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GENERALIZED FLUID FLOWS,
THEIR APPROXIMATION AND APPLICATIONS

A.l. SHNIRELMAN

Introduction

Consider the motion of an ideal incompressible fluid in a domain G C R”.
Each two positions of the fluid differ by some permutation of fluid particles.
In “classical” hydrodynamics these permutations are assumed to be smooth
volume preserving diffeomorphisms of G (see [EM]). If we fix some initial
position of each fluid particle we may identify all other positions with cor-
responding diffeomorphisms, and the configuration space of the fluid is thus
identified with the group D(G) = D of all such diffeomorphisms.

The fluid flow &, (t; < t < t2) is a parametrized path in D, i.e. a family of
fluid configurations {; € D, depending on the parameter ¢ (time). For each
flow &; we may define two closely related functionals, the action J{&; ff and

the length L{&}2

ey f - ]‘%t ,
L{¢, if=/t dt-(/cgifj—(t"2 dx)l/z.

It is easy to see that
JE 2 (L{E)s) /2t - 1)

and the equality is achieved if and only if fG Ii%itﬂlzdx = const.

The group D may be naturally embedded into the Hilbert space
L*(G,RY), because G C RY; it is easy to observe that J{};* and L{£}}
are, correspondingly, the action and the length of the trajectory &; is the
metrics induced by this embedding.

Fluid flows, in the absence of external forces, arc just geodesic trajecto-
ries with respect to the metrics introduced. This means that these flows &,
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t; <t < to, are critical points of the functional J and L (if the endpoints
&1y, &4, are fixed).

Given two fluid positions &y, &; € D, we may look for the shortest path
connecting them, i.e. a path &, 0 < ¢t < 1, such that J{£}} = min (and,
equivalently, L{£;} = min). If such a path ezists, it is automatically a
solution of the Euler equations; it is tempting to use such a “Dirichlet
principle” to construct these solutions.

But it turned out (see [S1]) that if the dimension v > 3, this variational
problem does not have a solution for all the pairs &,& € D. That is, a
diffeomorphism £ € D(K') was constructed, where K is a unit v-dimensional
cube, such that it cannot be connected with the identity diffeomorphism Id
by the shortest path in D.

In order to overcome this difficulty, Y. Brenier ([Brl]) introduced the
notion of Generalized Flow (GF). This is a wider class of objects (including
the smooth flows), where the over-described variational problem always has
a solution in this class. (It is similar to the “Generalized Curves” of L. Young
([Y]), but has another nature.)

Our definition of GF is a slight modification of the definition given by
Y. Brenier.

Let © be a set of points (called “fluid particles” below) with a o-algebra
B of subsets, and a non-negative finite measure P on B. The Generalized
Flow (GF) in G is a measurable mapping

r: QX [ty,ta] » G, (w,t) — z(w,t) .

We shall restrict ourselves to the case when z(w,t) is continuous in t for
almost all w € Q. So, we have a mapping Q@ — X = C(t1,13;G), w —
z(w,t). The image of the measure P in {2 is a measure y in X called the
distribution of the GF. In particular,  may coincide with X and then
P = u. We may assume that all GF have X as a space of liquid particles,
for all observable properties of the flow depend only on its distribution u.
But sometimes it is more convenient to distinguish between the GF and its
distribution.

We say, that the GF is incompressible, if for each domain G’ C G, for
all ¢y € [t1, 2],

P{a(ty) € G'} = mesG.

GF is called “GF with finite action”, if

J{P}i =/QJ{x(t,w)}ij(dw) <oo,
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where
t2
131

I{alt,w)}? = / La(t,w)|Pdt

is the action of a single fluid particle.
We say, that the GF connects Id and £ € D, if

Pl{w | z(t;,w) € G1,z(t2,w) € G2} = mes (G2 N&(G1))
for each measurable set G1,G2 C G. In other words, for P-almost all w,

z(ty,w) = E(z(t1,w)) .

We see that the incompressible GFs with finite action, connecting Id and ¢,
form a (very special) class of random processes in . In most cases we may
identify GF and its distribution p.

Y. Brenier proved in [Brl], that for each £ € D, there exists an incom-
pressible GF p in G, connecting Id and £, and such that J{u} = min, where
min is looked for among all incompressible GF's, connecting Id and £.

The nature of these generalized minimal flows is still unclear. Examples,
presented by Brenier, display unusual behavior of these GF. The delicate
question is, to what extent may these minimal GF be regarded as generalized
solutions of the Euler equations. (The work [Br2] shows that the similarity
is very close, and even that for minimal GF there exists a function p(z,t)
playing the role of pressure.)

This work concerns other aspects of Generalized Flows. They proved to
be a powerful and flexible tool for investigating the structure of the space
D. The theorem of approximation of GF by smooth flows plays a key role.

Let & C D be a smooth flow. It may be regarded as GF with the space of
the fluid particles {2 = G. Let us denote by u¢, the distribution of this GF.
This is a measure in X = C([0,1],G), and we may define a new GF with
1 = X, B = Borel X-algebra in X, and p¢, the measure in X; the mapping
Q% [0,1] — G is defined in a trivial way: (z(-),t) — z(t). This GF (denote
it once more pg, or pg {dz}) may be called a standard representation of
GF ¢,.

In what follows we confine ourselved to the case when

G:K:{.’I):(xl,...,mu)ERullfl?i|<'%}

is a unit v-dimensional cube.
The main result of this work is the following
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APPROXIMATION THEOREM. If the dimension v > 3, then each in-
compressible GF p{dz}, connecting Id and € € D, may be approximated
by the smooth flows &, together with the action. This means that there
exists a sequence of smooth flows { ;, connecting Id and §, such that

(i) the measures ¢, , converge weak * in X to the measure y;

(if) J{&kedo — J{n}s -

The first part of the work is devoted to the proof of this theorem. Note
that the assertion of the theorem is false for v = 2, which will be explained
in detail below.

The second part of the work is devoted to the applications of the Ap-
proximation Theorem. We obtain sharp estimates for the diameter of D
(one of the main results of [S1] is, that if ¥ > 3, then diamD < oo; but the
estimates for diam D, obtained there, are very weak).

The next result relates the “Holder property” of D. It was proved in [S1]
that if v > 3, then there exist C > 0, a > 0, such that for each &, € D,

dist(¢,n) < Cli€ — nllz: ,
where we regard D to be embedded in L2(K, R¥), so that £, € L2, and

dist(&,n) = Ellléf;) L{&} -

§o=£

€1=1
The power o was estimated from below, but the lower bound obtained for
a was very small (for v = 3, we found that o > é) In this work, using
the Approximation Theorem, we find a better bound: o > ;% (v 2 3).
An intriguing question is, what is the best lower estimate? Is it true, that
a>1l—-¢foralle > 07

The next application of the GF is the lower estimate for the action of
2-dimensional flow, connecting Id and a mapping £, having some twisting
property. This estimate implies, that if v = 2, then diamD = oo. The last
result is a particular case of the theorem of Eliashberg and Ratiu ([EIR]),
asserting that the diameter of the symplectomorphism group is infinite. But
our estimate itself is not covered by the results of [EIR].

We use this estimate to construct a non-attainable diffeomorphism in
the 2-dimensional case.

It was proved in [S2] that if v > 3, then each £ € D is attainable, i.e.
there exists a flow {;, connecting Id and £, such that J{&}} < co. Here we
show that for » = 2 it is not true.

The next application of GF is a simpler and more transparent proof than
in [S1], that if v > 3 there exists £ € D such that min J{&}} is not achieved
among the smooth paths £;, connecting Id and £.
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The last application of the Approximation Theorem is a simple proof
of existence of conjugate points on the geodesics in D(G), if dimG > 3.
Recently, G. Misiolek ([Mi]) proved that in the group of area preserving
diffeomorphisms of a 2-dimensional torus there exist both geodesics, carry-
ing conjugate points, and geodesics without conjugate points. (It is very
likely that this assertion is true for all compact 2-dimensional manifolds
and bounded 2-dimensional domains.) If the dimension v > 3, then the
conjugate points are indispensible for each sufficiently long geodesic line.
However, the nature of conjugate points and the proof of their existence in
2 and 3-dimensional cases are quite different and have in fact nothing in
cominon.

Note that although this work improves the results of [S1], it is based on
the technical theorems contained in [S1].

It should be noted, that there exist a number of results concerning the
structure of completions of configuration space D. To each diffeomorphism
€ € D we may put in correspondence an operator T in L*(D) : Teu(z) =
u({(z)). Thus we obtain a representation T of the group D in the group U
of unitary operators in L?(G). Let Tp be the image of D. Elements of the
closure of this group are “generalized configurations” of the fluid.

Closure of Tp in the norm topology coincides with Tp, because
ITe = Tol| = 2,if £ # 7.

Closure of T'p in the strong operator topology is the semigroup S mes(G)
of operators Ty : u(x) — u(f(z)), where f : G — G is a measurable and
measure preserving mapping (i.e. mes f~1(A) = mes A for each measurable
set A C G). This was proved in [BFR], [A], [Mo2].

Instead of the strong topology, we may introduce a distance dist (see
above) and ask, what is the completion D of D as a metric space with this
distance. It was proved in [S1], that if the dimension v > 3, then this
completion coincides with SmesG, and if v = 2, then D and SmesG are
different (in fact, the nature of D, if v = 2, is still unclear).

Next, if we consider the closure of Tp in the weak operator topology,
then we shall arrive at the semigroup of bistochastic operators, or, in the
terminology of A.M. Vershik, polimorphisms. These are operators in L*(G)
of the form Ku(z) = [, K(z,y)u(y)du, where the Kernel K(z,y) possesses
the following properties:

(i) K(x,y) > 0 (i.e. K is a positive measure in G X G);

(ii) /G K(z,y)dz = 1;

(iii) /C;K(x,y)dy =1

See [V], for a detailed description of the operators. Bistochastic operators



Vol.4, 1994 GENERALIZED FLUID FLOWS 591

were used by Y. Brenier in his works [Brl}, [Br2], about the existence of
minimizing generalized flows. They were the main tool in the work [S3],
concerning existence and properties of the stationary flows in 2-dimensional
domains.

Embedding of an infinite-dimensional group into some “enveloping” semi-
group is a powerful method in representation theory; see, for example [N]
and the references there.
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1. Proof of the Approximation Theorem

Given a GF p, connecting Id and £, we shall construct a sequence ¢+ of
smooth flows, connecting Id and £, and such that jg, , — p weak *, and
J{k1}s — J{u}). Our construction consists of a number of steps. On
each step we introduce a new type of GF, and prove that these GF may
approximate each GF introduced in the previous step. On the last step the
smooth flows appear. It is evident that this implies that the smooth flows
approximate the generic GF.

Step 1. Given € > 0, let us define the following transformation f. of the
space C(0,1; K):

z(t/(1-¢)), 0<¢t<1~
m(t)—»fe:c(t)={x((1{(, ) 1_55t§i.

It is clear that f. is measurable and transforms each GF p into some other

GF f.(p).
LEMMA 1.1. Ife — 0, then f.p — pu weak * and J{feu} — J{u}.

Proof: For each 6>0 there is a constant A>0 such that fsu{:cl x|l #1015 >
A} < é,foralle,0 < e < 3. Theset 84 = {z € Q| |z|[g < A} is compact
in 2. Using the Stone-Weierstrass theorem, we see that the functionals of
the form

d{z(t)} = ey, an (2(t1), ..., 2(tN)) (1.1)
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are dense in C(84). Hence, it is sufficient to prove that

[ #le®}santdz} ~ [ o{a®}nuiis)
Q Q

for each bounded functional ¢{z} having the form (1.1). But

/Q‘ﬁ{ft(t)}feu{dx} = /ﬁA +/Q\ﬁA ,

the second integral is less than 6, while the first tends to |, 5, P{ztu{dz}
because of the equicontinuity of the family G4.
The second assertion of the lemma follows from the equality

J{fen} = (1 —e)7 J{nu} . o

So, we may confine ourselves to GF pu, such that for u — almost all
trajectories z(t), z(t) = const for 1 —¢ <t < 1.

Likewise, we may approximate the GF u by GF p’, such that it is im-
mobile near 0K; this means that if z(0) is in the e-neighbourhood of 0K,
then z(t) = z(0).

Step 2. Given a GF p, let us choose trajectories X;(¢t), X2(¢), ... inde-
pendently, with the same probability distribution p{dz}. The measures

prlde} = 3 bl = 21}
k=1

converge weakly to the measure p with probability 1. This implies that
these GF are asymptotically incompressible with probability 1.

Suppose that this is true for our sequence z,(t),z2(t),.... Moreover,
suppose that

JH{ppy = J{u}  (p— o0);

this is also trué with probability 1.
Thus we have approximated our measure y by the measures p,,, concen-
trated on a finite number of trajectories.
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Step 3. Now we shall approximate the GF p by smooth multiflows. We
shall give the Eulerian and Lagrangian descriptions of a multiflow.

DEFINITION 1.1 (Eulerian definition of a multiflow). A smooth multiflow of
order N is a collection of smooth functions p1(z,t),..., pn(z,t) and smooth
vector fields vi(z,t),...,vn(z,t), z € K, 0 <t <1, such that
() DL oz ) =1
(ii) 28 + div(psv;) = 0;
(iii) the fields v; are tangent to OK.

To define the Lagrangian multiflow, consider IV copies of K1,..., Ky of
K; let a;(z) be smooth non-negative functions in K; (density functions).
Consider N time-dependent diffeomorphisms n; ¢ : K; - K (i=1,...,N),
0<t<1.

DEFINITION 1.2 (Lagrangian definition of a multiflow). A collection M =
{a1,...,an;N1 4, .., N} Is called a (Lagrangian) multiflow, if

(i) Z pi(z,t)=1 in K,

where .
- ;.
piant) = alo (@) - | 52

is the density of the i-th phase;
(i) for each i < N, and each z; € K;,

mii(zi) = Eomnio(zi) ,

where £ € D(K) is a given diffeomorphism.

(ii) means that the multiflow M connects Id and £.
Given a multiflow M, we may define corresponding GF paq in the fol-
lowing way: if M = {a1,...,an;n14,...,MN 1}, ¢ € C(Q), then

def
/§;¢{$}ﬂM{d$} = ;/;(ai(xi)(ﬁ{ni,t(xi)}dxi .

Given a GF p, we shall approximate it by a multiflow. This means that we
construct the sequence of multiflows

MK — {af,- 80 M- Mot}
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such that for each function ¢(z1,...,zx) € C(K™) and for each sequence
0<ti<ta<... <ty <1,

/q’)(a:(tl),...,a:(tN)),uM(k){dm} - /¢(x(t1),...,x(tN))u{dx} .

(This is sufficient for the weak * convergence.)
Let us choose the trajectories z;(t),...,z«(t) as described in Step 2.
Let o(z) = ¢(|z]) € CC(RY), (z) > 0, ¢(z) = 0 for |z| > 1, and

J ¢(z)dz = 1. We may define a sequence of multiflows M= (af,...,af;nF,,.

where
k _ 1 T — .’EZ(O)
a;(z) = kv ¥ £ ’

if dist(z;(0),0K) > ¢, and

o= Y (270

~€er

if dist(z;(0),0K) < €, where I is the discrete group of motions in RY,
generated by the reflections in the faces of K. The mappings ni’ft are of the
form n¥,(z) = i(t)+(z—2:(0)). Here we assume that ¢ is sufficiently small,
so that the initial GF p (obtained in Step 1) is fixed in the 2¢-neighbourhood
of OK.

The multiflow _/\—/(.lc is not volume-preserving, and it does not, in general,
satisfy the boundary condition #;,(z) = £ - ni0(x). To improve it, let us
choose aflow & C D, 0<t<1,& =1d, & =&, and put

(@) = 2i(t) + &(2) — & (:(0)) -

This choice of mappings nl’?’t ensures the boundary conditions nﬁ 1 =€o0 nf,o.
But it is still not quite incompressible. We im;c)rove it, Ilnultiplying by a
suitable mapping (f : K — K. Let p*(z,t) = 3;_; ai(n,k,t‘ (z)).

LEMMA 1.2. If k — oo, then with probability 1
(1) sup,, |p*(z, ) = 1| -0,
(2) sup,, 020" (z,8)| = 0, (la] > 0)
(3) fK fol |8:p*(z,t)|>dzdt — 0 .
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Proof: Note that Ep*(z,t) = 1, where E is the mean value with respect to
the probability distribution 4 ® ... ® p. From the definition of p* we see
N ——’
k times
that [02p*| < C, for all o. From the Large Numbers Law we see that for
every point (z,t), Prob{d%p(z,t) — 0} = 1. But |0%p| < C, for all a,
la| > 0.
Moreover,
0 .

B|gooten| < CoBliP

and, therefore, we may choose a finite set of points (z;,t;), dense enough
in K x [0,1]; at each point of this set with probability 1, p — 1, and
02p — 0. If |p(z,t3) — p(z,t1)| > a, the action J > ¢ ae” - WE—%TI; hence,

a < cJ|ty — t1]e7¥~2. This means that if we take the time moments 0 <
t; < ...< tpy <1such that t;4; —t; < caJ 1“2, and a finite nuinber of
pomts (:rJ, i), such that the distance between each point z and the closest
point z; is less than ¢-a -¢7¥~1, and the sequence of the paths z;(t) is
typical, i.e. imy oo 4 Ep_l pp(xj,ti) =1, then |p(z,t) — 1| < a for all z,t.
A similar reasoning proves (2).

To prove (3), note that u;(z,t) = Qﬁé_fﬁ are L2-functions, chosen in-
dependently and with the same distribution, E||u;||* < oo, Fu; = 0. If
ul®) = at = kz _1Uj, then

k
1
Eu®|? = l § 2t =
i=1
1 k
=13 2 Bluil* + 5 =S Blui,ug) =
j=1 i#j
1
Bl

for u;,u; are independent, and hence E(u;,u;) = (u;, Eu;) = 0. By the
Large Numbers Law, |[u(*)||2 o 0 with probability 1. This proves (3).

Now we must construct a correcting flow (¥, such that the multiflow
M ={ay,...,a;CFo n{“t, . CFo n,’jt} is incompressible. This means that

I 9 (2) (z)l = p(x t), where p = p*. We have just proved that p is close to 1
w1th all derivatives, if k is large enough. This is a problem solved in the
most general case by J. Moser ([EIR]), but here we use a much simpler and
more explicit approach. Let us describe it for the case v = 2. Let us choose
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a function y(z) € C&[-1,3], 'y(a:) > 0. Let g(y,s;2) =y + s y(x). Let
p(z) be a density in the square K? = { — - <z < 2} close enough to 1
with its derivatives up to order d.

To construct the mapping ¢, we choose the function s(z;), so that

3
/1 ( + 9(22, 5(22), Il) dz; = /] dm1/ ) p(z1,25)dzy ;
-3 ) ;

this relation determines s(z2) uniquely, and s(z3) is close to 0 (with deriva-
tives), if p(z1,z2) is close to 1. Now, let us define the mapping ( in the

form ((z1,Z2) = (y1,¥2); Y2 = 9(Z2, 5(x2), ¥1);

/Il (z,29)d —/yl 14 ()—(?-—S- dzx
—-%p s L2 = __Jz_ 7$6I2 .

This relation just means that the mapping (; transforms the measure
pdzydz, into dy; dys. It is easy to see that
zEK '

Bnt -1 / P
/‘ dz < Csup(p™') |3t

and by Lemma 1.2, with probability 1
J{as,... a5 ¢ ot s, G 0k} = T} -

Thus, we constructed the sequence of incompressible multiflows M¥, con-
necting Id and &, such that pyu — p, and J{MF¥}} — J{p}}.

sup —Id| < Csup

9y

Step 4. Now we shall approximate a multiflow M by smooth flows. This
in turn requires a number of steps.

Given a multiflow M, we shall construct a sequence of smooth flows
oiy C D, 09 =1d, 051 =&, such that ps, , — par weak *.

Let us fix some multiflow M = (a1(z),...,ap(x);€1(2),...,&pe(T));
a; € C°(Ky), &y - Ki — K, and 17 a:i(€7; ())|06 7 (y) /0yl = 1.

Step 4.1. We may assume that a,(z,t) = %; otherwise we may con-
struct a new multiflow

' ' Y 1
M = {al,‘..,ap+1,£1‘t,...,£p+1,t} 3

where a;(z) = —La,(a:), 1{,t =& (1<i<p), a;+1($) = pTll» f;+1,t =&,
where £ C D i is some fixed flow, connecting Id and £.

If p — 00, M’ is asymptotically weakly close to M.

Step 4.2. On this step, we shall represent a multiflow M as a compo-
sition of 2-flows (i.e. multiflows with p = 2).
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DEFINITION: Let

M = (al,...,ap;fl,t,...,fp’t) 5
M’ = (b1a~‘-7bq;771,ta---a77q,t)

be two multiflows such that a,(z) = a, = const > 0. Then the multiflow
M = M x M', the composition of M and M’ is defined as follows:

1
M = (01,---,Cp+q—1§C1,t,---»(p+q—1,t) )

where

C1 =4ap,...,Cp—~)] = Gp.y

Cp = Ay 'bl,Cp+1 = a,,-bg,...,c,,+q_1 = a,,-bq ;

CGe=8&,t -y Cp-1,t =&p-1,1;

Cot = &pt Oty ey Cppg—1,t = &p,t O Mgt
Our next step is representing the multifow M = (ai,...,ap;€],...,&L),

where a, = %, as a composition of (p — 1) 2-flows M = (a',b%;9; 4, (i),
where bi(z) = b; = H-;l
So we are looking for 2-flows, M?, such that

M=Ms (M2 (ke MPTY) L)

This means that

gl,t = ntl s
EZ,t = Ctl or]tz )
€3t =C11 °<tz°7h3a
-1
Epp=C(lo...0o0".
The densities a*(z) = —22_ In order to find 7, (¢, let us first set
1. bis Mt Ge

N} = & 4. Then we find a flow ¢} such that M! is an incompressible 2-flow,
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i.e. (1*(bidz) + 0} (aydr) = dz. This is a problem of Moser type. After
solving it (for example, in an explicit way, as above, in Lemma 1.2), we
obtain a flow ¢}, smooth in t. Now, set n? = ((})7! o &, and find (7,
satisfying relation (?*(bedz) +n?* (asdz) = dz, once more using Lemma 1.2;
etc.

After (p — 1) steps we shall obtain the desired representation of a mul-
tiflow M as a composition of 2-flows M?, i =1,...,p — 1. All 2-flows M}
are smooth in z,t, if M is, and satisfy the boundary conditions

=fomng ;
(t=¢t0(;
m =1

G=¢ (=2,...,p-1);

Step 5. Given an incompressible 2-low M = (a(z), b(z); 7, (1), such that
= £ onp, {1 = £ ooy, we shall construct a smooth flow o, approximating
it in a weak sense together with the action and such that op =1d, 0y =¢&.

Suppose that b(:z:) = b = const, a{z) € C§°( I& ), Jx a(z)dz =1 —b, and

“adz) + ¢ "(bdz) = dr. Let p(z,t)dz =}~ "(adz), (1 — p(z,t))dz =
c:“ (bdz).

These are the densities of the 1st and 2nd phases. Let v(z,t)=1; 07, Yz),
w(x,t) = (; 0 ¢, (x) be the velocity fields of the phases, so that div(pv) +
div(l — p)w = 0, and p = 0 in some neighbourhood of K.

The first substep is the construction of a discontinuous flow in K, ap-
proximating 2-flow M together with the action.

Step 5.1. Let u(z,t) = pv(z,t) + (1 — p)w(z,t) be the mean velocity
field. It is incompressible and vanishes in the neighbourhood of OK. Let
& be the flow generated by the field u(z,t), & = Id. Then for the 2-flow
M’ = (a,b; Et_l ony, E;l o(;) the mean velocity field u = 0; if we approximate
M’ by the smooth flow o}, the flow o g} = o, will approximate 2-flow M.
So it is sufficient to consider the 2-flows with the mean velocity equal to
0. Thus we have excluded the mean motion. Explicitly this means that
pr+(l-pw=0;w= —If—,;v.

Step 5.2. Let us divide the time interval T : 0 < t < 1 into N equal
subintervals T; : '”1 <t< & (z =1,...,N). Consider a modified vector
field vV (z,t) = v(x, ), 1f < t < +. This is a piecewise smooth
vector field, discontinuous in t Let p"(z,t) be the solution of the mass
conservation equation

apN

(N NY
wT +div(p"v") =0
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N (z,0) = p(z,0) .
It is easy to see that p"(z,t) — p(z,t) uniformly together with all deriva-
tives in z, when N — oo,
N
Let wV = —Tf—pNUN ;let p)¥,¢N be the flows satisfying the equations

N(g Nz
M) = onten @), EEE < (¢ @)

with the initial conditions 7{'(z) = no(z), ({¥(z) = ((z). Then MV =
(a,b;9N,¢}) is an incompressible 2-flow, and M”" approximates M weakly,
when N — oo.

Step 5.3. Now we introduce the notion of a sand-like domain.

Let C >2,1>r >0, H>1 be fixed (in what follows, r will be small
and H large). Consider a cubic lattice £; in K with mesh size C - r; let U
be the union of the balls of radius r; = r with centers at the points of the
lattice £;, contained entirely in K. These (disjoint) balls we shall call the
balls of the first generation.

Let £ be the cubic lattice with mesh size C-H~!; denote by U, the union
of the balls with the centers in the points of £, having radius ro = r- H ™1,
contained entirely in K and such that the distance between each ball of i
and each ball of U is more than ro (these balls are called the balls of the
2nd generation). Proceeding in the same manner, we obtain the domains
Us, ..., Uy, consisting of the balls of 3rd, . ..,n-th generations.

Let U = U U...UU,. Its volume is more than 1 — (1 —a+€)"~!, where
a = (Cr)™"- (volume of the ball of radius r) < 1, and € — 0, when H — oo.

Hence, choosing n sufficiently large, we may reach the volume of U ar-
bitrarily close to 1. &/ may be called a sand-like domain.

Step 5.4. Now, we turn to the approximation of a 2-flow by a discon-
tinuous flow, which is a preliminary step in approximating it by a smooth
How. We shall divide K into 2 domains with piecewise-smooth boundary,
R(t) and S(t) = K\R(t). These domains depend on t, and they bear 2
phases of the discontinuous flow, approximating the 2-flow. We are work-
ing on the time interval I;; hence, the vector field vV (z,t) = v(z,t;—;) is
constant in time and w" (z,t) = —T—f%%-)t—)v’v(x, t) has a constant direction.
Let us define the domain R at the time moment ¢ = t;—1. Let us divide K
into 3 sets K = Koy U K; U Ky;

Ko = {z|v(z,t;i-1) = 0} ;
Ky = {20 < Jo(z,ti 1) <8} ;
K, = KN(KqUK,) .
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If mesKy = 0, we set Ry,_, N (Ko U K;) = 0. Otherwise, we choose some
61, 0 < 8, < 6, and set K§ = {z | |v(z,ti-1)] < 61}. Then we take
Ry, N (Kl\T(-:,) = (. Let us describe R;,_, N K. Let p(z,t;—1) be the
density of the 1st phase at the moment ¢;_;. Density is bounded off from
1: p(z,t) < po < 1. Let us construct a sand-like domain I in K§ with
parameters 7, H,C, so that r is small enough. Then the finite number
of generations (say, n) is enough for the average density p; of U to be
more than pg. Then & N K| is a union of a finite number of disjoint balls,
UNK]| = Ufil B(z;,r;) with the center at the point z; and radius r;. Let
R = U1M=1 B(z;, Biri), where 8; = (ﬂ;’;—‘l)lly. If the radius r of the balls
of the first generation tends to 0, the function xy(z) — p(x) weakly in
L>(K}).

Now let us consider the domain K3, where [v"| > 6. The whole of this
domain is foliated into the integral curves of the field v”; there they have
bounded curvature, and all their derivatives are bounded too. Consider
one ball, call it B, of the sand-like domain I/. Let us perform a volume-
preserving change of coordinates in the neighbourhood of B (its radius is
small compared to the inverse of the curvature of stream-lines), so that the
stream-lines in these coordinates become parallel straight lines. If these

coordinates are (y1,...,%,) = (¥, %), the equations of the stream-lines
have the form 3’ = const. But the ﬁeld v™ is not constant and, in the new
coordinates, has the form v = b(y ) Domain B in the new coordinates

is close to the ball; anyway, it is stnctfy convex. Let us divide B by vertical
planes into rectangular bars (for simplicity we confine ourselves to the case
v = 3; the case v > 3 is considered similarly). The size of these bars is small
enough. Call them B;;. Let us divide each bar B;; into two by the surface
T;; : x1 = g(z2,3). At the instant t;_;, this surface is a plane, parallel to
the (z2, z3)-plane, cutting a sub-bar B,T; from the bar B;;, such that the

volume of B;'; = p(xg) vol(B;;) (here zq is the center of the ball B).

Note: Instead of the bar B;; N B with curved upper and lower surfaces, we
consider the “rectangular” bar, so that the domain B becomes “steppy”.
The width d of the bars B;; is small enough. (We are not bounded by
anything in choosing the small parameters.) Let us cut the bars B;; by
vertical planes, parallel to z; — z3 planes, and let us work in these planes.
Let (x1,72) = (T1,T2) be the left side of this section. In the subdomain
B,T'J'-, consider a vector field V of the form (A(z3,t)(z1 —Z1),0, b(Z1, T2, £3)),
where A(z3,t) is chosen in such a manner that the field V' is solenoidal (we
define V simultaneously and independently in all the sections of B;;, for all
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B;; and all the balls of our sand-like domain). This means that

b
58;; + Azy) = 0.

In the complementary subdomain B;;, we define a vector field W such that
entire stream through each horizontal section of B;; is zero. The best way
to do it is to use the stream function. If ¢)(z1,z3) is the stream function of
the flow in B;*J'-, then ¥ = const (we may set if 0) on the left side of B;'J'-, and
is linear along each horizontal section of B,J; Let us continue it linearly with
respect to z; in B, so that it vanishes on the right side of B;;. To define
the flow at all points, we continue it piecewise-linearly in the triangles with
the base on the ends of B;; and height equal to the base; thus the flow is
defined in the plane section of B;;, with added triangles in the same plaue.
Now, let us do it in all the sections of B;j, for all ¢, j, corresponding to one
ball B, and for all the balls of our sand-like domain /. Outside the union of
these polygons, set the fields V and W identically zero. Let us choose the
width of the bars B;; so small that the added triangles do not intersect other
balls of the domain #/. Now, set R = |J B,-‘;, where the union ¢ is taken over
all balls of the domain U/, all bars B;; and all sections of these bars, parallel
to the coordinate plane (z;,z3) (in the local coordinate system, consistent
with the field vV).

The domain R depends on ¢, for it is approximately transported by the
field vV. Choosing the width of B;; sufficiently small, we arrive at the
flow in R that has the velocity field V| arbitrarily close to v"(z,t). The
longitudinal component of V is the same as that for v, and the transverse
component may be done arbitrarily small. R is invariant under the flow with
the velocity field V. So the 1st phase (contained in R) moves arbitrarily
close to the 1st phase of 2-flow M (on the time interval (¢;_1,t;)). To prove
the similar result for the domain S; = K\(R; U Ko U K), observe that Sy
may be decomposed into 2 domains, §; = S; ;US> ¢ such that mesSs; < 6,
(and &, may be done arbitrarily small), |[IW —w| < 62 on Sy ; and |w| < C on
S,.1, where 6, 85 may be done arbitrarily small, choosing parameters of our
construction, and C does not depend on these parameters. The measure
of points z in S, moving with speed W, such that they spend a total time
7 from the time interval [t;_1,%;] in Sy, is not more than &, - tizhion f

—=L,
1/2
T =46;'", then
mesEé < (t;— t;_l)-éi/z ,

where

E; = {m €S, ' mes{t € [ti—1,ti] | Zi(x) € Sg} > 61/2} ,



602 A.l. SHNIRELMAN GAFA

and Z; : 5;,_, — S: is the flow defined by the velocity field W for ¢;_; <
t<t.
On the set Z;(X}) the speed W is bounded by some constant C. If

T € %1 =8, ,\I%, then, for all t € [t;_;, ;] but the set of measure < 6;/2,

|W(Zi(z),t) — w™ (Zi(2),1)| < &2,

and W is bounded by C for all t. Hence, if (; is the flow of the second phase
of the initial 2-flow and = € X¢, then

|G 0 G2, (2) — Zi(x)| < Ciba(ts — timy) + CE/ .

Thus for all the points of S but the set of the measure < 0511/2(t,- —ti1),

the deviation of the motion Z; (with the field W) from the motion (; (with
the field w™) is less than C (6, + 6, / %), and 61,8, may be done arbitrarily
small by the choice of the parameters of construction.

Step 5.5. We constructed some discontinuous flow on the time interval
[ti=1,t:] (i =1,...,n); this flow simulates a 2-flow M on this interval. Now
let us construct an intermediate flow connecting that on the time intervals
[ti—1,ti] and [t;,t;41]- Let 7 be small enough to compare with #; — ¢;_1,
and stop the previous flow at the moment ¢; — 7. If the flow is immobile
on each interval [t; — 7,¢;], then for 7 — 0 it will tend to the flow with
T = 0. So take 7 small enough and let us define a reconstruction, i.e.
a discontinuous flow ¥, on the time interval [¢; — 7,t;], transferring the
domains R;,_,,S;,—r into Ry,,S;,. To do this, let us divide K into small
equal cubes K of size £. Let us construct domains Ry,,S;,, serving the
flow for t; < t < t;4+1 — 7, as described above, and in such a manner that
mes(Ry, N K9)) = mes(R;,_, N K()) (i.e. the volume of the st and 2nd
phases in each cube K(9) are invariant during the reconstruction). Now
let us construct a discontinuous flow in all the cubes K(9) (separately and
independently in each), so that to transfer all of the 1st phase into the new
position.

Let us divide each cube K into MY equal cubes &; call the cube &
black, if it is entirely contained in Ry, ,. The volume occupied by the black
cubes in K tends to vol(R;,—, N K)) when M — oco. Let us define
the black cubes for the new domain R,,. Suppose that the numbers of the
black cubes in R;,_, N KU) and in R;, N KU) are equal; otherwise take
the least of them and denote it by p. Take p black cubes from the domain
Ry_.NK (4); there exists some permutation ¥ of all the cubes x in KU,
transferring these black cubes into p cubes, contained in R;, N K(9). As was
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proved in [S1], there exists a piecewise-smooth flow ¢, in K, t;_17 <t < t;,
Yi—r = 1d, wtilK(” = ¥ 4, is smooth in each small cube k, and the
length of this flow is not more than C - ¢ (where £ is the size of the cubes
K(J’))_

Let us organize this flow simultaneously and independently in all cubes
K@), Then the action of this flow J{y,}{L,._, < C ¢?/7, and may be done
arbitrarily small by the appropriate choice of £. For M sufficiently large, the
measure of the set of points z € R(¢; — 7), such that their images after (9
are contained in R(t;), may be done arbitrarily close to mes R(t;). After
this permutation ¥ we divide K once more into domains R(t;) and S(t;),
as described above; most of R(t;) consists of the pieces of R(t; — 7). After
this the reconstruction is over, and we proceed as above. The flows Z,
for ;1 <t < t;— 7, and the flows ¢4, t; —7 <t < t; i = 1,...,N),
form together a discontinuous flow y; : K — K, 0 <t <1, xo = Id.
K is divided into 2 domains, Ry and Sy, trajectories x;(z) of most points
x € Ry are close (in H') to the trajectories n,(z) of the points of the first
component of the 2-flow M; trajectories of the points of Sy are H;-close
to the trajectories (;(x) of the points of the second component of M. The
points of K, for which this is not true, form a set of small measure and
the actions of trajectories of all such points are bounded. The measure of
such an exclusive set, and the distance in H! between trajectories x,(z) and
ni(z), or (;(z), may be done arbitrarily small by choosing the parameters
of construction.

Step 5.6. Now we shall construct a smooth flow, approximating a
discontinuous flow x;. Let z(z,t) = Yo x; ' (x) be an Eulerian velocity field
of discontinuous flow x;. Let us choose a function ¢(z) = ¢(|z|) € C§°,
such that p(z) > 0, ¢(z) = 0, if |z| > 1 and [ p(z)dz = 1. Let z.(z,t) be
a smoothed velocity field:

() = [ 00— vy

where . (z) = e p(£).

Let x§ be a flow in K generated by the vector field z.(z, ). If ¢ — 0, then
2 — 2 in C'*° in each domain where 2 is smooth. The field 2 transports its
smoothness; i.e. for almost all z € K, z(z,t) is smooth in the neighbourhood
of its trajectory (x:(z),t) (0 <t < 1). Therefore, for each § > 0,

lim mes {z € K | |xu() — xi ()| <6, [Xu(2)-Xi (2)|<8 , O<t<1} =1,

and |x5(z)| < C, |xi«(z)] < C for all z. Hence, x§ also approximates the
2-flow M together with J.
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Step 6. Now we shall approximate the generic multiflow M = (ay, ..., ap;
&1,4,.-.,&p,t) by a smooth flow, using representation of M as a composition
of 2-flows.

We shall construct this approximation inductively. Assume that for
each p-flow M = (a1,...,a,;€1,1,...,&p,t) We can construct a smooth flow
1y C D, approximating it in weak * topology together with J.

Let M’ = M * MP where M? = (a?,b?; 9}, (F) is a smooth 2-flow. Let
x} be a smooth flow, approximating the 2-flow MP?, constructed in Step 5.
Then the flow M’ may be approximated by the p-flows of the form

M" = (ar,...,ap; &0ty Epo1,1:€p 10 XT) -

This is a smooth p-flow, which, by the inductive assumption, may be ap-
proximated by the smooth flow ;. But each (p+1) flow may be represented
as a composition of a p-flow and a 2-flow, as was proved above. So, each
multifiow may be approximated by (a sequence of) the smooth flows in K.

Step 7. We started our construction from the approximation of a given
GF pu, connecting Id and &, by a GF p' connecting Id and &, such that
pi-almost all trajectories z(t) are t-independent for 1 —i~! < ¢ 5 1.

In Steps 2-6 we have constructed a sequence of smooth flows ¢, approx-
imating GF p' together with J and t-independent for ¢ —i™! < ¢ < 1. But
these flows do not, in general, satisfy the boundary condition: 1/)1’] -1 FE

LEmMmaA 1.3. If wt’J is a sequence of smooth incompressible flows in K (=
1,2,...), such that Pyii — ,u weak *, then ¢}’ it T2 & in L2(K,RY).

Proof: Consider the function

Flat)} = [e@(0) -2t —iH[* .

For the GF pi, [ f{z}pu'{dz} = 0, because GF y' satisfies the boundary
condition. By the definition of weak *-convergence,

/Q fehuyp{de} = /K j6@) =yl is @) da = s — €T =2 0.0
If ||z/)1 ;=1 —&llz2 = 6; and v > 3, it was proved in [S1] that

diStD(KV)(wifi—l )6) < Cé? ’

where C' > 0, a > 0 depend only on v. Therefore, there exists a path 1/), ,
1—-i"1 <t <1, such that ¢}’ = ¢, and J{y}” } i1 < 1C262°‘ i; thus,
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if 6; 0, the sequence of the smooth flows 1/):’j satisfies the boundary
hade ]

j
conditions wé’j = Id, ¢i’j =, Popivi Rl Hi, and
t

T} — T’} (j—o00).

GF pi, in its turn, approximates GF p together with the action. Thus
the Approximation Theorem is proved.

2. Applications of the Approximation Theorem

2.1 Estimate of Distances in D. The Approximation Theorem makes
evident the following assertion.

LEMMA 2.1. Ifv > 3, then for each £ € D dist(Id,£) = inf(2 - J{u}})!/?,
where inf is taken over all GF p, connecting Id and &.
In fact, for each GF p, connecting Id and €, there exists a sequence of

smooth flows ¢!, connecting Id and ¢ and such that pgi — p, J{&)} —
J{u}d. But L{€}} < (27{&}3)'/?, and the equality may be attained after
some change of variable t.

Our first result, concerning the geometry of D(K") = D, is the following.

THEOREM 2.1. If v > 3, and KV is a unit v-dim cube, then

diamD < 2\/§ .

Proof: Our construction is almost identical to that of Brenier [Brl], who
proved that all fluid configurations on the torus are attainable by GF. For
each £ € D, we construct a GF p, connecting Id and £, such that J{u}} =
%"; then our main theorem states that for each ¢ > 0 there exists a smooth
flow oy, connecting Id and &, and such that J{oy}§ < % + ¢. After some

reparametrization of oy, L{o,} < y/% + 2¢; this just means that diamD <
2\/§ . Suppose that the cube K is defined as follows:

K={:c€R"||x,-|<%,z'=1,...,1/}.

Let T’ be a discrete group of motions of R”, generated by the reflections
in the faces of K. For each y € K, v € K, we define a path z,,(t) C K,
0<t< %:

Tyo(t) =T(y+4tv)NK .
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This is a billiard trajectory in K. The mapping ¢, : v — z,,(3) is a 2¥-fold
covering of K, and ¢, is volume-preserving. Let K, K, K, K, be 4 copies
of K with coordinates y,v, z, w correspondingly (i.e. K, = {y € RY ] lys| <
%}, etc.) Let us define a set @ C K, x Ky X K, x Ky; w = (y,v,2,w) € Q,
if z = £(y), and zy,v(%) = zz,w(%).

For each y € K, let S, = ({y} x Ky x {{(y)} x K,,) N Q. This is a graph
of a correspondence in {y} x K, x {{(y)} X Kuw, that is a 2¥-fold covering of
both {y} x K, and {{(y)} x K. This correspondence is locally a motion,
and 2 = UyeK,, Sy. Let dw = 27dy dv be a normed volume element on (2.
Then the required GF p is a random process with probability space (€2, dw)
and is defined as

T, ,(4t) , 0<t<d

o) = { 00wy, §2450

where w = (y,v,£(y), w) € . This GF may be described as follows: each
fluid particle is split at ¢ = 0 into a continuum of parts, all the parts of a
particle, situated at t = 0 at the point y € K, move independently along
the billiard trajectories in K and at t = % they fill K uniformly. After
t= % they start moving along other billiard trajectories and at ¢t = 1 they
all arrive at the point £(y). All the particles split and move independently

in the same manner: homogeneity is fulfilled automatically.
The action of this GF

1 [3 2
J{l‘}=%/’vl6v2dv=u-§/_ 16w2dm=§

1
2

L{p}=Vv2J =2 g

Thus, the estimate of the diam D is proved.

2.2 Estimate of the distances between the elements of D. D is
isometrically embedded into the Hilbert space L2(K*,R¥), and there is a
“coarse” distance between its elements:

6(67 "7) = ||£(.’L‘) - 77(37)”L2

Is there any connection between the distances dist and 67 In [S1] it was
proved that if v > 3, there exist C = C(v) > 0, @ = a(v) > 0, such that

dist(€, ) < C8%(&,m) -

Direct construction of [S1] provides a very weak estimate for «; for example,
if v = 3, then a > 31;1-. Our approximation theorem cnables us to improve
this estimate.
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THEOREM 2.2. Ifv > 3, then for all £, € D,

dist(¢,n) < C6%(€, 1) ,
where o > VLH-

Proof: 1t is sufficient to prove this estimate for = Id, because both dist
and 6 are right invariant metrics.

Let us denote by A(z) the function |¢(z)—z|, and suppose that ||A(z)|[%
= 62 is sufficiently small. We shall construct a GF y, connecting Id and £,
and such that J{u}} < C §7+7. Instead of the cube K, let us consider the
v-dimensional torus TV. In fact, this is equivalent. Really, let us consider
the group I' of motions in R”, generated by reflections in the faces of the
unit cube K C RY and if the subgroup I"” consisted of the parallel shifts.
The fundamental domain of I'” is a cube 21\, that may be subdivided into
2¥ shifts of K. Each £ € D(K) may be prolonged to the mapping € of 2K
onto itself by conjugation: 5(71‘) =yofoy !(z), v € T. It is evident the
&(z+b) = E(z)+ b for each vector b € 2Z and, therefore, { may be regarded
as a mapping of the torus R”/2Z into itself.

For each trajectory Z(¢) on T we may construct a trajectory z(t) =
I'z(t) N K = n(z(t)). Let i be a GF on T, connecting Id and &; then
i = w(1), the image of the measure p under the transformation =, is a GF
in K, connecting Id and . Evidently, J(p) = J(i).

So, let £~ € D(T); we shall construct a GF g, connecting Id and E , and
such that L{u} < C67%7, where § = A2 = |l€(x) — ]| 2.

Let us take as a probability space Q the tangent space TT”, (z,p) are
the coordinates in . Measure f in (2 has a density 277 %¢( f), where
e(p) € CF°, ¢(p) = ¢(lpl), v(p) 2 0, ¢ = 0, if |p| > 1; p(p) = 1, if
0<p< %, and [¢@(p)dp = 1. For each w = (z,p) € Q, let us define a
trajectory on TV,

x + 4ip , OStS%
tw)=¢ z+p+2(t—- (@) -2), 1<t (2.1)
£(z)+4(1-t)p, <<l

This GF may be described as follows: at the moment ¢t = 0 each particle x
splits into continuum of particles (z,p); they spread into a blob of size ¢;
all these blobs are moving with constant speed to their final positions with

the center in £(z), and then they concentrate into a single particle at the
point &(x).
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This flow is not in fact satisfactory, for it is not incompressible. So,
we must introduce a correcting mapping f; : T — T, % <t< % (on
the Ist and the 3rd stages our GF (2.1) is incompressible). In the case
of torus construction of the mapping f; is much simpler and more explicit
than in the general case (see [Mol]). Let z,,...,z, be the coordinates on
T (0 < z; < 2). Let p(z) be arbitrary a smooth positive normed density.
Then we may construct transformation f : T — T, translating the measure

pdzx into the measure with constant density, and having “triangular”form:

flz1,..20) = (y1,---,Y0)
y1 = fi(z1) ;
Y2 = fa(21,72) ;

The functions f1, ..., f, may be found from the following relations, express-
ing the fact that f*~!(pdz) = dr,

7]

5.—2:[1- = /p(ml,...,xu)dxz...dxu ,

ofy 8f, _

8—1‘1 . 3_11,‘2“ = /p(xl,mg,...,xu)dxg dl‘u )

afl af2 ... afu _ .........................

'azz'&:‘z' oz, = P(xl, ,-Tu) )

The integration constants may be chosen arbitrarily; we choose them so
that the centers of mass of the (v —1)-dim, (v — 2)- dim, . . . sections remain

unchanged.
Let us estimate %Jt:. If p = p(x,1), then
0 0 g
6_:1:1% =5 z1,...,z,t)dzy .. . dz,,

) 8 [of]!
G_xz—ajiz- =5 [;9%1—] /p(wl,...,x,,,t)d:c;;...dz,, ;

....................................................................

d dfi A oAl [8fiei]™
3z, a‘: =% [5‘1%] [55:11-] /p(wl,...,m,,,t)dm,-+1...d:c,,;

....................................................................

80, _[0fi 0fiu]™
ot 6.'1,‘,, - 03:1 a.’l?,,_l P
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It is easy to observe that if 0 < ¢; < p(z,t) < cq, the operators F; : %f —
9 are uniformly bounded in L? (they have uniformly bounded kernel) and,

ot
ny 3/4
J{l‘}1/4 S /

therefore,

But the bounds for %f and p depend on the parameter ; we have to choose
it in such a manner that p us uniformly bounded from both sides. Let us
estimate it. If i <t< % and the GF i is defined by (2.1), p(z,t) may be
estimated as follows:

Ce™" mes {

|z+7A(z)-y|< 5 }Sp(y,t)
< Ce ™’ mes{z | |[z+7A(z)~y|<e},

where A(z) = €(z) —z, 7 = 2(t — 1).
Now,

p(y,t) < Ce ™ mes{z | |z —y| < Cie}+
+Ce™Vmes{z | |[x —y| > Ci¢, and |A(z)| > Cie} .

If 62 = [ |A(z)|*dx, then
(52
p(y,t) < Ce™ (6" + ;5) ,

and if € > cév%z, then
p(y,t) < const .

p(y,1) > ce™ [m{ o -yl < 5}

£ €
-mes{x |z —y| < 17 IA(m)I > Z}]

2
>Ce™" (6" - Cé—) ;

g2

In a similar manner,

if we set € > Cév_zﬁ, then

p(y,t) > const > 0 .
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Now, we may estimate %?. p(y,t) = [ pz(y, t)dz, where

y—x—rA(x)) ;

p=(y,t) =ce o ( p

ce¥ g7 |A(m)|2 ;

<[5,
L? ot i,
<ce_£:2tg/|A(x)|d:c§

<ce A = cem 5 5

|5,

ap
at

IN

if ¢ > C6747 then 0 < Cy < p(y) < Cy, and
d

ot’!

<ce~5* s,
2

Hence 1/ 34
L{p}o = L{p}e"" + L{n}}}q + L{n}3a <

<Cet+ce* 2 5.

In order to optlmlze the estimate for L{u}, we take ¢ = Ce~ 2 . §; this

gives ¢ = C6v+1 71 > §747 for small 6. This means that, with our choice of
g, p remains bounded from both sides and our estimates are self-consistent.
Thus Theorem 2.2 is proved.

2.3 The new proof of the fact that if v =2, then diamD(K) = oo.
Our result is a little more precise.

THEOREM 2.3. Let G(t) C R? be a domain of area S, depending smoothly
ont,0<t<1;let& : G(0) — G(t) be a family of the area preserving
diffeomorphisms, such that for each two points 1,22 € G(0), their images
&(z) and &(z) make at least N revolutions around each other, when t
passes from 0 to 1. Then

J{&)o 2 CS?*-N

J{&}o = / dt /G (0)2'855t

is the action of the flow &.

where

dz
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Proof: 1. Let us do a homotopy with coefficient S -3. It will reduce the
problem to the case S = 1, and remove the factor S? from the estimate
of J.

2. Let us reduce the problem to a more simple one for the generalized
flows. Consider the moving domain Gt =Gy x Gy C R? xR?; let A bea
diagonal in R? x R2. For each 2 points z1,z2 € Go, denote T = (21, 23)
and consider the trajectory

&) = (&(z1),&(22)) CR? xR

It is clear, that _
J{&}o = 27{&s -

The flow Et in G, is evidently incompressible, the diagonal A is invariant
and each point &(Z) makes at least N revolutions around A (0 < t < 1).
The volume of Gy is equal to 1, and the area of the intersection of G, and
arbitrary plane Ay, parallel to A, does not exceed 2 (in fact this plane
consists of the points having the type (z,z+h); the area of GiN Ay is equal
to the doubled area of G;N(G¢+h)). Thus the measure of 6-neighbourhood
of A, intersected by Gt, does not exceed 2762, Let us estimate J {ft}o Let
E be orthogonal complement to A in R*. If we take a projection of each
trajectory &;(z) on E, then we get a GF p{dy} in E (with the probability
space (2 = G(0)) such that

1. for each domain A C E, and each ¢, € [0, 1],

p{y(to) € A} < 2mes(A) ;

2. p{X}=1;

3. p-almost all trajectories make at least N revolutions around the origin
in E.
We are going to prove

THEOREM 2.4. For each GF p, satisfying (1)—(3),

where
1
J{u} = /Q (dy) / L)t .

3. We start the proof of Theorem 2.4 with a sort of symmetrization. Let
lt, be a measure obtained from g by rotation through the angle ¢ around
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the origin. Let 7 be a measure obtained by averaging ., over all ¢ € [0, 27).
Then J{f}} = J{u}}, and the measure % is axisymmetric.

4. Let us represent each trajectory y(t) in polar coordinates: y(t) =
(r(t), ¢(t)). Measure [ is invariant under the transformation (r, ¢) — (r, o+
©o) for each fixed ¢g. Let (r(t),»(t)) be some trajectory 0 < ¢t < 1. We
shall construct another trajectory (r(t),¥(t)), such that
L Jy d(t) = Jy dio(t);

2. J{(r(t),%(t))}} is minimal.
If we replace the trajectories (r(t), ¢(t)) by (r(t),%¥(t)), the density of par-
ticles will not change.

This is a variational problem: find a function (t), such that J =
3 fo (t) + r2(t)¥%(t)]dt is minimal provided fo dy(t) = fol dp(t) > N.
The Euler Equation is

() (t) = C

and

0/01 o =/0] delt) 2 N

and the estimate for the action:

this implies

1 2
HyOh 2 5 /0 *(t)dt + 5 /0 f;(‘:; >
1/t 1 N?
> = (t)dt+ P e
2 ‘/(; fO rz(t)

7 is an axisymmetric measure on the functions y(t) = (r(¢),¢(t)); if we
neglect the second variable (), we obtain a measure v on the space of
scalar functions 7(t) (v is projection of i on the first component).

Denote the modified action of r(t) by Jy{r(-)}3:

v 1t N2
JN{T‘(')}2 = 5/0 Tz(t)dt-i— 5——1—-‘5— .

r=16))
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Then the action of GF T is estimated from below by the modified action of
GF v:

TN > In{v}h = /Q In{r()}ovidr} .

Measure v satisfies the “one sided incompressibility” condition
v{r(te) € A} < 47r/ rdr,
A

where A C RY.
Let us estimate Jy{v}} from below. Suppose that Jy{v}} < B; then

V() | Intrih <28} > §
Let x(r(-)) be a characteristic functional of the set
M= {r() | In{r}s < 2B},

v(Q) = 3, and

[

and the measure & = x(r) - v; then k(M) >

w{r(-) | r(te) € A} < 471'/ rdr . (2.2)

A

For k-almost all trajectories r(t),

/1 #2(t)dt < 2B ; (2.3)
N

<2B,

or

i 2
o
1 2
/0 rf(tt) > ‘;V—B . (2.4)
Condition (2.2) means that
a=r{r()|r(0) <a} <2rad’;
if a < ap = (87)71/2, then o < 1, and

K,{r(-) I r(0) > ao} > % ]
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For a given ro > 0 consider the (measurable) set

M(ro) = {r(-) | (0) > a0 , 021ti£1 r(t) <ro} .

Now observe that

1 R
/ K,{dr}/ —;—t— S/ il—7£d1° =
MAM(ro) o (1) o T

=4rln— ,
To

where R is some upper bound for r(¢) (0 < 1). And (2.4) implies that

R N?
47rlna > k(M M(ro)) - R
R B
k(M M(rg)) < 87r1n; NT

If [lare| < Cy A, then k(MNM(ro)) < 1, and kM (ro) > 1.

This means that a large share the trajectories r(f) € M (say, more than
a quarter), starting from the point r(0) > ag, reaches the point rq for some
te[o,1].

5. For each r > 0, t € [0,1], let x,.; be a characteristic functional of the
set {r(-) | 7(t) < r}; then we may define a non-negative measure

o~

15)
K = E[Xr,t - K]

in M. Condition (2.2) implies, that x, ;M < C -r. The measure &, is
concentrated on the trajectories r(t), passing the point r at moment ¢. The
radial part of the action of the GF « is

Jr{K} = /M n(dr)/ﬂ1 —7;—(2t—)-dt >

1 ag
_>_/ dt/ dr/ 372 () Kra(dr)
0 To M(ro)

In order to estimate Jg(x) from below, let us introduce a modified GF. If
r(t) € M(rg), then set

_ r(t), ifr(r)<rpforall7 <t
Mr(t) = {To , ifr(r)=rp for somer <t.
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Let us define a new measure

Kpg = Krt * X{lr(t)=r(t)} 3

this means that we take into account only the trajectories that are passing
the point r at time ¢, but have not reached ry before this.
It is clear that

1 ag
Trik} > / dt / dr / L2 ()7, {dr) .
0 o M(T‘o)

Let q(r,t) = [, 7(t)K,{dr}. This is a flow rate through the point r of the
particles that have not reached the point ry before ¢t. From the definition of
M(rp) we see, that

1
/ q(r,t)dt > C
0

for all r € (r9,a0). (All the particles from M(rq) pass the point r at least
once.)
(2.2) implies that [K{dr} < C -r; by the Schwartz inequality

[ [ smtana) < ([ [ Pomaana)” . G
(/] ) <(/ J )

0 M(ry) 0 M(T‘o)

and this implies that

1
/ / 27K {dr}dt > Cr~t .
0 JM(r)

Consequently,
1
JR{H}"-—‘/ f 1-%k{dr}dt >
M Jo

ag 1
> / / / L32(t)%, o {dr}drdt > C|lnro| .
M(To) To 0

But lnr¢ was defined above as C-’\I;—z for some C > 0. Hence J{u}} >

Jr{x}} > C—I};;. But we started with conjecture that J{u} < B. These
inequalities do not contradict each other only if B > C - N. Thus, Theorem
2.4 is proved; it implies Theorem 2.3.

COROLLARY. Ifv =2, then diamD = co.
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Proof: Consider a circle B or radius p > 0 situated entirely in K. Let
o(r) € C§(0,p), ¢ # 0. Consider the mapping £ : K — K, having, in
the polar coordinates, the form (r,¢) — (7, + N¢(r)), where N is a large
parameter. £(z) = z in a neighbourhood of B, and we may continue it,
setting £(r) = z for all € K\B. Choose the values 0 < r; <rs <rz <
r4 < p, such that ¥'(r) > 0 on the segment {ry,74). Denote by G; the
annular domain r; < r < riyq (1 = 1,2,3). Let & C D be arbitrary flow,
connecting Id and £. For z,y € K, let us denote

w(z,y) = /; darg (&:(y) — &(x)) -

The following fact is evident:

LEMMA 2.5. inf w(z,y)— sup w(z,y)= N(P(rs) —¥(re)).
z,y€G3 z,vEG,

Hence, for at least one of the domains G; (i = 1, 3)

(e, )] > N =)

for all z,y € G;.
By Theorem 2.3, J{&,}} > CN'/2, for each path & connecting Id and
£. N is unbounded and hence diamD = oc.

2.4 Unattainable diffeomorphisms. In [S2], it was proved thatif v > 3
then for each £ € D there exists a path &, connecting Id and £, such that
J{&}4 < co. Here we demonstrate that this is not true for v = 2.

THEOREM 2.6. Ifv = 2, then there exists an unattainable diffeomorphism
£ € D. Moreover, this diffeomorphism may be chosen continuous up to 9K,
and fixed on 0K.

Proof: Choose a sequence of nonintersecting circles By, Bs, ..., in K, with
centers T, Ta, ..., and radii p;, ps2,..., such that the points z; converge to
OK. Let £ be ﬁxed outside | Ji2, Bi, and let £ | B, be a switch map, having
in the polar coordinates, with the origin at z;, the form

= (oo (1))

if & C D is a flow, connecting Id and &, then

Heaye 2 Y Jis
i=1
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where by Theorem 2.3

- o] 315

if J{&}5 < 0o, then 332, J; < co. But we may choose N; > p;?, and then
Yoo, Ji = co. Thus £ is unattainable.

Note: The result of this section may be obtained using the methods of
[EIR] as well.

2.5 Once more about the nonexistence of the shortest way in D(K)
for v > 3. The GF may simplify and clarify the proof of the main result
of [S1].

THEOREM 2.7. Let v > 3. Then there exists an element £ € D, such that
there is no shortest way in D connecting Id and £. This means that for
each way &, 0 <t <1, & = 1d, & = &, there exists another way &, C D,
connecting Id and & and such that J{£,}§ < J{&}4.

Let us describe the construction of £ and the proof of Theorem 2.7 for
v=3.

K is defined by the inequalities |z;| < %, i = 1,2,3. Let us consider
€ € D having the form &(xy, x2,z3) = (h(z1, 72),z3), where h € D(K?).

THEOREM 2.8. If

2
dz > CpiN; ;

dist D(Ks)(Id, &) < dist D Kz)(Id, h) ,
then there is no shortest way in D(K?®) connecting 1d and €.

Proof: First of all, it has been proved above that distp(xs)(Id, €) < 2; on the
other hand it was just demonstrated that distp(x2)(Id, k) may be arbitrarily
large (and even infinite). Hence, there exist h € D(K?), satisfying the
conditions of Theorem 2.8.

Consider arbitrary flow £, C D(K3), connecting Id and &, and construct
the shorter one. Let £}(x) be the i-th coordinate of the point &(z). Let

Il = | L [ 1@+ @lds,
T4 = [ Lt JRIGS

by the vertical and horizontal components of the action. Now, we construct
the GF p, connecting Id and £. The space = K'x[0,1]. If y € K, z € [0,1],
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(y,2) € Q, then the path z(y, z;t) := (£ (y),£7(y), z) is the projection of
the trajectory &:(z) on the plane z3 = z. From the form of { we see that u
is an incompressible GF, connecting Id and ¢, and J{u}} = Ja{&}s.

If J,{&}5 > 0, then J{u}} < J{&}}. By the Approximation Theorem,
there exists a smooth flow £}, connecting Id and &, such that £’ approximates
p together with J, so that |J{&}§ — J{&}| < $Ju{€:}; hence, J{&/}§ <
THER. |

If J,{&}$ = 0, then £} = 0 a.e. in K, each horizontal section z3 = 2
is invariant under &, and we have a family of flows (; in these sections,
connecting Id and h. By our hypothesis J{¢7 }} > inf,cp(x3) J{&:}§ and,
therefore, £, cannot be a minimal path connecting Id and ¢. This contra-
diction proves the theorem.

2.6 Conjugate points in D. Let M be a Riemannian manifold, and let
y:t—z(t) C M, 0<t<T, be ageodesic in M. A point z(to) is the
first conjugate to z(0) along the geodesic 7 if, for each t; < ty, the piece
of v connecting z(0) and z(#;) has the least length (and action) among
all close paths, connecting the points z(0) and z(t), and for t; > o this
segment fails to be locally the shortest: i.e. for each ¢ > 0, there exists
a path y(t) C M, connecting z(0) and z(¢;) such that dist(z(t),y(2)) <
gforalt 0 <t<ty,and L{y(t)}i} < L{z(t)}{'. This is one of the
possible definitions of conjugate point; all of them are equivalent for finite-
dimensional Riemannian manifolds, but they split into different definitions
for infinite dimensional ones (see [G]).

The problem of existence of conjugate points on the manifold D was
posed by Arnold in 1966 ([Ar]). Recently G. Misiolek proved the existence
of conjugate points on D(G), where G is a flat 2-dimensional torus ([Mi}).
This construction is likely to generalize on the general case of D(M) for
arbitrary 2-dimensional compact manifold M. Misiolek also conjectured
(and proved for a flat torus) that for each 2-dimensional manifold there
exist geodesics without conjugate points.

But for v > 3, the situation is quite different: the conjugate points
become indispensible: on each sufficiently long arc of geodesic in D(G)
there exist conjugate points. More precisely, the following assertion is true.

THEOREM 2.9. Let G = K" be a unit v-dimensional cube, v > 3. Let
& C D(G),0<t<T, bean arbitrarily piecewise-smooth curve such that its
length L{&;}{ is more than diamD(G). Then &; is not locally the shortest
path connecting & and . This means that for each € > 0O there exist a
smooth pathn, C D,0<t < T, no = &, nr = &1, such that dist(&;, ;) < €
for all t € [0,T), and L{n:}3 < L{&}{.

In particular, this means that on each geodesic line longer than diamD
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there exist conjugate points.

Proof: If L{(;}] > diamD = sup,, distp(£,7), then there exists a path
¢+, 0 < t < T, connecting & and &7, such that J{¢,}§ < J{&}E. Let
Ue,» ¢, be corresponding GF’s. Let us consider the mixture of these GF’s,
v=1(1-=06)pe + bp¢,, 0 < 6 < 1. This is a GF connecting & and &7, and
its action

J{v}s = (1 = 8)J{ne.}s + 87 {nc.}o < Huels -

If 6 — 0, then v — p¢, weak x. For each §, by the Approximation Theorem,
we may find a smooth flow 7y, s.t. it is arbitrarily close (in the weak x
sense) to the GF v, and J{n;}I is a arbitrarily close to J{v}I. Hence,
we may find 7, such that J{n;}& < J{&}I. But the flow 7, is wx-close
to &. By Theorem 2.2, this means precisely that, for each finite sequence
0<t <ty <...<ty =T, and for each ¢ > 0, we may find 6 and a
smooth flow 7, approximating v = (1 — é)u,, + 6u¢,, such that mes{z |
|e;(x) = (i, (z)] > e} <eforalli =1,...,N. For each other time moment
ti, U <1<,

zz@_%)‘” N (M)‘”}

(t—1t:) (t—t;)
S ”ft.‘ - Wt.-”m + C(t - ti)1/2 S
< 1€t = ez + C - m]?lx(tj+1 — ;)%

WEe = mellz < N€ei — meallre + (T — 1) [(

and for max(t;4+; — t;) sufficiently small,

Gt — mlli < 2¢
for all t € [0,T]. By Theorem 2.2, this means that

diSt’D(Ctv nt) < Ce” ’ a>0 ’

and is small together with €. Thus, for each ¢ > 0, we have constructed a
path 7, such that J{n.}§ < J{&}7, no = € nr = &r, and distp(&,m:) <
Ce®. This concludes the proof.
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