Project summary #### Dan Friess Associate Professor Department of Geography National University of Singapore Lead PI, Natural Capital Singapore # Acknowledgements #### We'd like to thank our: - 30 staff - 11 students - xx interns - xx govt. collaborators - 7 PIs - 8 collaborators - 4 IAP Nature in Singapore provides us with numerous benefits Air Microclimate 1111 purification cooling Ecosystem services are produced by our Natural Capital: our stock of natural resources Carbon storage Coastal Water Food protection regulation Mental Recreation health Waste Nutrient treatment cycling # Assessing Singapore's Natural Capital Aim: To quantify the economic, social and cultural value of Singapore's environmental assets to aid future policy and urban development Jan 2018 - Objective 1: quantify the *current status* of Singapore's terrestrial THIS MORNING (SGT) and coastal-marine ecosystems - Objective 2: quantify and value Singapore's ecosystem services to society both economic and societal - Objective 3: assess *interactions* between urban development (urban assets) and natural capital (natural assets) THIS AFTERNOON (SGT) • Objective 4: assess future policy and development opportunities that integrate natural capital within a sustainable future city # Objective 1 Quantify the current status of Singapore's ecosystems #### What is an ecosystem? First we need to define what an ecosystem is! ^a Living organisms within ecosystems at different hierarchical scales ^b Non-renewable resources, e.g. minerals (sand, silt, sediments, precious earth, etc.), fossil fuel, etc. ^c Biogeochemical and biophysical flows of energy and materials in the atmospheric, terrestrial and aquatic environment, driven by solar, tidal, geo-thermal and hydrological energy systems # Historical change | | | | | | | lating | | | | | | | Cultura | | | | | | ioning | | |---|------------------------|------------------------------|-----------------------|--------------------|------------------|--------------------------|-----------------------------|-----------------|------------------------|------------|---------------------------|-------------------|-----------------------|------------------|-----------|-----------------|----------------|--------------|------------------------------|------------------| | Status Complete In progress Likely but not measured | | Global Climate
Regulation | Temperature reduction | Coastal Protection | Runoff retention | Water quality regulation | Air pollution
mitigation | Noise abatement | Soil erosion reduction | Recreation | Health and well-
being | Cultural heritage | Artistic insipiration | Scientific Value | Education | Existence value | Food provision | Water supply | Transportation (ie shipping) | Energy Provision | | | Forest | _ | Managed | | | | | | | | | | | | | 2 | | | | | | | | ate | vegetation | shw | Vegetated
buildings | Fe | Shrub, scrub & | <u>8</u> | turf | estri | Swamp forest and marsh | Terrestrial & Freshwater | Reservoirs and | lakes
Rivers and | streams | Mangrove | Seagrass | Aarine | Tidal flat | Coastal & Marine | Coral reef | Coast | Beach | Open water | Artificial | substrates | #### Overview of the terrestrial work stream #### Conceptual research - Overcoming the conceptual ambiguities surrounding the concept of urban ecosystem services - Factors behind prioritization of urban ecosystem services - The potential of vegetation to mitigate air pollution a global perspective #### Field and modelling research - A high resolution map of Singapore's terrestrial ecosystems - Mapping national-scale leaf area index using Google Street Views and remote sensing satellite imagery - Mapping the supply of urban ecosystem services - Historical change in provision and use ecosystem services - Assessment of distribution of selected ecosystem services from environmental justice and spatial equity perspective - Typology for urban landscape Getting urban ecosystem services into urban planning and design - Impact assessment of the newly proposed Master Plan using Tengah as a case study - Assessment of modifiable area unit problem in spatial pattern analysis of Singapore's landscape - Importance of the choice of reference temperature in mapping urban heat island effect - Study of the effect of thermal resolution of land cover map on cooling effect of vegetation - Changes in natural vegetation during a period of rapid urbanization in Singapore - Contribution of reclaimed lands to spontaneous vegetation # Modelling terrestrial ecosystem services R code available here: https://doi.org/10.6084/m9.figshare.13339055.v1 # Potential for sub-national analyses Only for datasets and models that are designed at this scale # Key terrestrial take aways - A typology for urban landscape integrating social and ecological components has been developed to inform urban development practice - Provides a benchmark of the status of natural capital and the ecosystem services they provide - Over time, there has been a shift from provisioning to regulating ecosystem services in Singapore and similar shifts may happen in the future ## Overview of the coastal and marine work package #### Conceptual research - Global review of tropical coastal ecosystem services - Global review of ecosystem services and disservices of mangrove forests and saltmarshes - Creating Indicators for under-research ecosystem services e.g., scientific value #### Field and modelling research - Blue carbon stocks and sequestration within mangroves, seagrasses and tidal flats - Blue carbon dynamics across coastal boundaries and ecotones - Coastal protection of mangrove forests in Singapore - Open water ecosystem services (anchorages, aquaculture) - Identifying spatial patterns and interactions among multiple ecosystem services in mangroves - Scientific value of Singapore's coastal and marine ecosystems - Rapid assessment and characterization of recreational fishing in Singapore - Assessing the recreational value of Singapore's coral reefs ## Hotspots of mangrove ecosystem services Which mangroves provide the best combination of: - Nutrient regulation - Air quality regulation - Temperature regulation - Global climate regulation (carbon) - Recreation Alemu et al. 2021. Ecological Indicators 121, 107042. #### Scientific value 11 novel indicators across 3 tiers, allowing flexibility according to data availability Table 3 Ecosystem-level indicators of scientific value (Tier 1), ranked by total score across all indicators. For method of calculation see Section 3.3. | Ecosystem | Indicator | | | | | | | | | | | |-------------|----------------------|--------------------------------------|-------------------------|------------------------|------------------------|---------------------------|--|--|--|--|--| | | 1.1 # of
articles | 1.2
Ecosystem
Impact
Factor | 1.3 #
new
species | 1.3 #
new
genera | 1.4
Author
reach | Overall
ranking/
10 | | | | | | | Mangrove | 173 | 25.54 | 67 | 4 | 485 | 1.4 | | | | | | | Reef | 162 | 22.44 | 10 | 1 | 574 | 2.8 | | | | | | | Open water | 158 | 26.46 | 7 | 0 | 472 | 3.2 | | | | | | | Beach | 76 | 22.16 | 12 | 2 | 189 | 4 | | | | | | | Tidal flat | 80 | 16.14 | 14 | 0 | 198 | 4.6 | | | | | | | Rocky shore | 40 | 23.08 | 6 | 0 | 93 | 5.6 | | | | | | | Seawall | 42 | 16.50 | 0 | 0 | 145 | 6.6 | | | | | | | Other | 33 | 20.88 | 0 | 0 | 80 | 7.2 | | | | | | | Seagrass | 30 | 11.67 | 3 | 0 | 103 | 7.6 | | | | | | | Unknown | 11 | 20.36 | 4 | 0 | 24 | 7.6 | | | | | | Friess et al. 2020. Ecological Indicators 113, 106255. #### Scientific value 11 novel indicators across 3 tiers, allowing flexibility according to data availability Table 3 Ecosystem-level indicators of scientific value (Tier 1), ranked by total score across all indicators. For method of calculation see Section 3.3. | Ecosystem | Indicator | | | | | | | | | | | |-------------|----------------------|--------------------------------------|-------------------------|------------------------|------------------------|---------------------------|--|--|--|--|--| | | 1.1 # of
articles | 1.2
Ecosystem
Impact
Factor | 1.3 #
new
species | 1.3 #
new
genera | 1.4
Author
reach | Overall
ranking,
10 | | | | | | | Mangrove | 173 | 25.54 | 67 | 4 | 485 | 1.4 | | | | | | | Reef | 162 | 22.44 | 10 | 1 | 574 | 2.8 | | | | | | | Open water | 158 | 26.46 | 7 | 0 | 472 | 3.2 | | | | | | | Beach | 76 | 22.16 | 12 | 2 | 189 | 4 | | | | | | | Tidal flat | 80 | 16.14 | 14 | 0 | 198 | 4.6 | | | | | | | Rocky shore | 40 | 23.08 | 6 | 0 | 93 | 5.6 | | | | | | | Seawall | 42 | 16.50 | 0 | 0 | 145 | 6.6 | | | | | | | Other | 33 | 20.88 | 0 | 0 | 80 | 7.2 | | | | | | | Seagrass | 30 | 11.67 | 3 | 0 | 103 | 7.6 | | | | | | | Unknown | 11 | 20.36 | 4 | 0 | 24 | 7.6 | | | | | | Friess et al. 2020. Ecological Indicators 113, 106255. #### Recreational use of coastal and marine habitats Density of recreational fishing (Lynn Wong) Survey of recreational diving in Singapore (Gwen Chow) # Key coastal & marine take aways - Singapore's coastal and marine ecosystems provide a range of ecosystem services, despite their small and fragmented extent - Spatial patterning has an important control on ecosystem service hotspots - Some ecosystems (e.g., mangroves) and some ecosystem services (e.g., global climate regulation/carbon) are more intensively studied than others - Knowledge of coastal and marine ecosystem services lags behind terrestrial knowledge, and warrants future research #### Overview of the valuation work stream #### **Economic valuation** - Discrete choice experiments - Market valuation - Mobile phone data and travel cost valuation - Park supply #### Social valuation - Ecosystem service ranking by the Public - Participatory mapping - Q methodology #### Equity in valuation - Demand-supply matching/mismatching - Spatial equity #### Other studies - How ecosystem service values have changed with COVID-19 - Health value - Relational values # What ecosystem services do the public think are important? #### Valued ecosystem services: 8 Air Purification met with corresponding increase in value # 3 Most Important Ecosystem Services: Temperature Reduction Improving Mental Health Air Purification ## Perceptions and equity in ecosystem service provision #### Perceptions - Public perception of microclimate cooling is spatially random - Perceptions of other services are spatially clustered (e.g., Nature Reserves) # Cooling Effect 00091 00 #### Equity - Distribution of perceived services and actual services generally aligned spatially (except noise reduction) - Ecosystem services are generally equitably distributed # Integrating economic values and ecosystem service distribution to inform park planning #### Optimize new park locations for best ecosystem service provisioning, convenience and comfort - Utilizing travel costs, economic valuation of temperature reduction, and crowd level estimations - High park value located in central of Singapore - Information used can be updated to cater to different needs → Useful park planning tool # Key valuation take aways - There is no single valuation different ecosystem services have more appropriate ways of valuing, e.g., economic or societal - The Public have strong views on what ecosystem services are more or less important - Air quality regulation and microclimate cooling have the highest economic and social value - Demographically, ecosystem service provisioning is near-equitable - Microclimate cooling is spread out as trees are incorporated into streetscape - Other ecosystem services are concentrated where larger forested catchments are, indicative of their importance - Information of valuation and ecosystem service distribution can be used to inform green space planning, e.g., park locations - Other valuations, e.g., health, relational, are in progress! ## Communicating our research >8 newspaper articles and opinion pieces >5 TV news/documentary segments >30 public and academic presentations Lots of stakeholder engagement workshops **18** Journal papers published (and many more in progress!) # Communicating our data - Terrestrial land cover: https://figshare.com/articles/A high-resolution map of Singapore s terrestrial ecosystems/8267510 - R models for selected ecosystem services: https://figshare.com/articles/software/NCS2020 An R package for modelling urban ecosystem service provision in Singapore/13339055/1 - Links to published papers (including open access): http://naturalcapital.sg/outputs - Other datasets and codes will be made freely available online as they are published ## Summary - 1. The Natural Capital Singapore project is the first comprehensive assessment of tropical urban natural capital in Singapore (and we think more broadly) - 2. A unique collaboration between universities, research institutes and government - 3. Singapore's natural and urban ecosystems provide a vast diversity of ecosystem services - 4. The public and other stakeholders strongly value Singapore's ecosystem services www.naturalcapital.sg Twitter: @NatCapSG Associate Professor Daniel Friess Department of Geography National University of Singapore Lead PI, Natural Capital Singapore dan.friess@nus.edu.sg