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1-1 Forces and torques 

1-1A Torque and angular velocity are vector quantities 
Imagine that you are holding a ball in one hand on a counter top (Figure.1).  If you give 
your wrist a quick twist, the ball will start rotating.  What has happened is that your wrist 
has imposed a torque on the ball, and the torque has resulted in a motion.  This motion is 
not a translation, meaning a movement from point to point, but is instead rotation, the 
movement around a pivot.  The rotation is described as a change in angle of the ball as a 
function of time, termed angular velocity, which is a vector that points along the axis of 
rotation of the ball.  It has a magnitude that is the speed of rotation, usually expressed in 
terms of degrees per second or radians per section.  Because the direction of this vector 
can be either up or down, a right-hand-rule convention is used to describe the vector’s 
direction unambiguously.  In Figure.1, a curved arrow specifies the direction of rotation 
of the ball.  Imagine the fingers of your right hand curving about this arrow.  Your thumb 
would be pointing down.  That is the direction of the angular velocity vector for the 
rotation of the ball. 

 

Figure.1.  Angular velocity and torque.  A quick twist of the wrist imposes a 
torque on the ball that results in the ball acquiring angular velocity.  The 
angular velocity vector is directed along the axis of rotation.  Its direction is the 
same as that of the torque vector. (From L. A. Bloomfield, “How things work: 
The physics of everyday life”, Wiley, 2001). 

Twisting of the wrist imposed a torque on the ball.  This torque is also a vector, and in 
this simple case its direction is the same as the angular velocity vector, downward. 
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1-1B Relating muscle forces to joint torques through principle of virtual work 
When a muscle such as the triceps contracts, it produces a force that results in a torque on 
the elbow joint (see Figure.2B).  Here we consider how to relate force in a muscle to 
torque on a joint.  In Figure.2A, the force f that the muscle produces imposes a torque 
τ on the joint, resulting in an extension of the joint angle by an amount q∆ .  We have 
chosen our angle q so that it increases when the joint flexes, which means that in this 
convention a positive angular velocity results in flexion.  Using the right-hand rule, a 
positive angular velocity is a vector perpendicular to the plane of the page and points 
away from the reader.  Therefore, a positive torque also points away from you and causes 
flexion of the joint.  It is important to note that by selecting the coordinate system to 
represent angle of this joint, we also specified the coordinate system for torque.   
Therefore, when we try to represent the muscle’s force in terms of torque, the 
transformation depends on how we define the angle of the joint. 

 

Figure.2.  Schematic of a muscle that acts on a single joint.  A. Abbreviations: 
a, b: length of bone from joint to insertion of the triceps muscle; q, the angle 
supplementary (see Error! Reference source not found.) to that of the elbow; f, linear 
force applied by the triceps on the forearm; λ, length of the triceps.  B. View 
from above of a person holding a robotic arm.  C.  Torque as a function of 
muscle length.  Value of the moment arm Eq. (3) as a function of joint angle for 
Figure.2A, where a=20 cm, b=2 cm.  The value of the moment arm is related to 
joint torque, whereas the value of joint angle is a function of muscle length 

 If we image the muscle acting along a line and label the length of the muscle as λ, 
the contraction may cause the muscle to shorten by amount λ∆ .  When the muscle 
shortens, the work that it performs is the force (f) that it produces times the displacement 
that it undergoes.  The muscle shortens when it contracts.  Therefore, λ∆  has a negative 
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value.  When the muscle changes length by amount λ∆ , the joint rotates by amount q∆ .  
The work that the muscle performs in shortening its length is the same as the virtual 
work it performs in rotating the joint.  To signify the fact that the muscle performed 
positive work while it shortened, we define the work that it performed as: 
 

λ∆−=    muscle in thework f  
The work that it performs in rotating the joint is: 

q∆=   joint   theinwork τ  
And because these quantities are equal, we have: 

λτ ∆−=∆    fq  

f
q∆

∆
−=

λτ  

If we allow the length and angular changes to approach zero, i.e., we make each change 
step miniscule, we can represent them as a derivative: 

f
dq
dλτ −=  

(1) 
 The derivative in the above relation describes how the length of the muscle 
changes with respect to a change in the joint angle.  It expresses an important idea: The 
torque that a muscle produces on a joint depends on how its length changes with respect 
to the angle of the joint.  This notion also explains the concept of virtual work: it is 
virtual because the amount is infinitesimal as the steps approach zero.  Because of the 
choice of reference frame of in this example, an increase in the angle q results in an 
increase in the length of the muscle.  (Note that the angle in question is complementary to 
that formed by the upper arm and the lower arm.  Accordingly, we could as easily 
describe the movement with a reference frame in which a decrease in angle results in an 
increase in muscle length.)  To express the derivative in Eq. (1), we need to consider the 
geometry of the limb.  Consider the triangle that is composed of the muscle length λ and 
lengths a and b in Figure.2.  We can express how the length of the muscle depends on the 
angle of the joint through the law of cosines: 

)cos(222 qabba −+=λ  
(2) 

The derivative of this function is: 

)cos(2

)sin(
22 qabba

qab
dq
d

−+
=

λ

 
(3) 

Inserting Eq. (3) in Eq. (1) specifies how force in the muscle is related to torque on the 
joint.  The larger the value of the function in Eq. (3), the larger the magnitude of torque 
that a given force in the muscle will produce.  Figure.2C plots how Eq. (3) varies with 
respect to joint angle q for given values of a and b.  In this example, the muscle exerts its 
greatest torque on the joint when the angle is approximately 84 degrees.  At very flexed 
or very extended positions, the function becomes small.  This means that at these joint 
angles the muscle force results in very little joint torque. 
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1-1C Moment arms 
In the previous section, we used the principle of virtual work to derive the relationship in 
Eq. (1).  Now let us show that Eq. (2) is in fact the familiar moment arm that relates 
forces to torques.  The moment arm of the muscle in Figure.2 is length c.  It is the length 
c that connects the center of rotation of the joint with a line perpendicular to the line of 
action of the muscle.  The length of the moment arm is: 

( )αsinbc =  
From the law of sines, we know that: 

( ) ( )
λ

α q
a

sinsin
=  

which, using Eq. (2), gives us an expression for the length of the moment arm: 

)cos(2

)sin()sin(
22 qabba

qabqabc
−+

==
λ

 
This is identical to the expression that we derived in Eq. (3) from the principle of virtual 
work.  That is, the change in muscle length λ with respect to joint angle q is the moment 
arm of this single-joint, single-muscle system: 

c
dq
d

=
λ

 

Both methods produced a function that we can use to relate muscle force to torque.  
However, the principle of virtual work is a powerful method that is worth exploiting 
because it can aid us when muscles have complex geometry.  We take up this issue in the 
next section. 

1-1D Multiple-joint muscles 
Contraction of a muscle can result in torques on multiple joints.  For example, consider 
the muscle in Figure 3.  How does force in this muscle relate to torques on the joints?  
We can use the principle of virtual work to describe this relationship. 
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Figure 3.  A two-joint muscle.  The torque on the shoulder (θ1) and elbow (θ2) is 
plotted as a function of angle of each joint for a constant muscle force of 10 
Newtons (N).  Link lengths: a=0.33, d=0.04, b=0.03m. 

Work is a scalar quantity that can be expressed as the dot product of a force vector and a 
difference vector, the analogue to work equals force times distance.  We can also 
represent that same work as a torque vector that produces a change in the angles of a 
system.  Now in the case that we are considering here, our muscle produces a force that 
causes it to shorten in length, which also produces a torque on a joint and rotates it.  The 
work that is done in shortening is the same as the work that is done in rotating the limb.  
The work in the muscle is represented as the dot product of its force and length change.  
The work in the joint is represented as the dot produce of torque and the joint’s angular 
change.  However, because the muscle shortens when it produces its force, the dot 
product of force and length change is negative.  To take care of this, we write: 

λτ ∆−=∆ TT fq  
(4) 

In this equation, the force and torque may be multi-dimensional vectors.  If we allow the 
displacements to become infinitesimal, we can define a Jacobian matrix J, termed 
simply a Jacobian.  The Jacobian here is the derivative of the length change with respect 
to the change in joint angle: 

dq
dJ λ

=  

(5) 
Using the Jacobian, we have: 

qJ∆=∆λ  
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Inserting this into Eq. (4) gives: 
qJfq TT ∆−=∆τ , 

which must hold true for all q∆ , and therefore we have: 
Jf TT −=τ  

Transposing both sides yields the result: 
fJ T−=τ  

(6) 
This is an interesting relationship because it allows us to convert a force in muscle 
coordinates into a torque in joint coordinates.  The relationship depends on how the 
length of the muscle changes with respect to the joint angle.  If the length of the muscle 
depends on multiple joint angles, then the Jacobian will be a multi-dimensional vector. 
 To better understand this relationship, consider again the muscle illustrated in 
Figure 3.  Here, the length of the muscle λ depends on angles θ1 and θ2.  To find the 
Jacobian, we need to first express this dependence and then find its derivative.  We begin 
by writing the length c in terms of the angle θ2: 

( )2
22 cos2 θabbac ++=  

(7) 
Next we use the law of sines to express angle β and then write length λ in terms of it: 

( )

)cos(2

sinarcsin

1
22

2

θβλ

θ
β

+++=

⎟
⎠
⎞

⎜
⎝
⎛=

dccd

c
b

 

 
Using the identity bababa sinsincoscos)cos( −=+ , we get:  

( ) ( ) ( ) ( )[ ]11
22 sinsincoscos2 θβθβλ −++= dccd  (8) 

 
Next, we note that in Eq. (8), we have a cos( )β  term and β  contains an arcsin term.  We 
know that 2 2cos 1 sinx x= − .  If we set arcsin( )x y= , we get the expression 

2cos(arcsin( )) 1y y= − .  We can use this identity to replace the expression for β in Eq. 
(8) with the following: 
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(9) 
After we insert the expression for c from Eq. (7) into the above relation, we are left with 
an expression for λ that depends on lengths a, b, d, and angles θ1 and θ2.  To find the 
relationship between force in the muscle and the torques on each joint, we find the 
Jacobian, which in this case is a 1 x 2 vector: 

1 2

d d dJ
d d d
λ λ λ

θ θ
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦θ

 

If we insert this vector into Eq. (6), we can compute the torques on each joint for a given 
muscle force.  The 1 x 1 force vector produces a 2 x 1 torque vector.  In Figure 3 we have 
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plotted how a 10-N force in the muscle is distributed to each joint.  We see that the 
maximum torque is produced when both joints are in their flexed posture (large values for 
θ1 and θ2). In the extended posture, the muscle cannot produce a significant torque on 
either joint. 
 Note, however, that while the torque on the shoulder (θ1) increases as the shoulder 
joint flexes (θ1 increases), the torque on the shoulder does not change very much as the 
elbow joint rotates.  In comparison, torque on the elbow strongly depends on θ2, but does 
not change very much as θ1 changes.  Therefore, although this muscle acts on two joints, 
its moment arm on one joint does not depend strongly on the position of the other joint. 

1-1E Torques depend on the coordinates in which joint angles are represented 
Eq. (6) expresses the idea that when a muscle contracts, the work that it performs is the 
same whether we measure that work in terms of a force acting through a displacement in 
muscle length or a torque acting through a displacement in angular coordinates.  The 
quantity that allows us to relate forces to torques is the Jacobian.  The Jacobian describes 
how length changes in one coordinate system are dependent on changes in another 
coordinate system.  If we change the coordinate system in which we represent the angles 
of the limb, we should expect that the Jacobian would change.  Because of this, the way 
in which torques are described will also change.  This leads to the counterintuitive 
conclusion that the force that our muscle produces will generate different torques 
depending on how we choose to measure the angle of that joint.  Is this true?  It is. 

 

Figure 4.  A. A two joint muscle acting on a two-link system.  The system is 
identical to Figure 3 except that the angle of the second link is measured with 
respect to an absolute axis, rather than relative to the angle of the first link.  B.  
Rotation of a coordinate system in which the position of a point is described 
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changes the representation of force as well.  Left: the position of a point and a 
force acting on it is represented in coordinate system x.  We rotate this 
coordinate system to get x’ (Right). Representation of force changes from f to f’. 

An example will illustrate this point:  Consider the muscle in the two-link system in 
Figure 4A.  Here, we choose to measure the angle of the second link θ2 in a slightly 
different way than we did in Figure 3.  Whereas in the earlier example the angle of the 
second link was measured with respect to the orientation of the first link, i.e., in a 
“relative” coordinate system, here the angle is measured with respect to an “absolute” 
coordinate.  Therefore, θ2 in Figure 3 is equal to θ2 – θ1 in Figure 4.  Otherwise, 
everything is identical in these two systems.  To express how the length of the muscle in 
Figure 4A depends on the angles of the system, we replace θ2 in Eq. (7) and (9) with 

2 1θ θ− : 
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If we now find the Jacobian [ ]21 // θλθλ dddd , we can transform forces in the muscle to 
torques in this new coordinate system.  For example, consider a condition where the 
muscle is producing a 10-N force and the links in Figure 4A are positioned at θ1=45o and 
θ2=90o.   When the Jacobian is evaluated at these joint angles, it produces the vector 
[ ]0216.00061.0 −−  with units of meters/radian.  Therefore, the 10-N muscle force 
produces a torque of 0.061 N-m on joint 1 and a torque of 0.216 N-m on joint 2.  Let us 
now compare this to the joint torques that are produced when the same force acts on the 
links in Figure 3.  For the links to be at the same physical location in Figure 3 and Figure 
4A, angles for Figure 3 are: θ1=45o and θ2=45o.  The Jacobian for the system of Figure 3 
at these angles is the vector [ ]0216.00277.0 −− .  The 10-N force in the muscle of the 
system illustrated in Figure 3 produces a torque of 0.277 N-m on joint 1 and a torque of 
0.216 N-m on joint 2.  The same 10 N of force in the muscle of Figure 4A produced an 
identical torque on joint 2, but a different torque on joint 1.  Therefore, we see that when 
we changed the representation of position for the second joint from Figure 3 to Figure 
4A, the change did not affect the measure of torque on that joint, but it affected the torque 
on the first joint. 
 Although the change in representation of position has changed the torques on the 
joints, intuition tells us that the limbs in Figure 3 and Figure 4A should move identically 
if the muscle produces the same force.  Of course, their positions in the two different 
coordinate systems will be different, but if we were looking at the limb when the force is 
applied, we would see it move the same regardless of whether we choose to represent 
position using one or the other method.  Why is this? 
 To help understand what happened, it is worth thinking a bit about what forces 
and torque are.  In Newton’s second law, force is related linearly to acceleration m=f x .  
Here, f is a 3 dimensional vector with components along the x-, y-, and z-axis, and so this 
equation is really 3 different equations.  The coordinate system in which position of the 
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object is described (x) is the same coordinate system in which forces (f) are described.  If 
we change the coordinate system for position, the force vector will also change. 
 Consider Figure 4B, where position of a point is described in terms of a 
coordinate system (x, y).  Note that when we make a change to this coordinate system (by 
rotating it in this example from x, y to x’, y’), the representation of both the position of 
the point and the force changes. 
 We usually use a cartesian coordinate system to describe forces.  However, when 
we wanted to represent force in a muscle, we simplified things by assuming that the 
muscle was basically a line and that force in the muscle acted along that line.  So in this 
case, force was a one-dimensional quantity because “position of our muscle” was simply 
its length, which is also a one-dimensional quantity. 
 When we represented position of our limb in terms of the angles of the joints, we 
wished to know how we could represent the forces in the muscle in terms of forces in this 
new coordinate system of joint angular positions.  We used the principle of virtual work 
to relate forces to torques: a Jacobian that describes how positions in muscle coordinates 
relate to positions in joint coordinates also describes how forces in muscle coordinates 
relate to forces in joint coordinates.  We gave the name torque to the representation of 
force in joint coordinates.  When we changed the way we measured position in joint 
coordinates, we implicitly were also changing the way that the torque vector was 
represented in that coordinate system. 
 Now the remarkable thing is that it does not really matter how we choose to 
measure the position of an object.  In fact, any choice that we have made is simply for the 
sake of convenience.  The motion that the object will follow for a given force (that force 
properly defined in the coordinate system in which we chose to represent position) is the 
same to an independent, external observer.  Therefore, from the point of view of 
Newton’s 2nd law, there is no advantage in choosing one coordinate system to another.  
However, when we choose to represent position of the limb by picking a particular 
coordinate system, we have implicitly also chosen the coordinate system in which forces 
will be represented. 
 


