
Supplementary documents for “Computational Neurobiology of Reaching and Pointing”, by R. Shadmehr and S. P. Wise 
 

Chapter 1 Kinematics of a five-degree of freedom arm 

1-1 Solving forward kinematics mathematically 

1-1A Rotation with respect to an absolute frame 
In the Preface, we told the story of the Wright brothers’ invention of the airplane and 
mentioned a frame of reference centered on an airplane.  When pilots want to change the 
orientation of their airplane, they refer to roll, pitch, and yaw angles.  These are rotations 
that refer to a relative reference frame, for example, a frame of reference relative to the 
airplane.  By convention, the long axis of the airplane is defined as the x-axis, the wings 
define the y-axis, and a line perpendicular to the plane containing the wings is defined as 
the z-axis.  According to these definitions, when the airplane flies a level course, parallel 
to the ground, rotations around the x-axis describe roll, rotations around the y-axis 
describe pitch, and rotations around the z-axis describe yaw.  To see what direction is a 
positive rotation about an axis, orient your hand so that your right thumb points along the 
axis of interest.  The curvature of your fingers will show you the direction that is a 
positive rotation.  For example, in Figure 1.1, a positive roll angle will tilt the right wing 
down. 

 

Figure 1.1. Roll, pitch, and yaw as defined for an aircraft.  The long axis of the 
airplane is defined as the x-axis, the wings define the y-axis, and a line 
perpendicular to the plane containing the wings is defined as the z-axis.  
Rotation about these axes is called roll, pitch, and yaw, respectively.  As the 
airplane maneuvers, the coordinate system remains “attached” to the airplane. 
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 In a relative reference frame, the axes that we have defined for this airplane 
remain attached to the airplane, so that even as the aircraft ascends steeply, it still rolls 
around its x-axis.  One analogue of this situation for reaching movements is a shoulder-
centered coordinate system that moves as the body moves.  Such coordinate frames are 
especially important in motor control because our muscles generate forces in relative 
coordinate frames, i.e., based on their locations within the body and attachments to the 
skeleton. 
 The alternative to a relative reference frame is an absolute reference frame.  For 
example, rather than defining the z-axis, as above, with respect to the plane containing 
the wings and fuselage of the airplane, we could instead define it with respect to a fixed 
place on the ground.  Our x-axis might point east, our y-axis might point north, and our z-
axis would point to space.  In this frame of reference, when an airplane ascends steeply, 
and the aircraft maneuvers to rotate around its long axis, this would be described as a 
change mostly in yaw angle rather than a roll angle.  No pilot would describe it that way, 
because aerial maneuvers are expressed in a relative reference frame based on the 
airplane.  Absolute reference frames are important in understanding motor control, 
however, because the targets of movement, including the target of reaching movement, 
exist in a world-centered, absolute reference frame.  For example, the cup we discussed 
earlier as the target of your reaching movement does not move if you move.  Its position 
is most readily described by a coordinate system fixed to the table, for example. 
 In absolute frames, when an object rotates around some axis of the frame, further 
rotations are also expressed with respect to the same frame.  This is shown in Figure 1.2.  
In this figure, you start with frame {B} coincident with {A}.  You rotate {B} about Ax  
by angle γ.  This is called a roll angle.  A vector in {B} can be represented in {A} as: 

( , ) A B
AP ROT x Pγ=  

You then rotate your vector about Ay  by angle β.  This is called a pitch angle.  You now 
have: 

( , ) ( , ) A B
A AP ROT y ROT x Pβ γ=  

Finally, you rotate your vector about Az  by angle α.  This is called a yaw angle.  You 
have: 

( , ) ( , )  ( , ) A B
A A AP ROT z ROT y ROT x Pα β γ=  

(1.1) 
You have: 

cos sin 0 cos 0 sin 1 0 0
sin cos 0 0 1 0 0 cos sin   

0 0 1 sin 0 cos 0 sin cos

A BP P
α α β β
α α γ γ

β β γ γ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 

which expresses the vector BP  in terms of frame {A} after that vector underwent a 
sequence of roll, pitch, and yaw rotations.  If you multiply these matrices, you will get at 
single matrix that expresses this three-dimensional transformation.  To simplify our 
notation, let us dispense with cos and sin and simply use c and s instead: 
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( , , )A
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R s c s s s c c s s c c s

s c s c c

α β α β γ α γ α β γ α γ
γ β α α β α β γ α γ α β γ α γ

β β γ β γ

− +⎡ ⎤
⎢ ⎥= + −⎢ ⎥
−⎢ ⎥⎣ ⎦

 

 

Figure 1.2. Roll, pitch, and yaw rotations of frame {B} with respect to an 
absolute frame {A}.  Frame {B} and {A} start as coincident (not shown).  From 
left to right: {B} rotates about Ax  by angle γ.  This is the roll angle.  Next, {B} 

rotates about Ay  by angle β.  This is the pitch angle.  Finally, {B} rotates about 

Az  by angle α.  This is the yaw angle. 

You can now use this result to compute hand position for a simplified two-joint arm, 
which as you recall, can only rotate around the shoulder joint.  Consider the coordinate 
system in Figure 1.3.  When your hand is hanging by the side of your body, pronation and 
supination are rotations around the z-axis, which extends up from the ground.  This is 
defined, in absolute coordinates, as the yaw angle.  Similarly, flexion/extension and 
abduction/adduction are rotations around the x- and y-axes, respectively, and thus are 
described as roll and pitch angles, respectively.  However, notice that when you raise 
your arm so that it is in a flexed posture with the forearm aligned with the y-axis (right 
most plot in Figure 1.3), pronation/supination is now a rotation about the y-axis.  
Therefore, in absolute (but not relative) coordinates, with your arm hanging by your side, 
pronation changes the yaw angle, while in another position pronation changes the pitch 
angle.  The reason for this change is that our coordinate system does not move as our arm 
moves.  In the next section, we will consider relative coordinate systems. 
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Figure 1.3. Roll, pitch, and yaw angles for the shoulder.  Pronation and 
supination are rotations about the z-axis (yaw).  Abduction and adduction are 
rotations about the y-axis (pitch).  Flexion and extension are rotations about the 
x-axis (roll). 

1-1B Rotation with respect to a relative frame 
You aim is to describe position of the hand with respect to your shoulder.  The 
formulation that you are going to use was devised by John Soechting1.  Following his 
approach, we define a reference frame at your shoulder, which remains stationary, and 
another frame that rotates with your moving arm.  We describe angles with respect to the 
moving (relative) frame, rather than the stationary (absolute) frame.  In this way, for 
example, the angle of the elbow will be defined with respect to the orientation of the 
upper arm, rather than in an absolute coordinate system. 
 Start with your arm hanging by your side as in Figure 1.4.  Your initial goal is to 
be able to describe the position of your elbow with respect to your shoulder, allowing for 
the three degrees of freedom at your shoulder.  In Figure 1.4A, {S} is our fixed 
coordinate frame and {E} is attached to your upper arm at the shoulder and rotates with 
it.  The z-axis of frame {E} points along the length of the arm.  Because it is “attached” to 
the upper arm, it will always point along the length of the arm toward your elbow.  If the 
length of the upper arm is l1, then the position of your elbow in frame {E} is always 
defined as: 

1

0
0EU
l

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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We would like to be able to compute SU , that is, position of your elbow with respect to 
the stationary, shoulder-centered frame {S}.  Begin with supination Figure 1.4B: rotate 
{E} around the z-axis of frame {E}, that is Ez , by an amount η .  This rotates your hand, 
but your arm continues to hang beside your body.  The orientation of frame {E} has 
changed, but not the position of your hand.  Let us label the position of frame {E} at this 
new location {E’}.  The vector 'E U  points to your elbow in this rotated frame.  There is a 
rotation matrix that can transform this vector into frame {S}: 

'
'

' ' ' '

' ' '

'

 
[   ]

cos sin 0
sin     cos     0
0 0 1

cos sin 0
sin cos 0

0 0 1

S S E
E

S S S S
E E E E

S S S
E E E

S
E

U R U

R x y z

x y z

R

η η
η η

η η
η η

=

=

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

Figure 1.4. Front and side view of frames {S} and {E}.  A. Frames {S} and {E} 
are coincident.  {E} is attached to the arm while {S} is stationary.  B. The arm 
rotates about the z-axis of frame {E}.  This is supination.  The new position of 
frame {E} is named {E’}. 

Now consider abduction (Figure 1.5A): rotate {E’} around 'Ey  by angle θ.  This rotation 
lifts your arm up and also changes the orientation of frame {E’}.  To reflect this change, 
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we label the current position of this frame as {E’’}.  The position of your elbow is now 
described by ''E U .  A matrix rotation takes this vector to {E’}, and another rotation takes 
the vector to {S}. 

' ''
' ''  S S E E

E EU R R U=  

You have already computed '
S

E R  but need to compute '
''

E
E R : 

' ' ' '
'' '' '' ''

cos 0 sin
[   ] 0 1 0

sin 0 cos

E E E E
E E E ER x y z

θ θ

θ θ

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

The final rotation is of {E’’} about ''Ez  by angle ε  (Figure 1.5B).  The final position of 
the reference frame is labeled as {E’’’} and the vector '''E U  now points to your elbow.  
You have: 

'' '' '' ''
''' ''' ''' '''

cos sin 0
[   ] sin cos 0

0 0 1

E E E E
E E E ER x y z

ε ε
ε ε

−⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

You can now write the sequence of rotation matrices that transform '''E U  into SU : 
' '' ''' '''

' '' ''' '''

'''

    S S E E E S E
E E E E

S
E

U R R R U R U
c c c s s c c s c s c s

R c s c c s c cn c s s s s
c s s s c

ε η θ ε η η θ ε ε η η θ
η ε ε θ η ε θ ε η η θ

ε θ ε θ θ

= =

− − −⎡ ⎤
⎢ ⎥= + −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

(1.2) 
'''E U  simply points to your elbow and is: 

'''

1

0
0E U
l

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Multiplying this by the matrix in Eq. (1.2) gives: 
 

1

1

1

cos sin
sin sin

cos

S

l
U l

l

η θ
η θ
θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

(1.3) 
This is the position of your elbow with respect to your shoulder for the angles that are 
plotted in Figure 1.5C. 
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Figure 1.5. A.  Abduction: frame {E’} rotates about its own y-axis. B.  Frame 
{E’’} rotates about its own z-axis.  C.  Final configuration of the arm, with the 
angles that are used for computing elbow position. 

Eq. (1.2) provides you with a rotation matrix that transforms any vector in {E’’’} frame 
into the {S} frame.  If you can describe a vector in {E’’’} that always pointed to your 
hand, you could use Eq. (1.2) to transform that vector to the {S} frame and therefore 
compute your hand’s position with respect to your shoulder.  However, to describe a 
vector that always points to your hand, you have to allow for the degrees of freedom that 
exist at the elbow. 
 The two degrees of freedom at the elbow are flexion/extension and 
pronation/supination.  Start with flexion/extension.  In Figure 1.6A, the frame {H} is 
defined at your elbow joint.  Its x-axis is aligned with the forearm and vector H L  points 
to your hand.  The forearm has length 2l : 

2

0
0H L
l

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

In Figure 1.6A, your elbow has flexed by an amount α.  Your intention is to represent 
H L  in terms of the frame {E’’’}.  Note that with respect to {E’’’}, {H} is displaced by a 
vector of length 1l  and rotated about Hy  by angle α.  You have: 

''' '''

1

0
 0E E H

HL R L
l
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⎢ ⎥⎣ ⎦

 

zE
xE

zE

yE E

E

y

x

' '

' ''

''

''

zS

xS

yS

zE
xE

zE

yE E

E

y

x

''''

'' ' ''

' ''
' ''

view from back

A B C



Supplementary documents for “Computational Neurobiology of Reaching and Pointing”, by R. Shadmehr and S. P. Wise 
 

Compute '''E
H R  and insert it into the above expression: 

''' ''' ''' '''

2 2
'''

2 1 2 1

cos 0 sin
[   ] 0 1 0

sin 0 cos

sin 0 sin
0 0 0

cos cos

E E E E
H H H H

E

R x y z

l l
L

l l l l

α α

α α

α α

α α

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥−⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

(1.4) 
 

 

Figure 1.6. A. Flexion at the elbow.  Frame {H} rotates about its own y-axis.  B.  
Pronation at the elbow. Frame {H} rotates about its own y-axis. 

The final step allows for pronation/supination at the elbow.  Figure 1.6B represents this 
as a rotation of frame {H} about its own z-axis by an amount ρ.  Vector L continues to 
point to your hand and is defined as: 

'

2

0
0H L
l

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Using a rotation matrix, you can represent this vector in terms of the frame {H}: 

A B
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'
'

' ' ' '

 
cos sin 0

[   ] sin cos 0
0 0 1

H H H
H

H H H H
H H H H

L R L

R x y z
ρ ρ
ρ ρ

=

−⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Because you have been imagining your arm as a stick that has a joint at the elbow and a 
joint at the shoulder, a pronation or supination of the elbow should not change the 
position of the hand.  Rather, it changes its orientation.  This means that after a pronation, 
position of your hand should not change with respect to frame {H}.  Stated another way, 
we should have: ' '

'  H H H
H R L L= , and indeed this is the case.  Note that pronation or 

supination at the elbow does change the orientation of {H} and thus end effectors held in 
the hand, such as a stick grasped by your hand, with vary as a function of that rotation.  
For now, we focus on end effectors such as the hand or a mouse-controlled cursor, which 
are not affected by pronation or supination at the elbow. 
 You can now use your sequence of rotation matrices to compute hand position 
with respect to the shoulder: 

''' '
''' '

1

0
   0S S E H H

E H HL R R R L
l

⎡ ⎤
⎢ ⎥= + ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Multiplying the matrices gives us an equation for computing position of the hand in terms 
of the angles of the arm [Eq. (1.5)].  In Figure 1.7, these angles are drawn. 
 

2 1

2 1

1 2

( ) (1 )
( ) (1 )

(1 )

S
x

S S
y

S
z

L l s c c c s s l c c s
L L l s c s c c s l c s s

L l c c l c s s

α ε η θ ε η α η θ
α η ε ε θ η α η θ

α α ε α θ

⎡ ⎤ − + +⎡ ⎤
⎢ ⎥ ⎢ ⎥= = + + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ −⎣ ⎦⎣ ⎦

 

(1.5) 
If your arm’s sensory transducers could measure your limb’s joint angles, we could insert 
these angles into Eq. (1.5) to compute a vector that describes hand position with respect 
to the cartesian frame {S}, centered on the shoulder.  This transformation solves the 
forward kinematics problem, at least mathematically, and shows us a way that the central 
nervous system, using the information from the peripheral nervous system, could 
compute hand location from sensors that reflect joint angular position of the limb. 
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Figure 1.7.  A view of the arm with the angles that are used for describing its 
configuration. 
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