. In contrast, the EM algorithm did not 

yield any such aberrant estimates. In another example, for subject S1, LMSE estimated a slow state 

retention factor that was greater than 1 (Fig. 1B, bottom row, subject S1). This led to a monotonically 

increasing slow state of learning (solid, red) that never decayed. LMSE estimated that 8 of 20 subjects 

possessed an unstable slow state retention factor. Again, the EM algorithm did not yield any such 

results. 

 Differences between EM and LMSE were further highlighted when the fits were averaged across 

subjects. That is, while the average fits to the behavior were nearly identical for EM and LMSE (Fig. 2A, 

top figure), the fast and slow state predictions differed considerably between the two algorithms. LMSE 

predicted larger contributions from the fast state than EM, and smaller contributions from the slow 

state. Relative to LMSE, EM predicted a smaller slow state retention factor (paired t-test, t(19)=3.6, 

p<0.01), a larger slow state error sensitivity (paired t-test, t(19)=3.4, p<0.01), a smaller fast state error 

sensitivity (paired t-test, t(19)=2.6, p<0.05), and a smaller fast state retention factor (paired t-test, 

t(19)=2.7, p<0.05). That is, the two algorithms made significantly different predictions regarding 

parameters of the system. 

 The different EM and LMSE model parameters led to contrasting levels of variance in the hidden 

state time courses; the LMSE time courses had considerably higher variability across subjects (compare 

sizes of error bars, Fig. 2A, bottom two figures). This elevated variability was largely driven by the 

outlying, likely errant, single subject fits we previously noted. The outlying fits also contributed to 

greater variance in the model parameters; the across subject standard deviation of the LMSE estimates 

exceeded that of EM for 5 of the 6 model parameters (all except fast state retention, Table A3.3). 

 These differences between the two algorithms produced a dilemma. Depending on the choice of 

algorithm, we obtained different descriptions of the fast and slow states of learning. Which estimate 

was closer to the truth?  

To answer this question, we computed AICc to determine the evidence for the likelihood models 

maximized by EM and LMSE. The critical difference between EM and LMSE is that the likelihood function 

maximized by EM contains noise in the state update process, whereas the LMSE likelihood function does 

not (see Appendix 2). For this reason, our comparison really asks a larger question: is there evidence 

that state noise affects the process of learning from error?  
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We computed the differences in AICc across likelihood models for each subject, resulting in a 

within subject comparison of EM vs. LMSE (Fig. 2C). We found that the AICc for the model including 

state noise (EM) was lower (better) than that of the model excluding state noise (LMSE): paired t-test 

across subjects, t(19)=3.4, p<0.01. This suggested that a model including state noise was more likely to 

account for the experimental data than a model without state noise. 

In summary, when we fit experimental data with each algorithm, we found that EM’s estimates 

of the hidden states diverged from LMSE. Unlike LMSE, EM did not exhibit any aberrant fast and slow 

state predictions. EM also yielded states that were more consistent across subjects; they had smaller 

variances in the model parameters, leading to lower variance in the hidden state time courses across 

subjects. LMSE uses a likelihood function that is blind to state noise. In contrast, EM’s likelihood function 

takes this noise into account. The likelihood model maximized by EM possessed a lower AICc than LMSE. 

This implied that a model of learning in which the states were influenced by noise was a better 

descriptor of the experimental data than one that did not include state noise. Therefore, learning from 

error is likely a stochastic process, not a deterministic one. 

 

Fitting the two-state model to simulated data 

To better appreciate how well each algorithm could recover the hidden states where learning and 

moving are noisy processes, we performed simulations (Eq. 10) to produce realistic data sets using 

parameters obtained from our experiment. Unlike the behavior collected in the lab, the hidden states 

were known in these simulated data sets, providing the opportunity to assess how well EM and LMSE 

could uncover the hidden states. Four paradigms were considered: abrupt perturbations that included 

or excluded error-clamp trials (Fig. 3A, Paradigms 1 and 2), a paradigm with a gradual perturbation (Fig. 

3A, Paradigm 3), and a paradigm that demonstrated spontaneous recovery and decay of motor memory 

due to set breaks (Fig. 3A, Paradigm 4). These simulated paradigms included only a single target, and the 

resulting data were analyzed trial-by-trial. 

Figure 3B shows the noise-free time courses of the simulated behavior (generated via Eq. 12), 

and the corresponding fast and slow states. Presence of error produced rapid changes in the fast state, 

but more gradual changes in the slow state when the perturbation was introduced abruptly (Paradigm 

1). Complete loss of the fast state occurred after set breaks (Paradigm 4). Gradual introduction of the 

perturbation slowed the onset of the fast state of learning (Paradigm 3). Error-clamp trials produced 

rapid decay of the fast state, but produced only small changes in the slow state (Paradigm 2). 
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Occasionally the two states had opposite signs (washout trials, Paradigm 2), which led to spontaneous 

recovery in error-clamp trials (Paradigm 4).  

Figures 3C, 3D, and 3E show typical time courses of the simulated behavior and hidden states in 

the presence of noise (Eq. 10). Similar to our human data, we found that both EM and LMSE provided 

excellent fits to the simulated data (Fig. 3C). However, EM appeared more robust in uncovering the fast 

and slow states. In some conditions (Figs. 3D and 3E, Paradigms 1-3), LMSE produced estimates of the 

hidden states that diverged considerably from the truth. To compare each algorithm’s accuracy in 

recovering the hidden states of learning, for each paradigm (1000 simulations for each of the four 

paradigms) we computed the root-mean-squared-error (RMSE) between three pairs of values: the true 

values of the simulated behavior, fast state, and slow state [ y , fx , sx ], and the predicted time courses 

obtained from EM and LMSE. We observed that across paradigms, LMSE fit the simulated behavior 

better than EM (Fig. 4, top row, parameter y ; paired t-test, t(999)>13.9, p<10-5). This is expected, as the 

objective function of LMSE minimizes the RMSE between the observed behavior and model predicted 

behavior (see Appendix 2). With that said, LMSE offered only a modestly improved fit over EM 

(approximately 10% over EM, Fig. 4, bottom row, parameter y; one-sample t-test, t(999)>31.5, p<10-5). 

While LMSE more closely tracked the observed data, EM produced far more accurate estimates 

of the fast and slow states (Fig. 4, fx , sx ). In other words, LMSE was more prone to predicting errant 

fast and slow state time courses (Figs. 3D and 3E). LMSE performed particularly poorly in Paradigm 3, 

producing fast and slow state estimates that had errors exceeding those of EM by >275% (Fig. 4, 

Paradigm 3, bottom row; one-sample t-test, t(999)>25.0, p<10-5). LMSE also performed poorly in 

Paradigm 1, where it produced state estimates that had errors exceeding those of EM by approximately 

75-125% (Fig. 4, Paradigm 1, bottom row; one-sample t-test, t(999)>14.1, p<10-5). Including error-clamp 

trials in Paradigm 2 improved LMSE performance marginally (Fig. 4, Paradigm 2). Finally, LMSE (and EM) 

performed best in Paradigm 4, the paradigm that included both error-clamp trials and set breaks (Fig. 4, 

Paradigm 4). In this case, EM was better than LMSE for the fast state (Fig. 4, Paradigm 4, bottom row; 

one-sample t-test, t(999)=11.8, p<10-5), with no difference in estimation of the slow state (Fig. 4, 

Paradigm 4, bottom row; one-sample t-test, t(999)=0.9, p=0.39). 

Overall, we found that LMSE performed substantially worse than EM in uncovering the hidden 

states. Why did LMSE fit the observed data well but was unable to robustly uncover the hidden states? 

We observed three modes of failure by LMSE.  
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In the first mode, LMSE identified retention factors for the slow state that were greater than 1 

(Fig. 3D, Paradigm 1). Such retention factors resulted in unstable behavior of the slow state. Relative to 

EM, LMSE was significantly more prone to identifying unstable slow state retention factors. For 

Paradigms 1 and 3, LMSE identified unstable slow state retention factors in 44.8% and 54% of the runs 

respectively, whereas for EM, this occurred in 15.2% and 6.4% of simulations. The inclusion of error-

clamp trials in Paradigm 2 protected against this mode of failure, lowering the number of runs affected 

by unstable retention to 19.6% for LMSE and 1.3% for EM. Similarly, Paradigm 4 resulted in a very low 

frequency of error: 5.2% and 0.7% of simulations for LMSE and EM, respectively. This mode of failure 

was also demonstrated by LMSE fits to 8 of 20 subjects in our experiment (Fig. 1B, subject S1, bottom 

row).  

In the second mode of failure, LMSE converged on a slow state of learning that was insensitive 

to error and possessed near complete retention, causing it to function as a behavioral bias (Fig. 3D, 

Paradigm 2). In this case, LMSE accounted for the dynamics of the observed data by relying solely on the 

fast state. These error-insensitive slow states of learning were also observed in LMSE fits to 5 of 20 

subjects in our experiment (Fig. 1B, subject S2, bottom row).  

In the final failure mode, LMSE predicted very large initial slow and fast states with similar 

magnitude and opposite sign (Figs. 3D and 3E, Paradigm 3). For Paradigms 1-4, LMSE identified hidden 

fast or slow states that differed from the true value (threshold of 10° or greater absolute error) in 8.1%, 

12.2%, 25.8%, and 2.5% of simulations respectively. For EM, this never occurred. This mode of failure 

appeared more prevalent in simulation than in our behavioral data, with EM and LMSE both predicting 

only one subject with an initial state that exceeded 10°, or one-third of the eventual perturbation.  

Unsurprisingly, these three modes of failure were accompanied by larger error in the LMSE 

estimates of the model parameters. To quantify each algorithm’s error in estimating model parameters 

we computed the absolute error for each parameter across all paradigms (Fig. 5). We found that for all 

parameters and in all paradigms, LMSE possessed a greater absolute error than EM (Fig. 5, bars labeled 

P1-4; paired t-test, t(999)>6.0, p<10-5). EM also better estimated the set break decay parameter in 

Paradigm 4 than LMSE (errors of 4.99±0.25 and 7.67±0.43 for EM and LMSE respectively, paired t-test, 

t(999)>13.2, p<10-5). The inclusion of error-clamp trials and set breaks improved the performance of 

both algorithms; with the exception of the initial fast and slow states, both algorithms had the lowest 

error in Paradigms 2 and 4. Although error-clamp trials were also present in Paradigm 3, the gradual 

introduction of the perturbation hampered the response of the fast state of learning (Fig. 3, Paradigm 3) 

which likely impaired the ability of each algorithm (LMSE more than EM) to differentiate properties of 
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the two learning processes. The opposite was true for Paradigm 4 where the two set breaks, opposite 

perturbations, and error-clamp trials resulted in several “excitations” of the fast state (Fig. 3B, Paradigm 

4). These excitations significantly improved the ability to identify properties of the fast state, as 

evidenced by the markedly reduced error in fast state retention and error sensitivity (Fig. 5, Paradigm 4) 

for both algorithms. Error-clamp trials appeared to have a similarly dramatic effect on estimation of 

slow state retention and error sensitivity (Fig. 5, compare Paradigm 1 with Paradigm 2). 

In summary, in all paradigms EM was more accurate in uncovering the true parameters of the 

learning processes. Differences in hidden state recovery were driven by three failure modes in the LMSE 

algorithm, two of which were also prominent in LMSE fits to our human behavior data set. Inclusion of 

set breaks and error-clamp trials significantly improved the ability of both EM and LMSE to uncover the 

two-state model parameters. 

 

A better tool for hypothesis testing 

Sensorimotor tasks are occasionally designed to test the effectiveness of an intervention. Model fits 

provide a tool to ask whether the intervention significantly affected learning parameters such as error 

sensitivity or retention. Power analysis provides an estimate of how many subjects may be needed to 

detect a significant difference. The number of subjects needed to test a hypothesis depends on the 

noise properties of the data. In our experiment, EM parameter estimates had a lower variance than 

LMSE (evident by visual inspection of Fig. 2B, see Table A3.3 for numerical details). This lower variability 

in the parameter estimates has a practical implication: it should improve the ability to test hypotheses.  

To explore this question, we considered a within-subject and a between-subject experimental 

design. A within-subject experiment is typical for the study of savings and anterograde interference, 

where the same subjects are exposed to similar or contrasting perturbations at two different time 

points. Between-subject designs are common when testing the effects of some intervention against a 

control group, where the subjects in both conditions differ. Here we imagined that these interventions 

may cause changes in learning rate, as is observed in savings paradigms (Herzfeld et al. 2014b), and 

retention, as is observed in differing reward environments (Galea et al. 2015). 

We analyzed how many subjects would be required to achieve a particular level of confidence in 

the ability to detect differences in the learning parameter modified by the intervention. To do this, we 

created experiments by sampling subjects from a large pool. For our within-subject experiment, we 

sampled the same subjects in two different environments. For our between-subject experiment, we 

sampled subjects independently in the two different environments. We performed t-tests to see if there 
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was a difference in the EM and LMSE learning parameters across the two simulated environments. We 

used a paired t-test to test for within-subject changes, and a two sample t-test to test for between-

subject changes. These simulated environments possessed the same trial structure (Paradigm 2) but 

differed in that subjects were simulated with a different error sensitivity or retention factor. We 

analyzed changes in each error sensitivity and retention factor separately, i.e., in each of our simulated 

experiments, only one parameter truly differed within the subject population across the two 

environments. We varied the number of subjects and determined the percentage of simulated 

experiments for which a statistically significant (p<0.05) difference existed in the appropriate model 

parameter. Finally, we determined the number of subjects that would be required to detect a significant 

change in parameter value, for at least 85% repetitions of the experiment. 

Figures 6A and 6B provide the results for our within-subject and between-subject analysis, 

respectively. Unsurprisingly, we found that a within-subject comparison required fewer subjects than a 

between-subject comparison, for both EM and LMSE. A within-subject test is more powerful, as it 

accounts for between-subject variability, increasing the power of the statistical comparison. For both 

the within-subject test and between-subject test we found that the number of subjects required to 

achieve an 85% detection rate generally decreased as the effect size (the magnitude of the parameter 

difference across the two environments) increased. This applied to both increases (solid lines) and 

decreases (dashed lines) in each parameter. For all effect sizes and parameters, EM required fewer 

subjects to reach the threshold detection level. Specifically, EM required approximately 20-95% and 30-

95% fewer subjects than LMSE for the within-subject comparison and across-subject comparison, 

respectively. 

In summary, we found that as compared to LMSE, EM reduced the number of subjects that 

would be needed to detect effects of an intervention that altered error sensitivity or retention.  

 

Modeling higher levels of noise 

Subjects performing sensorimotor learning tasks exhibit different levels of noise in their motor behavior. 

Does the performance of either EM or LMSE worsen in the presence of higher levels of noise? To answer 

this question, we performed a sensitivity analysis by scaling the state and motor noise variances to 

different levels (0.5, 2, 4, 6, 8, and 10 times the values reported in Table A3.1). At each level, we 

simulated the performance of 1000 subjects in Paradigm 2. We fit the simulated behavior with EM and 

LMSE, and computed the RMSEs for each algorithm’s estimates of behavior and hidden states of 

learning. 
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As expected, LMSE always provided a closer fit to the behavioral data (Fig. 7A). This result was 

expected because the objective function of LMSE minimizes the RMSE of the observed behavior. 

However, for all levels of noise, EM better isolated the hidden states of learning (Figs. 7B and 7C). The 

differences in the hidden state RMSE were approximately an order of magnitude larger than the 

difference in RMSE for the observed behavior. Therefore, irrespective of the noise level, it appeared that 

EM traded off small errors in fitting the observed behavior for larger improvements in uncovering the 

hidden fast and slow states. In summary, we expect that our conclusions about the relative performance 

of EM and LMSE would hold even at higher levels of state and motor noise. 

 

Different noises in the fast and slow adaptive processes 

We assumed that the fast and slow learning processes were affected by state noises with equal 

magnitude. However, faster processes that change more rapidly may also be accompanied by higher 

levels of noise. In fact, a relationship between learning rate and state variance would be expected from 

a Bayesian interpretation of learning (Kording, et al., 2007). In light of these considerations, we 

reanalyzed our subject behavior with a two-state model of learning with two separate variances for fast 

and slow states of learning. In line with our intuition, we found that the variance of the fast state (mean 

± SEM, 2.74 ± 0.58 deg2) was greater (paired t-test, t(19)=4.39, p<0.001) than that of the slow state 

(mean ± SEM, 0.63 ± 0.34 deg2). 

 We next asked if a model with separate variances for the slow and fast states was more likely to 

explain the data than a model with only one variance. To ask this question we computed the AICc for 

each subject for these two models. A within-subject paired t-test, across models, did not reveal a 

significant difference in the AICc for a model with a single state noise, or separate state noises for the 

slow and fast state (paired t-test, t(19)=0.39, p=0.703). This result indicates that in our experimental 

data, a model with two separate variances for the fast and slow states was not justified.  

Despite this, we performed a sensitivity analysis to determine how well EM and LMSE would 

identify the fast and slow states of learning if each process was affected by different levels of state 

noise. In this analysis, we fixed the cumulative level of slow and fast state variance (i.e., we fixed the 

sum of the slow and fast state variances) and changed the fraction of the total state noise variance 

attributed to either the fast and slow state. We analyzed levels of 25%, 37.5%, 50% (i.e., equal 

contribution from the fast and slow state), 62.5%, and 75%. At each level, we simulated the behavior of 

1000 subjects performing Paradigm 2. We fit the simulated behavior with EM and LMSE, and computed 

the RMSEs for each algorithm’s estimates of behavior and hidden states of learning, as in Fig. 4. 
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Regardless of noise levels tested, EM had greater error in the fitting of the measured behavior (Fig. 7D), 

but it remained superior to LMSE in the identification of the slow and fast states (Figs. 7E and 7F). 

Therefore, we expect the superior performance of EM would generalize to systems with different levels 

of variance in the fast and slow states. 

 

Other sources of noise 

We assumed that noise from all processes that contribute to learning from error could be combined into 

a cumulative state noise by adding the variances of each noise source together. However, there exist 

sources of noise that violate this assumption. Consider, for example, noise involved in the learner’s 

observation of error. To correctly incorporate this source of noise, we could modify Eq. (6) by adding an 

observation noise that adds to the true error. In this model, the observation noise would be multiplied 

by error sensitivity, and therefore the state update noise in Eq. (6) would also depend on error 

sensitivity. We considered this more complete model, by simulating Eq. (6) with an added observation 

noise term. We performed 1000 simulations of this model for Paradigm 2 and attempted to recover the 

variances of the three different noise sources using EM. Unfortunately, we found that our algorithm was 

unable to estimate the variance of observation noise. For approximately 80% of simulations, EM’s 

estimate of the observation noise variance converged to either an upper or lower bound of the 

parameter space, far from the true value we used in simulation. That is, our algorithm had no power to 

estimate this variance separately from the independent state and motor noises.  

This limitation was caused by the multiplication of observation noise by error sensitivity. 

Because of this multiplication, the variance contributed by the observation noise is multiplied by the 

square of error sensitivity, and was therefore exceedingly small relative to the independent state noise 

variance. Therefore, while a more accurate model of learning might include this observation noise, we 

currently cannot estimate its magnitude using our algorithm. 

 

Changing the dynamics of the fast and slow adaptive processes 

Motor learning in different effectors (e.g. eye, arm, etc.) and paradigms (e.g. force field adaptation, 

visuomotor adaptation, etc.) occurs at different rates. Would the accuracy of EM or LMSE estimates of 

the hidden processes vary with the underlying learning and forgetting rates of the subject population? 

To investigate this question, we performed sensitivity analyses for four parameters: slow retention, fast 

retention, slow error sensitivity, and fast error sensitivity. We varied each of these parameters in turn 

across the ranges used for our power analysis. For each parameter level, we performed 1000 
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simulations of our two-state model (Eq. 10) for Paradigm 2. We fit the simulated behavior with EM and 

LMSE, and computed the RMSEs for each algorithm’s estimates of behavior and hidden states of 

learning, as in Fig. 4. As expected, LMSE continued to better fit the observed data in all simulations (Fig. 

8, row 1). However, in every case EM was more accurate in uncovering the fast and slow states (Fig. 8, 

rows 2 and 3). This difference in hidden state RMSE was an order of magnitude larger than that of the 

observed behavior RMSE. Therefore, we expect that our conclusions about EM and LMSE would 

generalize to environments where learning exhibited different dynamics than those explored within our 

primary analysis. 

 

Changing the bounds on the parameter space 

Both algorithms were constrained to search an identical parameter space (Table A3.2). Despite this, we 

found that LMSE frequently exhibited modes of failure in the identification of two-state model 

parameters. One of these modes of failure involved the identification of slow state retention factors 

whose magnitude exceeded 1. Retention factors in this range can lead to unstable behavior of the slow 

state of learning. We doubt that a biological system would exhibit this unstable behavior. Could the 

LMSE algorithm be rescued by modifying the parameter space to prevent the identification of these 

unstable retention factors? To answer this question, we reanalyzed our primary simulations for 

Paradigms 1-4 (Figs. 3, 4, and 5) by refitting the EM and LMSE algorithm in a parameter space whose 

upper bound for the slow and fast state retention factor was equal to 1. We fit each simulated behavior 

with EM and LMSE, and computed the RMSEs for each algorithm’s estimates of behavior and hidden 

states of learning (Fig. 9). 

We found that restricting the parameter space had very little effect on the performance of EM 

(compare RMSE for the EM algorithm in Figs. 4 and 9). This is to be expected, considering EM did not 

identify many solutions with unstable retention factors for any of the 4 paradigms. In contrast, the 

performance of LMSE improved in terms of identifying the fast and slow states, specifically for 

Paradigms 1, 2, and 3 (compare RMSE for the LMSE algorithm in Figs. 4 and 9). This was also expected, 

considering LMSE predicted many behaviors with a slow state retention factor that exceeded 1. 

However, despite the improvement in LMSE identification of the hidden processes in Paradigms 1-3, 

LMSE error exceeded that of the EM algorithm (Fig. 9; Paradigms 1, 2, and 3; xs, xf). Therefore, 

restrictions on the parameter space that eliminated unstable behavior of the slow state of learning 

improved but did not rescue the performance of LMSE relative to the EM algorithm. 
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Trial-by-trial analysis of behavior  

Prior to fitting our state-space model to our behavioral data, we averaged single subject behavior across 

8-trial epochs, where each of the 8 targets in our rotation task was visited once. We chose an epoch-

based timescale for the analysis of subject behavior in order to minimize the effects of generalization on 

trial-based learning (see Epoch and trial-based analysis of subject behavior). However, an epoch-based 

timescale of motor behavior exhibits different dynamics than a trial-biased timescale; more is learned 

and forgotten in an epoch of 8 trials, and the variance in trial-by-trial behavior differs from that of 

epoch-by-epoch behavior. Therefore, the retention factors, error sensitivities, and noise variances that 

describe single subject data for our epoch-based analysis will differ from those of a trial-based analysis. 

We performed a set of control analyses to confirm that these differences in the trial-by-trial 

data would not lead to changes in the identification accuracy of EM or LMSE. We reanalyzed our 

experimental data on a trial-by-trial basis with two different models of generalization. Because we did 

not measure the generalization function of each subject, we considered two extreme cases, (1) where 

subjects fully generalized learning from one target to all other targets (full-generalization model) and (2) 

where subjects had no-generalization of learning from one target to other targets (no-generalization 

model). For the full-generalization model, we applied Eq. (10) to our trial-by-trial subject behavior as if 

the same target was visited on each trial. For the no-generalization model, we extended the 

dimensionality of our state to include a fast and slow state for each target (a total of 16 states, 2 hidden 

states for each of the 8 targets). For a given trial, only the fast and slow states for that target 

experienced error-based learning consistent with the case of no-generalization, but all states 

experienced trial-by-trial forgetting. The full details of this model are described in Appendix 4. 

The trial-by-trial analysis yielded strikingly similar results to our epoch-by-epoch analysis. As 

before (Fig. 2A), EM and LMSE provided similar fits of the measured data for both the full and no-

generalization models (Fig. 10A, top and bottom rows, respectively). As in the epoch-by-epoch 

predictions in Fig. 2A, for both trial-by-trial models, EM estimated larger contributions from the slow 

state and LMSE estimated larger contributions from the fast state (Fig. 10B). The differences in these 

trajectories were driven by different estimates of the two-state model parameters (not shown in figure). 

As with our epoch-by-epoch model parameters (Fig. 2B), in our trial-by-trial full-generalization model, 

EM estimated a smaller slow state retention factor than LMSE (paired t-test, t(19)=3.20, p=0.0047) and a 

larger slow state error sensitivity (paired t-test, t(19)=3.65, p=0.0017). For the no-generalization model 

these trends were not statistically significant. As before, the variance of the LMSE parameter estimates 

exceeded those of EM for all retention factors and error sensitivities of the no-generalization model, and 
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all parameters except the fast state retention factor of the full-generalization model. These increased 

variances were caused by errant LMSE slow and fast state predictions that resembled the failure modes 

noted in Fig. 1B for the epoch-by-epoch analysis. For 8 and 7 of the 20 subjects (no-generalization and 

full-generalization, respectively), LMSE estimated unstable retention factors that exceeded 1. For 3 and 

6 of the 20 subjects (no-generalization and full-generalization, respectively), LMSE estimates of slow 

state error sensitivity tended towards zero yielding slow states of learning that were largely insensitive 

to error. 

We repeated our AICc analysis on the likelihood models fit by EM and LMSE. Recall that the 

LMSE model excludes state noise, and therefore possesses fewer parameters than EM. We found the 

same result as before (Fig. 2C): the likelihood used by EM possessed a lower AICc than the likelihood 

model used by LMSE (Fig. 10C; paired t-test for full-generalization, t(19)=2.83, p=0.011; paired t-test for 

no-generalization, t(19)=3.81, p=0.001). Therefore, trial-by-trial analyses of our data assuming either 

complete generalization or no-generalization of learning both suggested that a model that includes state 

noise in the process of error-based learning was more likely to explain measured behavior. 

Finally, although in our primary analysis we did not perform any averaging of our simulated data 

sets, these simulations were indirectly affected by our epoch-based analysis of subject behavior because 

we used these parameter sets as a basis for the simulated data. For this reason, we used the trial-by-

trial parameters (Fig. 10B) to perform a set of control simulations. We replicated our epoch-by-epoch 

analysis by simulating Paradigm 2 (a total of 1000 times with our no-generalization and full-

generalization state-space models). We found that while LMSE fit the observed reaching behavior more 

closely (Fig. 10D, y) improving on EM by approximately 5%, EM vastly outperformed LMSE in the 

identification of the hidden slow and fast states by approximately 50-300% (Fig. 10D, xs and xf).  

In summary, in both the epoch-by-epoch and trial-by-trial data, EM and LMSE identified 

different slow and fast state trajectories. The likelihood model maximized by EM was more likely to 

explain both the epoch-by-epoch and trial-by-trial behavior. That is, in all cases the evidence pointed to 

a learning model that was stochastic in its adaptation to error. In simulation, EM was superior to LMSE 

in the identification of the slow and fast states when the parameter set was taken from trial-by-trial 

subject behavior, as well as from epoch-by-epoch subject behavior. 

 

Discussion 

State-space models were first applied to data in adaptation experiments following the observation that 

experience of a single error produced robust trial-by-trial changes in behavior (Thoroughman and 
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Shadmehr 2000; Scheidt et al. 2001). This provided the possibility to assay learning not only in typical 

scenarios where perturbations were sustained, but also in scenarios where the perturbations were 

random (Donchin et al. 2003; Srimal et al. 2008). The initial models assumed a single state; however, the 

observation of spontaneous recovery during saccade adaptation in monkeys (Kojima 2004) suggested 

that experience of error engaged multiple learning processes. Smith et al. (Smith et al. 2006) modified 

the state-space equations by proposing that the putative learning processes included a fast process that 

learned strongly from error but forgot rapidly, and a slow process that learned weakly from error but 

exhibited robust retention. Unfortunately, the task of identifying these processes was difficult because 

there was typically no direct way to measure them. Rather, their state had to be inferred from their 

collective influence on behavior. Here, we approached this estimation problem in the context of data 

measured in typical motor learning studies and designed an algorithm to uncover the hidden processes.  

 

Design of a new algorithm 

Previous attempts to estimate fast and slow processes of learning had predominantly relied on least-

squares techniques (Trewartha et al. 2014; Colagiorgio et al. 2015; Galea et al. 2015; McDougle et al. 

2015). However, to our knowledge, robustness of the least-squares technique was not tested and 

compared with alternative algorithms. Here we used LMSE to fit a two-state model to behavioral data 

collected in a reach-adaptation task. We found that while LMSE fit the observed behavior well, for a 

subset of subjects it appeared to misidentify properties of the hidden processes; for these subjects LMSE 

estimated parameters that produced physically unrealistic trajectories of the fast and slow states. We 

hypothesized that LMSE occasionally yielded aberrant results because it incorrectly attributed any noise 

in the learning process to variability in the production of a movement. In other words, LMSE was 

ignorant of a type of variability called state noise: randomness in the process of learning from error. To 

rectify this potential issue with LMSE, we developed a new algorithm based on EM. 

Unlike LMSE, the EM algorithm is compatible with systems where both learning from error and 

generating a movement have independent noise sources. We developed a two-state model that 

represented the random processes involved in learning from error and production of movements. For 

such a system, our EM algorithm used a different, and in some sense, more complete, likelihood model 

than LMSE.  

EM has received limited application in the sensorimotor literature (Cheng and Sabes 2006). We 

speculate that this is because of two reasons. (1) Previous applications of the algorithm were restricted 

to experiments that could be described by time-invariant state-space models. That is, in previous 
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descriptions of EM, one could not use the algorithm with modern sensorimotor experiments that 

include behavioral probes such as error-clamp trials (Scheidt et al. 2000) and set breaks, the second of 

which causes time-dependent changes to the state-space equations. Rather than using a closed form 

solution (Cheng and Sabes 2006), here we used a numerical approach, allowing us to fit models to data 

that included error-clamp trials and set breaks. (2) Previous implementations could not specify bounds 

on the model parameters, and constrain relationships between model parameters. Here, we solved this 

problem by implementing a generalized EM algorithm that maximized the expected complete log-

likelihood function numerically within a constrained parameter space. 

 

Evaluating the new algorithm 

We performed a visuomotor rotation experiment and fit the measured data with EM and found that 

parameters estimated by the algorithm differed from those of LMSE. EM appeared to eliminate the 

aberrant single subject fits observed for the LMSE algorithm. Additionally, EM parameters had lower 

variability across subjects, leading to reduced variance in the corresponding fast and slow state time 

courses. We computed the AICc for models that included (EM) or ignored (LMSE) noise in the state 

update equation. We found that the model with state noise was more likely to explain the measured 

data in our experiment. Therefore, we were able to make two conclusions: 1) experimental data 

suggested that equations that include noise in the learning process are a better descriptor of behavioral 

data than those that omit this noise; 2) EM, but not LMSE, is the appropriate algorithm to uncover 

parameters of a learning system that includes state noise. 

To determine how well EM could fit models with state noise, and the problems that LMSE may 

exhibit on a data set with state noise, we performed simulations where the true trajectories of the 

hidden states were known. We tested EM and LMSE on simulated data generated in four learning 

paradigms, across a variety of noise conditions and parameter values. While in all cases EM performed 

slightly worse than LMSE in fitting the observed data, it consistently outperformed LMSE in the 

identification of the hidden states. Specifically, EM predicted hidden state time courses that were more 

closely matched to the true states, and identified model parameters that were more tightly distributed 

about the true values. For these reasons, we expect the EM toolbox to provide a more robust method of 

fitting state-space models to single subject behavioral data.  

In compared to LMSE, EM was able to identify learning parameters that had significantly 

reduced variance. This had the benefit that in a typical experiment, use of EM significantly reduced the 

number of subjects needed to statistically make within-subject and between-subject comparisons. 
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Therefore, it appears that the new algorithm might allow for a more robust method of hypothesis 

testing. 

 

Limitations of the algorithm 

Our model assumed that two sources of noise, a state noise and a motor noise, affected the processes 

of learning and movement production, respectively. Other authors have also considered state noise in 

models of learning (Cheng and Sabes 2006; Tanaka et al. 2012). However, at present we do not have a 

complete understanding of the properties of such noise. With that said, here we found evidence that a 

model with state noise was more likely to explain human behavior during a visuomotor rotation task. 

Furthermore, the differentiation between state and motor noise is more harmonious with a Bayesian 

interpretation of motor learning (Kording et al. 2007; Wei and Körding 2010). Additionally, the existence 

of state noise is also consistent with autocorrelations that arise between successive movements that can 

accumulate due to variability in planning a movement that is independent of variability in performing 

the movement itself (van Beers et al. 2013). Practically speaking, we found that by including state noise 

in our model, we eliminated unrealistic fits to single subject behavior obtained from LMSE. 

 The manner in which we described state and motor noise was not entirely accurate. For 

example, we assumed that the variance of motor noise was signal independent. While this assumption 

seems reasonable for visuomotor rotation learning where each movement has the same amplitude, for 

motor effectors like the eye, a better model of learning might account for scaling of noise with the 

amplitude of movement. Accounting for this signal dependency would require fundamental 

modifications to the E- and M-steps of our EM toolbox. 

A useful modification to our model would be the inclusion of time-varying error sensitivity 

(Herzfeld et al. 2014b). Such a modification could be incorporated by adding an additional parameter 

that determines the rate at which error sensitivity changes over time. Along these lines, the processes of 

learning and retention may possess nonlinearities not accounted for by our model. These modifications 

to the model would require derivation of a different expected complete log-likelihood function and an 

extended Kalman filter (for nonlinear systems) and therefore fundamental modifications to our EM 

toolbox would be required to fit such nonlinear behavior. 

Another extension could be the inclusion of more than two-states of learning. Preliminary 

evidence suggests that slow learning states can be subdivided into two component processes (yielding a 

total of 3 hidden states) with differing levels of susceptibility to temporal decay (Inoue et al. 2015; 
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Brennan and Smith 2016). Such a model of learning would be directly compatible with our EM approach 

with the addition of a retention factor, error sensitivity, and initial state. 

Different model fits could be obtained by changing the restrictions on the parameter space we 

searched for both algorithms during the fitting process. In some cases, the experimenter can fix the 

initial states to zero to improve fits. However, the goal of our work was to identify an algorithm that 

could perform robustly for any perturbation sequence, independent of the subject’s initial states and 

independent of the modeler’s knowledge of the subject’s initial states. For this reason we did not 

attempt to improve EM and LMSE performance by fixing the initial states, as this constraint cannot be 

applied in general circumstances. 

The form of the model can lead to correlations within the estimated parameters. For example, 

consider washout of learning. The rate of washout is determined by both forgetting and learning from 

error. Fast washout of learning can be explained by high error sensitivity and low retention factor. For 

this reason and others, there is a tendency to predict that these parameters are correlated. We 

quantified correlations within parameters estimated by EM and LMSE. For EM, there were two pairs of 

model variables with appreciable correlation (absolute value of correlation coefficient > 0.4), and for 

LMSE there were three. The two pairs shared by both algorithms were slow state retention-slow state 

error sensitivity (EM, R=-0.455; LMSE, R= -0.628) and fast state retention-slow state error sensitivity 

(EM, R=-0.412; LMSE, R=-0.682). The third pair exclusive to LMSE was fast state retention-slow state 

retention (LMSE, R=0.536). Therefore, both algorithms were affected by correlated parameter 

estimates, the magnitude of these correlations appeared smaller for the EM algorithm.  

There are alternative approaches to uncovering hidden behavioral states. EM can be thought of 

as a frequentist’s approach to mathematical estimation. It identifies the parameter set with the most 

likely solution to the problem. However, EM assumes a flat prior distribution over the parameters; in 

other words, the algorithm currently does not allow the modeler to use prior information regarding the 

probability distributions of the parameters of the learning system. These considerations can be 

accounted for within the context of Bayesian approaches to estimation. To our knowledge, this Bayesian 

framework has not been applied to two-state models of adaptation; Bayesian techniques represent an 

exciting avenue that may further improve upon the robustness of the EM approach we pursued here.  

 

Relationship between mathematical hidden states and neural substrates of learning 

Why might it be useful to mathematically identify the hidden processes that underlie learning? In terms 

of behavior, various studies have posited that the fast and slow timescales of learning map onto 
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dissociable components of a movement: during saccades, the early component of the movement 

exhibits properties that resemble influence of the slow process, whereas the later component of the 

same movement exhibits influence of the fast process (Chen-Harris et al. 2008). During reaching, fast 

processes appear to mirror more temporally-labile components of memory and slower processes appear 

more temporally-stable (Smith et al. 2006; Kording et al. 2007; Ethier et al. 2008; Hadjiosif and Smith 

2015). Fast processes may relate to explicit or cognitive types of motor learning, where slower processes 

are supported by implicit, unconscious motor learning mechanisms (Taylor et al. 2014; McDougle et al. 

2015). Fast states of learning may require larger amounts of preparation-time to be expressed than slow 

states of learning, which are present in behavior executed at low reaction times (Haith et al. 2015). 

In terms of neural substrates of learning, some authors have found that the neural basis of the 

fast process may depend on the cerebellum, as evidenced by the observation that non-invasive 

cerebellar stimulation can modulate learning from error (Galea et al. 2011; Herzfeld et al. 2014a), and 

damage to the cerebellum can spare slow processes (Xu-Wilson et al. 2009). For example, people with 

cerebellar damage maintain the ability to modulate error sensitivity of the slow process (Hanajima et al. 

2015). Imaging results suggest that for arm movements, both fast and slow adaptive processes may 

depend on the cerebellum (Kim et al. 2015), as well as regions of the cerebral cortex.  

At the neuronal level, the existence of different timescales of memory may be present within 

the architecture of the cerebellum. A recent study found that the basic computational unit in the 

cerebellum may be micro-clusters of P-cells that share a common preference for error (Herzfeld et al. 

2015). Anatomical studies show that a given error is transmitted to the cerebellum via complex spikes 

that engage different micro-clusters of P-cells, placed in disparate regions of the cerebellum (Fujita and 

Sugihara 2013). This raises the possibility that a single error produces plasticity in multiple regions of the 

cerebellum, engaging distinct neural elements that can combine their outputs in service of adaptation 

(Shadmehr 2017). Indeed, P-cells in the flocculus exhibit a preference for error direction (Yang and 

Lisberger 2014). When a visual error is in the preferred direction of a P-cell, that cell produces complex 

spikes, which in turn results in depression of simple spikes on the subsequent trial. If the temporal 

distance between the two trials is large, these changes fade away, akin to a process of forgetting. In 

contrast, that same visual error is in the anti-preferred direction of another group of P-cells, resulting in 

reduction of complex spikes below baseline, which produces small potentiation of the simple spikes on 

the subsequent trial. These two groups of P-cells exhibit different sensitivities to the same error, and 

exhibit forgetting with passage of time, two elements that appear quite similar to mathematical two-
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state models inferred from behavior. That is, the neural basis of multiple timescales of memory may be 

in part associated with the diversity of error-preferences in the P-cells of the cerebellum. 

Comparison of mathematical estimation of the hidden states of learning with these probes 

provides an opportunity to identify the neural substrates that mediate the multiple timescales of motor 

memory.
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Figure 1. Experimental paradigm: EM and LMSE algorithms uncover different hidden processes. A. 

Subjects (n=20) participated in a reach adaptation task. There were 8 targets in total, each chosen 

pseudo randomly and presented once in epochs of 8 trials. Following a no-perturbation baseline period, 

a 30° counter-clockwise rotation was applied to the cursor representing the subject’s hand position. 

After 30 epochs of this perturbation, visual feedback was removed for 15 epochs. Finally, visual 

feedback was reinstated during a washout block of 30 epochs. B. Single subject behavior. We fit the 

epoch-by-epoch data (reach direction) of each subject with EM (top row, blue) and LMSE (top row, red). 

Both provide good fits to the measured data. Each algorithm estimated the fast and slow processes that 

produced the measured behavior (bottom row). For subject S9, these time courses agreed across 

algorithms. For S16, EM and LMSE time courses exhibited reasonable two-state behavior, but had 

differing learning dynamics. For S2 and S1, the EM and LMSE predictions diverged completely.  
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Figure 2. Comparison of parameter values uncovered by EM and LMSE as fitted to experimental data. A. 

Population behavior, represented by the average time course across all 20 subjects. At top, the average 

behavior (black) is shown overlaid with the average EM (blue) and average LMSE (red) fits. EM and LMSE 

had very similar fits to the behavior. However, the algorithms’ predictions regarding the slow and fast 

states diverged. Error bars indicate ±1 SEM. B. Model parameters. Bars indicate the mean value across 

the subjects. Error bars indicate ±1 SEM. C. We compared the corrected AIC of two competing likelihood 

models: one with state noise, and one without state noise. AICc was lower for a model with state noise 

for 14 of the 20 subjects (black lines) and larger for 6 (gray lines). A paired t-test across subjects 

indicated that a model with state noise possessed a lower AICc (that is, a better fit) than a model 

without state noise. 
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Figure 3. Simulated paradigms and behavior. A. We simulated two-state models of learning in the context of four 

behavioral paradigms, with abrupt and gradual introduction of perturbations, and with error-clamp (EC) trials and 

set breaks. B. The expected value of the measured behavior (black), fast state (green), and slow state (blue) of 

learning. These time courses correspond to two-state model parameters extracted from our subject population 

(Table A3.1). C. For each of the four paradigms, behavior was simulated according to a two-state model of learning 

(Eq. 10). 1000 simulations were performed for each paradigm. The two-state model parameters were fixed for 

each simulation, solely the seed for the random number generator varied from simulation to simulation. Here we 

provide an example of a behavioral trajectory for each of the four paradigms. We fit each trajectory using EM and 

LMSE. D. The true slow state of learning along with EM and LMSE predictions. In the example simulations of 

Paradigms 1-3, LMSE failed to capture the slow state of learning. In Paradigm 4, both LMSE and EM closely tracked 

the true slow state. E. The true fast state of learning along with EM and LMSE predictions. For Paradigms 1-3, LMSE 

predictions diverged from the true fast state trajectory. For Paradigm 4, both EM and LMSE tracked the true fast 

state time course. 
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Figure 4. Performance of EM and LMSE algorithms. For each paradigm, 1000 simulations were 

performed, with fixed two-state model parameters, but a varying seed for the random number 

generator, altering noise. EM and LMSE were used to fit a two-state model to the simulated behavior. 

The EM and LMSE parameters were used to simulate noise-free time courses for behavior, slow state of 

learning, and fast state of learning. Next, we computed the RMSEs describing how well EM and LMSE 

recovered the hidden fast and slow states of learning, and the overall behavior. At top, the RMSE for the 

behavioral fit (y), slow state fit (xs), and fast state (xf) fit are shown. At bottom, a relative RMSE metric 

was computed to compare the RMSEs of EM and LMSE fits to the same simulated behavior; the RMSE 

for the LMSE algorithm was divided by that of EM, multiplied by 100, and then a factor of 100 was 

subtracted, to compute a percent increase of LMSE RMSE over that of EM. All bars in this figure 

represent the mean RMSE across 1000 simulations. Error bars represent 95% confidence intervals. LMSE 

improved upon the RMSE of the behavior fit by approximately 10% for all Paradigms (Rows 1-4, right). 

However, EM was superior in uncovering the slow and fast states. The largest difference was observed 

for Paradigm 3, followed by Paradigm 1, then Paradigm 2 and Paradigm 4. 

 

Figure 5. Parameter estimation errors. For each simulation we computed the absolute value of the 

difference between each true parameter, and the parameter values predicted by EM and LMSE. All bars 

in this figure represent the mean absolute parameter error across all simulations. Error bars represent 

95% confidence intervals. For all parameters and paradigms, EM had lower estimation error than LMSE.  

  



45 

 

Figure 6. Power analysis. We simulated within-subject and between-subject experiments to determine 

the number of subjects that would be required to detect a change in learning parameters. We created a 

pool of 1000 simulated subjects by sampling two-state model parameters from a multivariate normal 

distribution. We created different distributions by scaling a single learning parameter for each of the 

1000 subjects. We simulated behavior in Paradigm 2 and fit the data with EM and LMSE. We then 

sampled subjects to perform hypothesis testing. For within-subject tests, we sampled the same subjects 

from different parameter levels. For between-subject tests, we sampled subjects independently from 

different parameter levels. For each test, we performed a paired t-test (within-subject analysis) or two 

sample t-test (between-subject analysis) to determine if EM or LMSE detected a statistically significant 

difference in the learning parameter. We repeated this process for different random samples of our 

subject population (10,000 for each test). Finally, we determined the minimum number of subjects that 

would be required for each algorithm to detect a significant difference for 85% of our samples. Here we 

show the number of subjects required to reach an 85% detection rate for both EM (black) and LMSE 

(gray) as a function of the magnitude of the true parameter difference for each test (the effect size). We 

performed tests for both increases (solid lines with filled circles) and decreases (dashed lines with filled 

squares) in four two-state model parameters. The results for the within-subject analysis and between-

subject analysis are shown in A and B, respectively. We only report results for which fewer than 500 

subjects were required to reach the 85% detection rate. For LMSE, greater than 500 subjects were 

required for five different parameter-effect size pairs in the between-subject analysis. For EM, this only 

occurred once. 
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Figure 7. Sensitivity analysis for state and motor noise. A, B, C. We scaled the state and motor noise 

variances by 0.5, 2, 4, 6, 8, and 10 times the values reported in Table A3.1 (measured from our subject 

population). At each noise level we performed 1000 simulations of Paradigm 2. We fit the simulated 

reaching behavior with EM and LMSE, generated EM and LMSE estimates of the behavior, fast, and slow 

states of learning, and finally computed the RMSE between the true time courses and model fits. The 

RMSEs for the behavior, slow, and fast state are shown in A, B, and C, respectively. Solid lines indicate 

the mean RMSE across all 1000 simulations at each noise level. The shaded error bars indicate 95% 

confidence intervals around the mean. D, E, F. We performed another analysis where we allowed the 

slow and fast processes to have different variances. We fixed the overall level of state noise (sum of the 

fast and slow state variances) and performed a sensitivity analysis where we assigned different fractions 

of the overall state noise differentially to the slow and fast states. We tested levels where the slow (or 

fast) state had 25%, 37.5%, 50%, 62.5%, and 75% of the overall variance. For each level, we simulated 

1000 simulations of Paradigm 2. We fit the simulated behavior using EM and LMSE and computed 

RMSEs for the behavior, slow process, and fast processes, as in A, B, and C. The RMSEs for the behavior, 

slow, and fast state are shown in D, E, and F, respectively. Solid lines indicate the mean RMSE across all 

1000 simulations at each noise level. The shaded error bars indicate 95% confidence intervals around 

the mean. 
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Figure 8. Sensitivity analysis for the dynamics of the fast and slow states. We performed sensitivity 

analyses to determine how well EM and LMSE could isolate that fast and slow states of learning, for two-

state model parameters that differed from those observed for our visuomotor rotation subject 

population (Table A3.1). We analyzed one parameter at a time, fixing the remaining two-state model 

parameters to the values reported in Table A3.1. For each analysis, we scaled the two-state model 

parameter to several different values, corresponding to the effect sizes used in our power analysis in Fig. 

6. At each parameter level we performed 1000 simulations of Paradigm 2. We fit the simulated reaching 

behavior with EM and LMSE, generated EM and LMSE estimates of the behavior, fast, and slow states of 

learning, and finally computed the RMSE between the true time courses and model fits. The top, middle, 

and bottom rows, show the RMSE for the behavior, slow state, and fast state fits, in that order. The 

shaded error bars indicate 95% confidence intervals. The parameters investigated are as follows: fast 

state retention factor (shown in A), the slow state retention factor (show in B), the fast state error 

sensitivity (shown in C), and the slow state error sensitivity (shown in D). For each analysis, EM identified 

slow and fast states of learning with lower RMSE than LMSE. These results indicate that the relative 

difference between EM and LMSE performance would generalize to other dynamics of learning.  
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Figure 9. Comparison of EM and LMSE in a restricted parameter space. In our primary analysis, we found 

a preference for LMSE to assign slow retention factors that exceed 1, which led to unstable behavior of 

the predicted slow process. We asked whether LMSE could be rescued by modifying the parameter 

search space to prevent the identification of these unstable retention factors. To answer this question, 

we reanalyzed our simulations for Paradigms 1-4 (Figs. 3, 4, and 5) by refitting the EM and LMSE 

algorithm in a parameter space whose upper bounds for the slow and fast state retention factors were 

equal to 1. We used the EM and LMSE parameters to simulate noise-free time courses for behavior, slow 

state of learning, and fast state of learning. Next, we computed the RMSEs describing how well EM and 

LMSE recovered the hidden fast and slow states of learning, and the overall behavior for the same 

simulations depicted in Fig. 4. At top, the RMSE for the behavioral fit (y), slow state fit (xs), and fast state 

(xf) fit are shown. At bottom, we computed the percentage difference between the RMSEs for EM and 

LMSE. Positive values indicate a larger RMSE for the LMSE algorithm. Error bars represent 95% 

confidence intervals. We found that restricting the upper bound on the slow and fast state retention 

factors improved the RMSE of the LMSE fits to the hidden states (compare Fig. 4 with Fig. 9), but did not 

completely rescue LMSE predictions; still, EM more accurately identified the true slow and fast states of 

learning. 
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Figure 10. Comparison of EM and LMSE on a trial-by-trial analysis of the data. We collected the behavior 

of n=20 subjects in a visuomotor rotation task. We fit the two-state model to the trial-by-trial data 

recorded for individual subjects using EM and LMSE. We considered two trial-by-trial models that 

differed in terms of generalization. The full-generalization model (top row) consisted of a single fast and 

slow state whose learning completely generalizes across targets. The no-generalization model (bottom 

row) consisted of separate fast and slow states for each of the 8 targets, whose learning did not 

generalize across targets. A. Population behavior. We computed the average trial-to-trial behavior of the 

subject population. The average behavior (black) is shown overlaid with the average EM (blue) and 

average LMSE (red) fits. EM and LMSE had very similar fits to the behavior. B. Predicted fast and slow 

states. For both the full and no-generalization models, EM estimated larger contributions from the slow 

state of learning and smaller contributions from the fast state of learning. Error bars indicate ±1 SEM. C. 

We compared the corrected AIC of two competing likelihood models: one with state noise and one 

without state noise. AICc was lower (better) for a model with state noise. Here we provide the mean 

difference in AICc for both models (state noise likelihood – no state noise likelihood). D. We used the 

trial-by-trial parameters to perform a set of control simulations. We simulated Paradigm 2 a total of 

1000 times, and fit each simulated data set with EM and LMSE. While LMSE fit the observed reaching 

behavior more closely (y), EM vastly outperformed LMSE in the identification of the hidden slow and fast 

states (xs and xf).  
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Appendices 

This appendix contains four sections. The first section contains a mathematical description of our EM 

algorithm. Our form of the EM algorithm applies a different maximization step than previous 

descriptions in the sensorimotor literature (Cheng and Sabes 2006). Our numerical implementation of 

the M-step would best classify our algorithm as a generalized EM algorithm. First we provide a 

qualitative overview of EM and generalized EM. We then derive the equations required to apply EM to 

our two-state model. The toolbox that implements the generalized EM algorithm, along with supporting 

documentation is available at http://shadmehrlab.org/Tools/tools.html. The second section provides a 

description of the least-squares (LMSE) algorithm. We discuss the general structure of LMSE and provide 

the equations we used for the algorithm. The third section provides tables and parameter values. The 

final section discusses an extended model of learning where multiple targets are presented to the 

subject. 

 

Appendix 1. Mathematical description of the generalized EM algorithm 

Given a state-space model of behavior (Eq. 10), we ask how the parameters of the model can be 

estimated from a set of measured behavioral data. Suppose that our paradigm consists of N trials. The 

experimental design of our paradigm specifies the sequence of targets        1 2

1
, , ,

N N
g g g g , error-

clamp trials, and perturbations        1 2

1
, , ,

N N
r r r r . During the experiment, we record the subject’s 

motor outputs        1 2

1
, , ,

N N
u u u u  which, along with  1

N
g , allows us to compute the subject’s 

motor action on each trial relative to the target        1 2

1
, , ,

N N
y y y y . We provide a description of 

these variables in the context of three common sensorimotor learning paradigms (force field adaptation, 

visuomotor adaptation, and saccade adaptation) in the third section of this document within Table A3.4. 

Our goal is to determine the parameter set  2 2, , , , , ,s f s f x ua b ba d    that best explains the 

measured data. Note that the d parameter is only relevant for paradigms that include set breaks. A 

standard approach to parameter estimation is maximum likelihood estimation (MLE). MLE identifies the 

parameter set that maximizes the likelihood of observing the measured data, given a model parameter 

set. We will refer to this likelihood as the incomplete likelihood function. It is incomplete, as it does not 

include all the random variables of our system, i.e., it omits the hidden states of learning. Please note 

that other sources may refer to the incomplete likelihood function as the marginal likelihood function. 

http://www.shadmehrlab.org/Tools/tools.html
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Stated mathematically, MLE identifies the parameter set ̂  according to   1
ˆ argmax

N
L y



  . We 

provide a derivation of the incomplete likelihood for our two-state model in Section A1.4 of the 

Appendix. While many MLE problems can be solved by maximizing this function directly, for systems 

described by our two-state model (Eq. 10), this maximization has no closed-form solution, and can also 

be difficult to solve numerically. 

Another approach to the MLE problem is an algorithm known as EM. Instead of finding the 

maximum likelihood estimator in one step by maximizing the incomplete likelihood function, EM 

iteratively increases the incomplete likelihood function by maximizing a different objective function 

known as the expected complete log-likelihood function. We will derive this function shortly. Central to 

EM is the complete likelihood function described by:     1 1
,

N N
cL L y  x . We will later show that this 

complete likelihood is the product of several exponential terms. Therefore, it is simpler to work with the 

natural logarithm of the complete likelihood, cl , where     1 1
log ,

N N
c el L y  

  
x . 

As its name suggests, EM is composed of an expectation (E-step) and a maximization (M-step) 

step. The algorithm begins by guessing an initial parameter set 0  and then performs the E-step and M-

step in order, in an iterative fashion. During the E-step, we consider the conditional expectation of the 

complete log-likelihood function,  1
,

N
c tE l y  

  
, where t  

is the estimate of the parameter set 

obtained from the M-step of the previous EM iteration. We will refer to this expectation as the expected 

complete log-likelihood function. We will later show that a functional form of the expected complete 

log-likelihood function can be derived using the Kalman filter, concluding the E-step of the EM 

algorithm.  

In the M-step we compute an updated parameter set that maximizes the expected complete 

log-likelihood function according to  1 1
argmax ,

N
c tt E l y



 
 
  

. Critically (see Wu, 1983), iteration of 

the E- and M-steps guarantees that the incomplete likelihood function increases with each update to the 

model parameters:      11 1 t

N N

t
L y L y 


 . The E-step and M-step are iterated until the 

incomplete likelihood function converges to a stationary point. 

Previous descriptions of the EM algorithm (Ghahramani and Hinton 1996; Cheng and Sabes 

2006) have outlined the E-step and M-step for linear time-invariant dynamical systems similar, though 
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not identical, to the form of Eq. (10). The previous implementations of EM assumed state equations that 

were time-invariant, representing experiments that had neither set-breaks nor error-clamp (Scheidt et 

al. 2000) trials. Under these assumptions, there existed closed-form solutions for the M-step. However, 

the introduction of set breaks in Eq. (10) introduces time-varying nonlinearities to the two-state model 

that make the closed-form specification of the M-step difficult, if not impossible. Furthermore, our 

restrictions to the fast and slow state dynamics (i.e., the constraints relating the fast and slow retention 

factors and error sensitivities) complicate our ability to identify a closed-form expression for a 

parameter set that globally solves the M-step. In such cases, a more general form of the EM algorithm 

known as generalized EM is useful (Dempster et al., 1977). In generalized EM, rather than maximizing 

the expected complete log-likelihood function during the M-step, one selects 1t   such that:  

              1 1 1 1 1 11log , , log , ,
N N N N N N

e t e tt tE L y y E L y y   
      

            
x x  

In words, to increase the incomplete likelihood function using EM, it is sufficient to identify a parameter 

set that simply increases the expected complete log-likelihood over the value associated with the 

parameter set attained on the previous EM iteration. 

In our generalized EM algorithm, we select an invariant parameter space. We numerically search 

this parameter space during each M-step of the algorithm to maximize the expected complete log-

likelihood function. This maximization ensures that we satisfy the condition of the generalized EM 

algorithm above. That is, by identifying the maximal value of the expected complete log-likelihood 

function in a parameter space that does not change from one iteration to the next, we guarantee that 

the updated parameter set is better than (or at least as good as) the previous parameter set, which is 

also contained in the same parameter space. This is a generalized EM algorithm in that it does not 

globally maximize the expected complete log-likelihood function. Though more computationally 

intensive than the standard EM algorithm, our generalized EM algorithm has the benefits of allowing the 

modeler to specify hard parameter bounds as well as functional constraints on the relationship between 

model parameters. Therefore, when using our algorithm, the modeler can restrict the parameter space 

to obtain only physically relevant solutions, and appropriate two-state model dynamics. In the following 

section we describe the mathematics that define our generalized EM algorithm. 

 

1.1 Expectation Step 

The E-step requires derivation of the expected complete log-likelihood function. Note that the complete 

likelihood function can be factored given the Markov-form of Eq. (10) (Shadmehr and Mussa-ivaldi 
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2012). This factorization allows the complete likelihood function to be expressed as the following 

product. 

 
               




 

   
    
   
 

1
1 1

1 1

, , ,
N N

n n n n n

n
c

n

L L y L y Lx x x x   (A1.1) 

Eq. (A1.1) expresses the complete likelihood function in terms of three types of probability density 

functions. Our goal is to find general expressions for the likelihood functions on the right-hand-side of 

Eq. (A1.1). We can obtain the first likelihood     ,
n n

L y x  directly from the observation equation of 

Eq. (10). This likelihood is the probability density function of a normal random variable, which is 

provided below: 

          2, ,
n n nT T

uL y Nc x c x  (A1.2) 

The second likelihood on the right-hand-side of Eq. (A1.1) can be obtained from the state update 

equation of Eq. (10), and is the probability density function for a multivariate normal random variable 

described by:  

                  


 
1

, , ,
n n n n n n n n

L y N A e Qx x x b  (A1.3) 

To fully specify the complete likelihood of Eq. (A1.1), we must also obtain an expression for 
  1

L x , 

the probability density function for the initial state. We will assume that the initial state of the learner is 

itself a normal random variable: 

     11
1

,L N Vx x   (A1.4) 

The mean of the normal random variable 1x  
can be represented as 1

1
(1) ( ) T

s fx x 
 

x  which 

introduces two additional parameters to our state-space model, (1)
sx

 
and 

(1)
fx , the mean initial values of 

the slow and fast states, respectively. We will assume that we can represent the variance-covariance 

matrix 1V
 
in the diagonal form 

2
1

1 2
1

0

0
V





 
  
    

which introduces the parameter 2
1 , the variance of the 

initial states. Our full parameter set that we seek to identify now consists of ten variables, i.e., 

    112 2 2
1, , , , , , , , ,s f s f x u s fa a b b d x x   . Substitution of Eqs. (A1.2) to (A1.4) into Eq. (A1.1) yields the 

following expression for the complete likelihood function. 
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  (A1.5) 

Due the various products of exponential functions in Eq. (A1.5), it is simpler to consider the natural 

logarithm of the likelihood function which we will refer to as cl . Taking the natural logarithm of both 

sides of Eq. (A1.5), yields the following form for cl . 
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  (A1.6) 

We proceed with the E-step by deriving an expression for  1
,

N
c tE l y  

  
. This conditional expectation 

yields the expected complete log-likelihood function that we analyze in the M-step. To conserve space 

we will represent the conditioned terms in the expectation using a  symbol. We can easily obtain

cE l   by expanding the quadratic terms in Eq. (A1.6) and then taking the conditional expectation. 

Doing so yields the following intermediate form of the expected complete log-likelihood function. 
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  (A1.7) 

As we can see from the above equation, the expected value operator only affects terms within Eq. (A1.7) 

that are functions of the hidden states. Our final step is to derive an alternative form for the expectation 

terms in Eq. (A1.7) that are quadratic functions of the unknown states. We note the following identity, 

which applies to any pair of multivariate random variables x , y and some matrix A of appropriate 

dimension. 

     cov ,
TTE A E AE tr A       

x y x y y x  

Here  tr  is the trace operator. This identity allows us to express the quadratic terms of Eq. (A1.7) as 

a function of linear state expectations and covariances, which we can compute using the Kalman filter. 

Applying this identity to Eq. (A1.7) yields our final expression for the expected complete log-likelihood 

function. 
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  (A1.8) 

Eq. (A1.8) is the culminating result of the E-step. Note that the following shorthand notations have been 

applied in Eq. (A1.8). 
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  (A1.9) 

The shorthand quantities ˆn N
x , 

n N
V , and 

1,n n N
V


 can be computed using a smoothed Kalman filter 

(Ghahramani and Hinton 1996). To summarize the Kalman smoother equations, we begin by evaluating 

the following posteriors which are computed using a forward pass of the standard Kalman filter. 

 

   

    
1

1

ˆ ,

var ,

nn n n
t

nn n n
t

E y

V y
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

 
  



x x

x
  (A1.10) 

The terms ˆn n
x  and 

n n
V  are our posterior state estimate and variance covariance matrix on the n-th 

trial, given our current parameter estimate and all our observations up to the n-th trial. Note that this 

expectation and variance are similar, but not equivalent to the desired ˆn N
x  and 

n N
V which we will 

refer to as our smoothed Kalman estimates. These smoothed Kalman estimates are the expectation and 



57 

 

variance of the state on the n-th trial, given all the observations we have made. To first compute ˆn n
x  

and 
n n

V  we must calculate the Kalman gain 
 n

k  according to: 

    


 
 

1
1 12n n n nn T

uV Vk c c c   (A1.11) 

To compute the Kalman gain we require the prior estimate for the variance-covariance matrix, denoted

1n n
V


. Using the Kalman gain we can compute ˆn n

x  and 
n n

V  according to the following equations. 

     1 1ˆ ˆ ˆn n n n n nn n Ty
 

  x x k c x   (A1.12) 

    1n n n nn TV V


   k c   (A1.13) 

Next we forward project these posteriors to obtain the prior estimates for the next trial: 

      
 

1ˆ ˆn n n nn n n
A ex x b   (A1.14) 

 
     1

T
n n n nn n n

V A V A Q


    (A1.15) 

The forward Kalman filter proceeds by recursively iterating Eqs. (A1.11) to (A1.15) a total of N times to 

compute 
1 1 2 2ˆ ˆ ˆ, , ,

N N
x x x as well as 

1 1 2 2
, , ,

N N
V V V . The prior states and covariances will also be 

required for smoothing. We initialize this recursion with the priors 
1 0
x̂  and

1 0
V . Here these priors are 

taken as the parameter estimates for 1x  and 1V  obtained on the previous iteration of the algorithm. 

That is, the prior expectation and variance are computed from the values of 
 1
sx ,

 1
fx , and 2

1  that 

were obtained from the M-step of the previous EM iteration. 

To obtain the expectations and covariances required for EM (Eq. A1.9), we will now perform 

Kalman smoothing. The Kalman smoother uses backwards recursions to compute the means and 

variances of the probability distributions described in Eq. (A1.9). In other words, after obtaining the 

posterior state and variance-covariance matrix for all N time steps, we can recursively smooth our 

previous estimates. Our current implementation has been described previously (Ghahramani and Hinton 

1996; Cheng and Sabes 2006). We note that the smoothed Kalman estimates on the final time step, N, 

were already computed in the final step of the forward Kalman filter. Therefore, computation of the 

quantities in Eq. (A1.9), begins with time step N – 1. First we compute the helper variable 
 n

J  which 

functions similarly to a Kalman gain. 
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1

1
T

n n n nn n
J V A V




   (A1.16) 

With the computation of 
 n

J  we can now compute 
n N

V , our smoothed variance-covariance matrix. 

 
     1 1

T
n N n n n N n nn n

V V J V V J
 

     (A1.17) 

We also need to compute our smoothed state estimates. 

    1 1ˆ ˆ ˆ ˆn N n n n N n nn
J

 
  x x x x   (A1.18) 

Recursion of Eqs. (A1.16) to (A1.18) computes 
1 2 1ˆ ˆ ˆ, , ,

N N N N
x x x  and 

1 2 1
, , ,

N N N N
V V V


. To 

complete the E-step, we also require a smoothed estimate for the covariance of consecutive states 

denoted by 
1,n n N

V


. We can obtain this covariance using the following equation. 

 
 1, 1n n N n N n

V V J
 

   (A1.19) 

Note that 
2,1 3,2 , 1

, , ,
N N N N N

V V V


 do not need to be computed in a recursive process, and can be 

calculated after recursion of Eqs. (A1.16) to (A1.18). 

 

1.2 Maximization Step 

In the M-step of the EM algorithm, the goal is to maximize the expected complete log-likelihood 

function that is derived in the E-step. For our two-state model, there exists no closed-form expression 

that globally maximizes the expected complete log-likelihood function. Therefore, we used a generalized 

M-step that numerically maximizes the expected complete log-likelihood function (Eq. A1.8) in a 

constrained parameter space. We maintained the same parameter space for each iteration of our 

generalized EM algorithm. As we described in the introduction to Appendix 1, maintaining this invariant 

parameter space is sufficient to guarantee convergence of the EM algorithm. 

  To perform our numerical maximization we used fmincon in MATLAB R2016a. Because fmincon 

performs constrained minimization, we converted our maximization problem to a minimization problem 

by minimizing the negated expected complete log-likelihood in Eq. (A1.8) with respect to the two-state 

model parameter set    
(1) (1)

1
2 2 2, , , , , , , ,,s f s f x u s fa a b b d x x . We constrained the parameter space for 

this numerical optimization in two ways. First, we specified lower and upper bounds for all the model 

parameters according to Eq. (A1.20). 
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  (A1.20) 

 

The numerical values for the upper and lower bounds that specify Eq. A1.20 are provided in Table A3.2. 

We used identical bounds for our least-squares algorithm, as described in Appendix 2. The second way 

we constrained our parameter space is by enforcing conventional two-state model dynamics. Recall that 

the fast and slow states have the following properties; the fast state learns rapidly, but also forgets 

rapidly. The slow state learns slowly, but forgets slowly. To enforce these state dynamics, one can 

specify the following parameter constraints. 

 

, 0

s f

f s

a a a

b b b

a b

  

  

  

  (A1.21) 

As defined in Eq. (A1.21), the slow state will have a greater retention factor than the fast state, and the 

fast state will have greater error sensitivity than the slow state. For Eq. A1.21, we used the value 0.001 

fora  andb . To summarize the generalized M-step, we numerically maximize Eq. (A1.8) using 

fmincon in a parameter space that is constrained by Eqs. (A1.20) and (A.1.21). 

Note that the selection of the upper and lower bounds in Table A3.2 will be specific to modeler 

preferences and the features of the behavioral data. In the current work, we selected upper bounds on 

the initial states that were equal in magnitude to the size of the perturbation. We felt this was a logical 

bound as it represents the maximum value that could be attained by the slow or fast state at any point 

during the adaptation timecourse, in the absence of noise. For our retention factors we specified an 

upper bound of 1.1. We selected this bound to be greater than 1 to demonstrate that the LMSE 

algorithm tended to identify unstable properties in the slow state of learning. In Changing the bounds on 

the parameter space, we detail a control analysis where we changed this upper bound to 1, to prevent 

the identification of unstable fast and slow retention factors. For our error sensitivities, we specified a 

lower and upper bound of 0 and 1, to prevent “negative” learning, or unstable learning, respectively. 

Finally, for all the variances of our noise terms (state, motor, and initial state) we specified an upper 

bound of 10 degrees2. This parameter will be specific to the range and units of the behavioral data. Here 
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we selected this value to greatly exceed the variance of the residuals for the state-space model fit to any 

of our subject behaviors. 

  

1.3 Algorithm summary 

Here we offer a practical summary of the algorithm. The algorithm begins by specifying an initial guess 

for 0 , which are the initial values for the model parameters that will seed the algorithm. 

1. Use the current parameter estimate t  to compute the posteriors 
1 1 2 2ˆ ˆ ˆ, , ,

N N
x x x  and 

1 1 2 2
, , ,

N N
V V V  as well as the priors 

2 1 3 2 1ˆ ˆ ˆ, , ,
N N

x x x and 
2 1 3 2 1

, , ,
N N

V V V


by 

recursively applying Eqs. (A1.11) to (A1.15). These forward recursions are seeded using the 

current parameter estimates, 
0

1
1ˆ x x

 
and 

1 0
1V V . 

2. Use the posterior and prior estimates from Step 1 to compute the smoothed conditional 

expectations and variances 
1 2 1ˆ ˆ ˆ, , ,

N N N N
x x x  and 

1 2 1
, , ,

N N N N
V V V



 by recursively 

applying Eqs. (A1.16) to (A1.18) backwards in time. Compute the conditional covariances 

2,1 3,2 , 1
, , ,

N N N N N
V V V



 by applying Eq. (A1.19). 

3. Numerically maximize (e.g., fmincon in MATLAB) the expected complete log-likelihood function 

(Eq. A1.8) with respect to the model parameters subject to desired bounds (Eq. A1.20) and 

linear constraints (Eq. A1.21). The maximizing model parameters now become the parameter 

estimates for the current EM iteration. 

4. Return to Step 1 and start the next EM iteration using the updated model parameters computed 

in Step 3 to perform the state estimation. Stop when the incomplete likelihood function has 

converged. 

 

1.4 The incomplete likelihood function 

The EM algorithm iteratively locates local extrema of the incomplete (marginal) likelihood function. This 

function can be evaluated at the conclusion of each iteration of the algorithm in order to track 

convergence. Here we provide a brief derivation of the form of the incomplete likelihood function 

  1

N
L y  . First, by successive application of the definition of conditional likelihood, we can factor the 

incomplete likelihood function as follows: 
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                





 
11 2 1

1
2
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nN n

n

L y y y L y L y y  (A1.22) 

This factored incomplete likelihood reveals a direct relationship between the complete likelihood and 

the Kalman filter;     1

1
,

nn
L y y


 is a normal random variable with a mean and variance that can be 

computed from the priors obtained using the forward Kalman filter: 
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   (A1.23) 

Therefore, the incomplete likelihood function can be expressed as follows: 

 
        1 211 2
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

  c x c c  (A1.24) 

Given that Eq. (A1.24) is a product of exponentials, we consider the natural logarithm: 
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  (A1.25) 

In summary, to compute the incomplete log-likelihood associated with a given set of model parameters, 

we use Eqs. (A1.11-15) to compute the prior hidden state expectations and variances, and subsequently 

apply Eq. (A1.25). 

 

1.5 Convergence 

In this section we discuss issues related to the convergence of the generalized EM algorithm. In a 

constrained parameter space, we can expect our implementation of the generalized EM algorithm to 

converge to either a stationary point or a boundary of the constrained parameter space (Nettleton 

1999). As with any EM algorithm, we are not guaranteed that this stationary point is the desired global 

maximum of the incomplete log-likelihood function. The stationary point reached by an EM algorithm is 

determined by its initial conditions (i.e., the starting parameter guess). Therefore, it is imperative to 

perform the EM algorithm using different initial conditions. Here for each set of data, we used 5 or 10 

initial conditions (for simulated and behavioral data, respectively) in an attempt to identify the 

parameter set that resulted in the greatest incomplete log-likelihood. We found that using 50 different 
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initial conditions for the algorithm did not meaningfully affect our results, and therefore chose a smaller 

number of initial conditions to make the computation time for our study more tractable. 

For each initial condition, we performed a fixed number of EM iterations. We found that the 

number of iterations required to achieve convergence scaled with the size of the data set. In virtually all 

cases, we found that 100 iterations of the EM algorithm was more than sufficient to achieve 

convergence of the incomplete log-likelihood function. The only exception, was for our trial-by-trial 

control analysis, where we used 200 iterations, due the greater number of trials and slower convergence 

rate. Although we used a fixed number of iterations in this study, the modeler could set a convergence 

criterion that terminates the algorithm once the change in log-likelihood from one EM iteration to the 

next falls below some threshold.   
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Appendix 2. Overview of the LMSE algorithm 

The current standard technique used for fitting state-space models to motor learning data is one that 

selects the model parameters that minimize the squared-error between measured variables and model 

predictions. Here we offer a brief description of one form of this algorithm, the least-mean-squared-

error (LMSE) technique, which generalizes to other least-squares techniques implemented within the 

literature. To use LMSE, we imagine a noise-free state-space analogue of Eq. (10). We previously 

described this system in Eq. (18) but reproduce it again below: 

 

         

   


 



1n n n n n

n nT

A e

y

x x b

c x
  (A2.1) 

This noise free system is equivalent to the expected value of the states and observed behaviors 

predicted by our general two-state model of Eq. (10). 

Note that Eq. (A2.1) describes a deterministic system; specification of the parameter set 

 (1) (1), , , , , ,LMSE s f s f s fa a b b x x d 
 
entirely determines the progression of the slow and fast states for a 

given sequence of perturbations, error-clamp trials, and set breaks. The LMSE algorithm simply searches 

this 7-dimensional parameter space to identify the parameter set that satisfies the following 

optimization. 

 
    

2

1

1
ˆargmin

N
n n

LMSE
n

y y
N




 
  

 
   (A2.2) 

Here 
 n

y
 
is the measurement on trial n and 

 ˆ n
y  is the model prediction, which is computed from the 

output of Eq. (A2.1). The argument of the argmin function of Equation (A2.2) is the mean-squared-error 

between the observation and model prediction for a given parameter set. For all LMSE fits in this study, 

we used the MATLAB function fmincon to identify the least-squares solutions. For each LMSE fit, the 

algorithm was seeded at 50 points scattered across the parameter space, to better ensure the 

identification of the minimum mean-squared-error within the search space. The parameter space used 

for the LMSE algorithm was identical to that of the EM algorithm and is reported in Table A3.2. 

 The least-squares algorithm can also be thought of as a maximum likelihood estimator, under 

certain conditions. For our two-state model, the least-squares algorithm maximizes the likelihood of a 

system that does not possess state noise, and variance in the initial state: 
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  (A2.3) 
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To prove that the MLE for this system satisfies the least-squares optimization in Eq. (A2.2) we must 

compute its incomplete likelihood function. For this, we consider the factored form of the incomplete 

likelihood function of Eq. (A1.22). To specify this form, we must compute the conditional means and 

variances described in Eq. (A1.23). To do this, it is useful to derive an expression for the motor behavior 

on any trial as a function of previous errors. This equation follows from the combination of the state 

update and observation equations in Eq. (A2.3): 
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Taking the conditional expectation and variance of Eq. (A2.4) yields the following results. 
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 (A2.5) 

Note that because the variance in Eq. (A2.5) is conditioned on previous motor actions, the observed 

sensory errors appearing in this term do not contribute to the conditional variance. In addition, because 

the initial state is not a random variable in our new system, the first term in Eq. (A2.4) does not 

contribute to the conditional variance. For these reasons, the conditional variance is quite simply equal 

to the motor execution variance. Applying these conditional means and variances to Eq. (A1.25) yields 

the following form of the incomplete log-likelihood: 
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Note that 
 
n

in Eq. (A2.4) is also equal to 
 ˆ n

y  in the objective function for LMSE (Eq. A2.2). 

Furthermore, note that maximization of Eq. (A2.6) implies minimization of the quantity

    



2

1

N
n n

n

y . This is the same quantity minimized by the LMSE algorithm in Eq. (A2.2). Therefore, 

the parameter set that solves our least-squares algorithm also maximizes the likelihood of a system 

without state noise and noise in the initial hidden states of learning.
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Appendix 3. Tables 

Table A3.1. Two-state model parameters. This table provides the model parameters used for the 
simulated experiments in our primary analyses. We selected these parameters specifically to match the 
dynamics of learning observed in our experimental data (Fig. 1). To do this, we fit epoch-by-epoch single 
subject behavior with EM and LMSE. For the retention factors and error sensitivities, we computed the 
average parameter value across all 20 subjects, and both the EM and LMSE fits. We assumed both the 
initial slow and fast states were equal to 0, to represent a naïve learner. For the initial state variance, we 
used a value of 0, indicating that each simulated fast and slow state truly began at the value zero for all 
simulations. For the state and motor noise, we used the mean variances predicted by the EM algorithm, 
as LMSE does not separately measure these noise terms. Finally, note that the parameter d only applies 
for simulation of Paradigm 4 which included set breaks. 

sa  fa  sb  fb  2
x  

(degrees2) 

2
u  

(degrees2) 

 1
sx  

(degrees) 

 1
fx  

(degrees) 

2
1  

(degrees2) 

d 

0.985 0.556 0.097 0.213 1.694 1.037 0 0 0 8 

 

Table A3.2. Upper and lower bounds. When fitting our behavioral data and simulated data, EM and 
LMSE searched the same bounded parameter space. Here we provide the upper and lower bounds used 
for each model fit. 

sa  fa  sb  fb  2
x  

(degrees2) 

2
u  

(degrees2) 

 1
sx  

(degrees) 

 1
fx  

(degrees) 

2
1  

(degrees2) 

d 

[0,1.1] [0,1.1] [0,1] [0,1] [10-7,10] [10-7,10] [-30,30] [-30,30] [10-7,10] [10-6,30] 
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Table A3.3. Parameter standard deviation. Here we report the standard deviation of the two-state 
model parameter distributions shown in Fig. 5. For Paradigm 4, we also provide the standard deviation 
for the set break decay factor, though this is not shown in Fig. 5. Note that for all parameters and 
paradigms, the standard deviation of the LMSE distribution exceeded that of EM in simulation. On the 
bottom two rows we provide the standard deviation for each two-state model parameter across the 20 
subjects that participated in our visuomotor rotation task. 

 
Paradigm and 

Algorithm 

Two-state model parameters 

sa  fa  sb  fb   1
sx  

 1
fx  

d 

Paradigm 1 EM 0.0175 0.1878 0.0355 0.0669 1.5149 1.5345 - 

Paradigm 1 LMSE 0.0330 0.2679 0.0472 0.0780 5.9684 6.5494 - 

Paradigm 2 EM 0.0094 0.1667 0.0253 0.0549 1.5782 1.6078 - 

Paradigm 2 LMSE 0.0225 0.2513 0.0409 0.0715 6.6765 7.4575 - 

Paradigm 3 EM 0.0130 0.1966 0.0393 0.1042 1.5207 1.5892 - 

Paradigm 3 LMSE 0.0368 0.2965 0.0601 0.2902 12.1512 12.6409 - 

Paradigm 4 EM 0.0099 0.1057 0.0241 0.0300 1.3639 1.3469 6.2715 

Paradigm 4 LMSE 0.0132 0.1521 0.0297 0.0354 3.8563 4.4528 10.0969 

Human subjects 0.0127 0.3559 0.0616 0.1282 2.3391 2.7227 - 

Human subjects 0.0339 0.3236 0.0942 0.2212 2.3771 4.5877 - 

 

Table A3.4. Interpretation of model variables for common learning paradigms. Our derivation of the 
two-state model used general language that could apply across different sensorimotor learning 
modalities. Here we provide a description of some key parameters in the context of force field 
adaptation, visuomotor rotation, and saccade adaptation, to assist the general reader. 

Model 

variable 

Sensorimotor learning paradigm 

Force field adaptation Visuomotor adaptation Saccade adaptation 

 n
y  

The adaptation index 
describing the force profile 

Heading angle of the 
reach relative to the 
target. 

The saccadic endpoint 
relative to the cued target. 

 n
r  

A value (typically 0 or 1) 
encoding the presence or 
absence of the force field. 
It can be standardized to 
some force field magnitude 
level and then take 
fractional values. 

An external rotation to the 
cursor about the starting 
position of the reaching 
movement. 

A displacement of the target 
position presented after the 
subject executes her primary 
saccade. 

 n
ch  

Error-clamp trials in force 
field tasks apply a stiff 
spring to eliminate error 
between subject forces and 
robot force. Should take 
the value 0. 

The value of the clamped 
angular error between 
feedback of the subject’s 
hand position and the 
target position. During no 
feedback trials, can take 
the value 0 (Kitago et al. 
2013). 

The value of the clamped 
angular error between the 
final target position and the 
endpoint of the subject’s 
primary saccade. 
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Appendix 4. Multiple target state-space model of learning 

In the state-space model outlined in our Methods, we assume that the learner possesses a single slow 

and fast state which are consistently engaged in the learning process on each trial. This model is most 

compatible with data sets where the same movement target is provided to the subject on each trial. 

Here we consider a more complicated paradigm where the learner is presented with a sequence of trials 

where she is instructed to make a movement towards a target that can change from one trial to the 

next. We assume that the number of targets is finite, and equal to G. Note that for our visuomotor 

rotation paradigm, G = 8. We will now provide the necessary modifications to the equations described in 

our Methods for this multiple target model. 

 As for the single target case, the learner adjusts her movement towards each target according to 

her estimate of the perturbation. As before, this estimate depends on the state of a slow and fast 

adaptive process. The learner has a separate fast and slow state for each target, all of which are 

included in the state vector            
 

2 1
1 1

n nn n nGx
G G

T

s s f fx . Here sk is the slow 

state for target k and fk is the fast state for target k. The learner’s estimate of the perturbation depends 

on this state vector according to the following equation: 
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Eq. (A4.1) formalizes the selection of the appropriate fast and slow state for the current target. On each 

trial it will contain two entries that are equal to one (all others are zero). In this way, the estimate of the 

perturbation is the sum of the fast and slow state that correspond to the target presented on trial n. 

The evolution of the fast and slow states from one trial to the next depends both on forgetting 

and error-based learning according to Eq. (A4.2). 

 
             

   
1 n nn n n n n

learn baseA C e Cx x b    (A4.2) 

In the no-generalization model analysis described in our Results, we constrained the parameters of our 

modified state update equation, with the following four assumptions. Of course, any of these 

restrictions could be relaxed to allow for a more general model. First, the fast states of learning all 

exhibit the same forgetting properties, as do the slow states (i.e., they have the same slow and fast 
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retention factors). Second, all fast states of learning all learn at the same rate, as do the slow states (i.e., 

they have the same slow and fast error sensitivities). Third, there is no-generalization of learning across 

targets. Therefore, the error experienced on trial n only engages the fast and slow processes that 

correspond to the target presented on trial n. And finally, all states experience a baseline level of state 

noise on each trial. The fast and slow states engaged in the learning process experience amplified noise 

on that trial. 

To enforce all these rules, we made the following constraints on the parameters in Eq. (A4.2). To 

enforce that each state forgets from one trial to the next, with no difference in forgetting across targets, 

we represented A as a 2G by 2G diagonal matrix of the form   2 2 , , , , ,Gx G
s s f fA diag a a a a . To 

enforce that all slow states and all fast states learn at the same rate, we used a common error sensitivity 

vector    
2 1 Tx

s fb bb = . 

To account for generalization we introduced the selector matrix  n
C . Suppose that target k is 

visited on trial n. For our no-generalization model, the selector matrix causes only the slow and fast 

states corresponding to target k to learn on trial n. In this case, the selector matrix is a 2G x 2 matrix of 

the form:
 
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C

c c
. It is critical to note that this selector 

matrix could be used to encode generalization of learning across targets. In the case of generalization, 

the modeler could replace the zero elements in matrix C to cause a single error to differentially affect 

the update of each state. 

And finally, to enforce our rule concerning the variance of the state update process, we 

separated state noise into two terms in Eq. (A4.2): a baseline state noise that affects the evolution of 

each state on every trial 
 n
base and an additional noise source that only affects the states that 

experienced learning on a particular trial 
 n
learn  (i.e., the states for the target presented on trial n). To 

enforce the latter property, we multiplied the learning noise by the selector matrix. Given the 

dimensions of our system, our baseline and learning noises had the following form: the baseline noise 

 
 2 1n Gx

base was unbiased with mean  0 0
T

 and covariance matrix  2 2
2

2
2b

Gx
e

G
Ga GxsB  

where  2
base  represents a common baseline variance for all states. The learning noise

 n
learn was 
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unbiased with mean  0 0
T

 and variance-covariance matrix  2 2
2
learn xL , where  2

learn  represents 

the state update variance associated with learning. 

 We can account for set breaks with the decay factor introduced in our model described in Eq. 

(10) of the manuscript. With the introduction of set breaks, our two-state model can now be 

represented as the following system of state-space equations that account for both error-clamp trials, 

set breaks, and multiple targets: 

 

                  
         

   

   

   

 
 

 

 
   







  

 


 

        
 

 
 


2

1

1

0 0 ,

0,

no set break  no set break

set break set break

 not an err no set break

set break

T

T

T

n n n n n n n n
x x

n n n nT
u u

n n

n n

d n nd d

n nn
n n

n

T

d

u

A e N Q

y N

C LC BA
A Q

A A C LC B A

r yC
e

A C

x x b

c x

b
b

b

 



 





or-clamp trial

            error-clamp trial
n

ce

 (A3.3)   

 

 

Reference List 

 

Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial 
planning of reaching trajectories. J Neurosci 20:8916-8924. 
 
 


