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Introduct ion  

Consider the motion of an ideal incompressible fluid in a domain G C R ~. 
Each two positions of the fluid differ by some permutation of fluid particles. 
In "classical" hydrodynamics these permutations are assumed to be smooth 
volume preserving diffeomorphisms of G (see [EM]). If we fix some initial 
position of each fluid particle we may identify all other positions with cor- 
responding diffeomorphisms, and the configuration space of the fluid is thus 
identified with the group/)(G) = 7) of all such diffeomorphisms. 

The fluid flow ~t (tl < t _< t2) is a parametrized path in/9, i.e. a family of 
fluid configurations ~t E/9, depending on the parameter t (time). For each 
flow ~t we may define two closely related functionals, the action J{~}~21 and 
the length L{~t}tt~: 

ftl 2 /c1 06(x) 2 J { ~ } tt21 = dt . -~ cOt dx , 

= J; dt. (/G 06(x)cOt 2dx) 1/2 

It is easy to see that 

J{~t}tt~ > (L{~t}tt~)2/2(t2- t l ) ,  

and the equality is achieved if and only if f G ] ~  12dx c o n s t .  

The group D may be naturally embedded into the Hilbert space 
L2(G, R~), because G C R~; it is easy to observe that J{~t}~t~ and L{~t}~ 
are, correspondingly, the action and the length of the trajectory ~t is the 
metrics induced by this embedding. 

Fluid flows, in the absence of external forces, are just geodesic trajecto- 
ries with respect to the metrics introduced. This means that these flows ~t, 
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tl  <: t < t2, are critical points of the functional J and L (if the endpoints 
~tl,~t2 are fixed). 

Given two fluid positions (0, ~1 E :D, we may look for the shortest path 
connecting them, i.e. a path (t, 0 _< t _< 1, such that  J{( t}  1 = min (and, 
equivalently, L{~t}01 = rain). I f  such a path exists, it is automatical ly a 
solution of the Euler equations; it is tempting to use such a "Dirichlet 
principle" to construct these solutions. 

But it turned out (see [$1]) that if the dimension u >__ 3, this variational 
problem does not have a solution for all the pairs (0,(1 E Z). That  is, a 
diffeomorphism ~ E :D(K) was constructed, where K is a unit v-dimensional 
cube, such that  it cannot be connected with the identity diffeomorphism Id 
by the shortest path in ~D. 

In order to overcome this difficulty, Y. Brenier ([Brl]) introduced the 
notion of Generalized Flow (GF). This is a wider class of objects (including 
the smooth flows), where the over-described variational problem always has 
a solution in this class. (It is similar to the "Generalized Curves" of L. Young 
([Y]), but has another nature.) 

Our definition of GF is a slight modification of the definition given by 
Y. Brenier. 

Let ft be a set of points (called "fluid particles" below) with a a-algebra 
B of subsets, and a non-negative finite measure P on B. The Generalized 
Flow (GF) in G is a measurable mapping 

x : ~ x [ t l , t 2 ] - - * G ,  (aJ, t ) - - ,x(aJ,  t ) .  

We shall restrict ourselves to the case when x(a~, t) is continuous in t for 
almost all a~ E ft. So, we have a mapping ft --* X = C( t l , t 2 ;G) ,  w --~ 
x(a3, t). The image of the measure P in ft is a measure # in X called the 
distribution of the GF. In particular, ft may coincide with X and then 
P = #. We may assume that  all GF have X as a space of liquid particles, 
for all observable properties of the flow depend only on its distribution #. 
But sometimes it is more convenient to distinguish between the GF and its 
distribution. 

We say, that  the GF is incompressible, if for each domain G ~ C G, for 
all to E [tl, t2], 

P{x( to )  E G'}  = mesG. 

GF is called "GF with finite action", if 
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where 

= f,i' �89 
is the action of a single fluid particle. 

We say, that  the GF connects Id and ~ E / ) ,  if 

P{w I e e = mes (G2 A ~(G1)) 

for each measurable set G1, G2 C G. In other words, for P-almost  all w, 

X(t2,0d) = ~(X(tl,iM)) �9 

We see that  the incompressible GFs with finite action, connecting Id and ~, 
form a (very special) class of random processes in G. In most cases we may 
identify GF and its distribution #. 

Y. Brenier proved in [Brl], that for each ~ E 7), there exists an incom- 
pressible GF # in G, connecting Id and ~, and such that  J{#}  = min, where 
min is looked for among all incompressible GFs, connecting Id and ~. 

The nature of these generalized minimal flows is still unclear. Examples, 
presented by Brenier, display unusual behavior of these GF. The delicate 
question is, to what extent may these minimal GF be regarded as generalized 
solutions of the Euler equations. (The work [Br2] shows that  the similarity 
is very close, and even that  for minimal GF there exists a function p(x, t) 
playing the role of pressure.) 

This work concerns other aspects of Generalized Flows. They  proved to 
be a powerful and flexible tool for investigating the structure of the space 
/). The theorem of approximation of GF by smooth flows plays a key role. 

Let ~ C / )  be a smooth flow. It may  be regarded as GF with the space of 
the fluid particles 12 = G. Let us denote by p~, the distribution of this GF. 
This is a measure in X = C([0, 1],G), and we may define a new GF with 
12 = X,  B = Borel E-algebra in X,  and #~t the measure in X; the mapping 
i2 • [0, 1] --* G is defined in a trivial way: (x(.), t) -~ x(t). This GF (denote 
it once more p~, or #~, {dx}) may be called a standard representation of 
GF ~t. 

In what follows we confine ourselved to the case when 

a = K =  { x - - ( X l , . . . , x v )  E R" I Ix, I < 1} 

is a unit v-dimensional cube. 
The main result of this work is the following 
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A P P R O X I M A T I O N  T H E O R E M .  I f  the dimension u ~_ 3, then each in- 
compressible GF #{dx} ,  connecting Id and ~ E ~), may  be approximated 
by the smooth flows ~k,t, together with the action. This means that there 
exists a sequence of  smooth flows ~k,t, connecting Id and ~, such that 

(i) the measures 12~k,, converge weak �9 in X to the measure #; 
(ii) J{~k,t} 1 --~ j { p } l .  

The first part  of the work is devoted to the proof of this theorem. Note 
that  the assertion of the theorem is false for u = 2, which will be  explained 
in detail below. 

The second part  of the work is devoted to the applications of the Ap- 
proximation Theorem. We obtain sharp est imates for the diameter  of 79 
(one of the main results of [S1] is, that  if u >_ 3, then diam79 < c~; but  the 
est imates for diam79, obtained there, are very weak). 

The next result relates the "HSlder property" of/9.  It was proved in [S1] 
that  if u _> 3, then there exist C > 0, c~ > 0, such that for each ~, z/E :D, 

dist(~, q) < ell  ~ - qlI~ , 

where we regard 7) to be embedded in L2(K, R") ,  so that  ~, ~1 E L 2, and 

dist(~,~/) = inf L{~t}0 ~ . 
~ t c D  
r 
~1=~ 

The power ~ was est imated from below, but  the lower bound obtained for 
a was very small (for u = 3, we found that  a _> ~4)" In this work, using 

2 ( , > 3 ) .  the Approximation Theorem, we find a bet ter  bound: cr > ~ _ 
An intriguing question is, what  is the best  lower est imate? Is it true, that  

> 1 - r for all r > 0? 
The next application of the GF is the lower est imate for the action of 

2-dimensional flow, connecting Id and a mapping ~, having some twisting 
property. This est imate implies, that  if u = 2, then d i a m D  = ~ .  The last 
result is a particular case of the theorem of Eliashberg and Rat iu  ([E1R]), 
asserting that  the diameter of the symplectomorphism group is infinite. But  
our est imate itself is not covered by the results of [E1R]. 

We use this est imate to construct a non-attainable diffeomorphism in 
the 2-dimensional case. 

It was proved in [$2] that  if u > 3, then each ~ E ~ is at tainable,  i.e. 
there exists a flow ~t, connecting Id and ~, such that  J{~t }0 ~ < or Here we 
show that  for u = 2 it is not true. 

The next application of GF is a simpler and more transparent  proof than 
in [S1], that  if u > 3 there exists ~ E 9 such that min J{~t}01 is not achieved 
among the smooth  paths ~t, connecting Id and ~. 
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The last application of the Approximation Theorem is a simple proof 
of existence of conjugate points on the geodesics in D(G), if d imG > 3. 
Recently, G. Misiolek ([Mi D proved that  in the group of area preserving 
diffeomorphisms of a 2-dimensional torus there exist both geodesics, carry- 
ing conjugate points, and geodesics without conjugate points. (It is very 
likely that  this assertion is true for all compact 2-dimensional manifolds 
and bounded 2-dimensional domains.) If the dimension v > 3, then the 
conjugate points are indispensible for each sufficiently long geodesic line. 
However, the nature of conjugate points and the proof of their existence in 
2 and 3-dimensional cases are quite different and have in fact nothing in 
common. 

Note that  although this work improves the results of [S1], it is based on 
the technical theorems contained in IS1]. 

It should be noted, that  there exist a number of results concerning the 
structure of completions of configuration space D. To each diffeomorphism 

E D we may put  in correspondence an operator T~ in L2(/)) : T~u(x) -- 
u(~(x)). Thus we obtain a representation T of the group D in the group U 
of unitary operators in L2(G). Let Tv be the image of/9. Elements of the 
closure of this group are "generalized configurations" of the fluid. 

Closure of Tv in the norm topology coincides with T~), because 
lIT e - T,[[ = 2, if ( r y. 

Closure of Tv in the strong operator topology is the semigroup S mes(G) 
of operators T I : u(x) --} u(f(x)), where f : G ~ G is a measurable and 
measure preserving mapping (i.e. m e s f  - I (A)  = mesA for each measurable 
set A C a ) .  This was proved in [BFR], [A], [Mo21. 

Instead of the strong topology, we may introduce a distance dist (see 
above) and ask, what is the completion D o f / )  as a metric space with this 
distance. It was proved in [S1], that if the dimension v > 3, then this 
completion coincides with S m e s G ,  and if v = 2, then D and S m e s G  are 
different (in fact, the nature of D, if v = 2, is still unclear). 

Next, if we consider the closure of Tv in the weak operator topology, 
then we shall arrive at the semigroup of bistochastic operators, or, in the 
terminology of A.M. Vershik, polimorphisms. These are operators in L2(G) 
of the form Ku(x) = fa g(x,y)u(y)du, where the Kernel K(x, y) possesses 
the following properties: 

(i) g(x ,  y) > 0 (i.e. I( is a positive measure in G x G); 

(ii) / . .  g(x,y,)dx - 1; 

/~ K(x,y)dy = (iii) 1. 

See [V], for a detailed description of the operators. Bistochastic operators 
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were used by Y. Brenier in his works [Brl], [Br2], about the existence of 
minimizing generalized flows. They were the main tool in the work [$3], 
concerning existence and properties of the stationary flows in 2-dimensional 
domains. 

Embedding of an infinite-dimensional group into some "enveloping" semi- 
group is a powerful method in representation theory; see, for example [N] 
and the references there. 
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1. P r o o f  of  t he  A p p r o x i m a t i o n  T h e o r e m  

Given a GF p, connecting Id and (, we shall construct a sequence (k,t of 
smooth flows, connecting Id and (, and such that #ek,, --* # w e a k . ,  and 
J{(k4}01 ~ J{p}01. Our construction consists of a number of steps. On 
each step we introduce a new type of GF, and prove that these GF may 
approximate each GF introduced in the previous step. On the last step the 
smooth flows appear. It is evident that this implies that the smooth flows 
approximate the generic GF. 

Step  1. Given ~ > 0, let us define the following transformation f~ of the 
space C(0, 1; K): 

x(t//(1--E)) , O < t < l - - c  
x ( t ) - - ~ f ~ x ( t ) =  x(1) ,  1 - ~ < t < l .  

It is clear that f~ is measurable and transforms each GF # into some other 
GF f~ (it). 

LEMMA 1.1. I f  r ---+ O, then f~it --. It weak �9 and J{ f~#}  ---+ J{#}. 

Proof: For each 5>0 there is a constant A>0 such that f~t' {x[ IlXllH'(O,x;g) > 
1 Thesetl3A = {x E~I[[xl[H, < A} iseompact A } < 5 ,  forallE, 0 < r  ~. 

in fL Using the Stone-Weierstrass theorem, we see that the fimctionals of 
the form 

r 1 6 2  ..... t ~ ( x ( t , ) , . . . , x ( t N ) )  (1.1) 
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are dense in C(/SA). Hence, it is sufficient to prove that  

for each bounded functional r having the form (1.1). But 

f ~){x(t)}fe#{dx} = f~a-]-~\j3a ; 

the second integral is less than 5, while the first tends to fflA r 
because of the equicontinuity of the family/~Z. 

The second assertion of the lemma follows from the equality 

J { f , , }  = (1 - e ) - l J { p }  . [] 

So, we may confine ourselves to GF #, such that  for # - almost all 
trajectories x(t), x(t) = const for 1 - g < t < 1. 

Likewise, we may approximate the GF p by GF #', such tha t  it is im- 
mobile near OK; this means that  if x(0) is in the e-neighbourhood of OK, 
then x(t) - x(O). 

S t e p  2. Given a GF p, let us choose trajectories Xl( t ) ,X2( t ) , . . .  inde- 
pendently, with the same probability distribution tt{dx}. The measures 

P 

k = l  
k" 

converge weakly to the measure # with probability 1. This implies that  
these GF are asymptotically incompressible with probability 1. 

Suppose that  this is true for our sequence xl(t),xe(t),  .... Moreover, 
suppose that  

g{,.} --. j{ ,}  oo); 

this is also true with probability 1. 

Thus we have approximated our measure p by the measures Pn, concen- 
trated on a finite number of trajectories. 
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(i) 

wh ere 

S t e p  3. Now we shall approximate  the GF ~u by smooth multiflows. We 
shall give the Eulerian and Lagrangian descriptions of a multiflow. 

DEFINITION 1.1 (Eulerian definition of a multiflow). A smooth multinow of 
order N is a collection of smooth functions pl (x, t), . . . , pg(x ,  t) and smooth 
vector fields V l ( X , t ) , . . .  , v g ( x , t ) ,  x E K ,  0 < t < 1, such that 

(i) EN=, pi(x , t )  --  1; 

(ii) ~ + div(plvi) - O; 
(iii) the fields vi are tangent to OK. 

To define the Lagrangian multiflow, consider N copies of K 1 , . . . ,  KN of 
K; let ai(x) be smooth  non-negative functions in Ki (density functions). 
Consider N t ime-dependent  diffeomorphisms Yi,t : Ki ---* K (i -- 1 , . . .  ,N) ,  
0 < t < l .  

DEFINITION 1.2 (Lagrangian definition of a multiflow). A collection M = 
{al,. . . ,  aN; VIi,t , . . . ,  rig,t} is called a (Lagrangian) multiflow, if  

N 

~ - ~ p i ( x , t ) -  1 in K,  
i----1 

, , (x, t)=a(,;x(x)) .  ox 

is the density of the i-th phase; 
(ii) for each i <_ N,  and each xi E Ki,  

r ] i , l ( X i )  = ~ 0 ~]i,o(Xi) , 

where ( E / ) ( K )  is a given diffeomorphism. 

(ii) means tha t  the multiflow .A4 connects Id and ~. 
Given a multiflow ~ I ,  we may define corresponding GF p ~  in the fol- 

lowing way: if A4 = { a l , . . . , a N ; Y l # , . . . , ~ N , ~ } ,  r G C(~) ,  then  

N 

Given a GF p, we shall approximate  it by a multiflow. This  means  tha t  we 
construct  the sequence of multiflows 

M ~k) {a~ , . .  k k k 
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such tha t  for each function r  , XN) C= C ( K  N) and for each sequence 
O < tl < t2 < . . .  < tN g 1, 

f ~)(X(tl),...,X(tN))IZM(~){dx } --* f ( ~ ( X ( t l ) ' ' "  . ,x(tN))lz{dx} �9 

(This is sufficient for the weak �9 convergence.) 
Let us choose the trajectories x l ( t ) , . . . , x k ( t )  as described in Step 2. 

Let qo(x) = qo([x[) e C~~ ~(x) > 0, ~(x) = 0 for [x[ > 1, and 

f qa(x)dx = 1. We may define a sequence of multiflows ~ k  = (alk,. . .  ' a~; r/lk,t,. 
where 

a k ( x ) =  1 ( x - ~ i ( O ) )  
~-/;e~ ~ 

if dist(xi(0),  OK) > e, and 

a~(x) - - - -1  E ( x - T x i ( O ) )  
key (P ~ ' 

"rEF 

if dist(xi(O),OK) < ~, where F is the discrete group of mot ions  in R ~, 
generated by the reflections in the faces of K. The  mappings  rhk, t are of the 
form ~/ik, t (x) = x i (t) %- (x - x i (0)). Here we assume tha t  r is sufficiently small, 
so tha t  the initial GF p (obtained in Step 1) is fixed in the 2c-neighbourhood 
of OK. 

The  multiflow ~ k  is not volume-preserving, and it does not,  in general, 
satisfy the boundary  condition r/i,l(X) = ( .  r/i,0(x). To improve it, let us 
choose a flow ~t C D, 0 < t < 1, ~0 = Id, ~1 = ~, and put  

~]ki,t(X ) --~ 23i(t ) %- ~t(x) -- ~t (xi(O) ) �9 

This  choice of mappings  r/ik, t ensures the boundary  conditions rhk,1 = ~ o k rli,0" 
But  it is still not  quite incompressible. We  improve it, mul t ip lying by a 
suitable mapping  ( k :  K --* K.  Let pk(x, t )  = E~=X aiQlkt ' (x)). 

LEMMA 1.2. I l k  ---* oo, then with probability 1 
(1) sup~,,[pk(x,t)  - 1[---* 0 ,  

0 ~ k'x 0) (2) sup=,, =p k ,t)l --. 0 ,  (l~l > 

(3) fK f~ IO'pk(x't)l 2dxdt  --* O . 
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Proof: Note that  Epk(x,  t) =_ 1, where E is the mean value with respect to 
the probabil i ty distribution p | . . .  | ~. From the definition of pk we see 

Y 
k t i m e s  

that  IO~pkl < Ca for all c~. From the Large Numbers  Law we see that  for 
every point (x, t), Prob{O~p(x, t) --* 0} = 1. But  ]O~p I <_ Ca for all a ,  
J-I > 0. 

Moreover, 
0 I <_ Co l (.)l . 

and, therefore, we may choose a finite set of points (xj ,  tj), dense enough 
in K x [0, 1]; at each point of this set with probabili ty 1, p ---* 1, and 

O2p --* O. If Ip(x, t2) - p(x, ti)l > a, the action J > c .  ae ~. V~L-]' hence, 

a < cJIt 2 - t l l ~  - v - 2 .  This means that  if we take the t ime moments  0 
tl < . . .  < tM _< 1 such that ti+l - ti < c a j - l g  ~+2, and a finite number of 
points (x j, ti), such that the distance between each point x and the closest 
point xj is less than c .  a �9 e - u - i ,  and the sequence of the paths xi(t) is 

typical, i.e. limN_..~ ~ ~'~pN__l pp(xj,t i)  = 1, then I p ( x , t ) -  11 < a for all x, t .  
A similar reasoning proves (2). 

To prove (3), note that  uj(x , t )  = opj(~,0 are L2-functions, chosen in- 
0 t  

dependent ly and with the same distribution, EHujll 2 < oc, Eu j  = O. If 
_- 1 k 

u(k) ~ = k ~-~j=i uj, then 

Ellu(~)ll2 = E ~ = 
j=l 

k 
1 1 

= k- ~ ~ EIlu~ll 2 + ~ ~ E(ui, u s) = 
j----1 i~ j  

= �88 2 , 

for ui, u j are independent, and hence E(ui ,u j )  = (u i ,Euj )  = 0. By the 
Large Numbers  Law, Ilu(k)ll 2 , 0 with probabil i ty 1. This proves (3). 

Now we must  construct a correcting flow ~ ,  such that  the multiflow 
k A4 = { a l , . . . ,  ak; ~ o q~, t , . . . ,  ~ o Yk,t} is incompressible. This means that  

I ~ 1  = p(x,t) ,  where p = pk. We have just  proved that  p is close to 1 
with all derivatives, if k is large enough. This is a problem solved in the 
most  general case by J. Moser ([E1R]), but  here we use a much simpler and 
more explicit approach. Let us describe it for the case v = 2. Let us choose 
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t-~r 1 11 a function 7(~) �9 ~o ~-~,~, ;(~) > 0. Let g(u,~;x) = U+~" 7(~). Let 
1 1 p(x) be a density in the square g 2 { - -  ~ < Xi < ~ } close enough to 1 

with its derivatives up to order d. 
To construct the mapping (, we choose the function s(x~), so that  

1 + B ( X 2 , $ ( X 2 ) , X l  ) d x  I __ d x  I p ( X l , X t 2 ) d x t  2 ; 
�89 

this relation determines s(z2) uniquely, and s(x2) is close to 0 (with deriva- 
tives), if p(x~,x2) is close to 1. Now, let us define the mapping ( in the 
form r  = (u1,~2); y2 = g(x=, ~(~=),u~); 

Yl 

f ~ p ( x ,  x2)dx= /~�89 ( l + 7 ( x ) ~ ) d x  . 

This relation just means that  the mapping ~ trunsforms the measure 
pdxl dx2 into dyl dy2. It is easy to see that  

OqtOx Id u:cOP [ sup - < C s u p  -N'Z , 
x E K  

K Or h ]2 dx < 2 -571 - Csup(p-~)" /u ]~ d x  , 

and by Lemma 1.2, with probability 1 

. ,  . . . ,  o ~ , , } - ~ g { ~ } .  

Thus, we constructed the sequence of incompressible multiflows ~4 k, con- 
necting Id and ~, such that  #M~ ~ #, and J{.~Ik}01 ---* j{p}l.  
S t e p  4. Now we shall approximate a multiflow A4 by smooth flows. This 
in turn requires a number of steps. 

Given a multiflow .h/I, we shall construct a sequence of smooth flows 
Ori,t C 7 ) ,  o ' i ,0  = Id, h i , 1  = ~ ,  such that  p~., ~ #~ weak *. 

Let us fix some multiflow 2~4 = ( a t ( x ) , . . . ,  ap(x); ~ l , , (x) , . . . ,~pa(x)) ;  
a - 1  

- - '  F-,i=l i(~i,t (y)) lO~-l(y)/Oyl-  1. ai �9 C~176 ~i,t : Ki K, and P 

S t e p  4.1. We may assume that  ap(X, t) = 1; otherwise we may con- 
struct a new multiflow 

.A~! I I . I ! = {hi, .  , ,~,,+~,,} �9 . a p + l ,  . . .  , 

where a~(x) = p-2~lai(x), ~,t = ~i,t (1 _< i < p), a~+l(X ) =- p+11, ~+ l , t  = ~t, 
where ~t C D is some fixed flow, connecting Id and ~. 

I f p  --* cx), .s is asymptotically weakly close to ,4/[. 

S t e p  4.2. On this step, we shall represent a multiflow .A4 as a compo- 
sition of 2-flows (i.e. multiflows with p = 2). 
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DEFINITION: Let 

3 4  = ( a l , . . .  , ap; ~ l , t , . . ' ,  ~p, t )  , 

M I = ( b l , .  � 9  bq; I ] 1 , % . . .  , f]q,t) 

be two multiflows such tha t  ap(x)  - ap = const > 0. Then  the  multif low 
3 4 "  = 34 �9 34 ' ,  the composi t ion of 34 and  34 '  is defined as follows: 

3 4 , t  = ( C l , . . . , C p + q _ l ; ~ l , t , . . . , ~ p + q _ l , t )  , 

where 
Cl = a l , . . . ~ C p - - I  = a p - 1  

cp = a p .  b l , C p +  1 -= a p .  b 2 , . . .  ,Cp-t-q-1 = a p .  bq ; 

~l , t  = ~ l , / , - . . , ~ p - l , t  = ~ p - l , t  ; 

~p,t -~- ~p,t o t]l,t , . . . , ~pq.q_ l ,t = ~p,! o ~]q,t 

Our next  step is representing the multiflow st4 = ( a l , . . . , a p ; ( [ , . . . , ( ~ ) ,  
where ap = 1, as a composi t ion of ( p -  1) 2-flows 34i  = (a ib i ; r l i , t ,  ffi,t), 

_ i w h e r e  b i ( x )  =_ bi - T-~-f" 

So we are looking for 2-flows, 34i ,  such tha t  

This means  t ha t  

(where bi = i ~  ) 

34 = 3 4 1 ,  ( 3 4 2 ,  ( . . . ,  ) ; 

a l ( x  ) = a l ( x )  , 

a2(x) = b l ( x )a2 (x )  = b la2(x )  , 

aa(x)  = blb2a3(x)  , 

ap(X) = b l b 2 . . . b p - 1  , 

The densit ies a i ( x )  = a,(x) In order to find rl~ , ~[, let us first set 
b l ' . . . ' b i - i  " 

q I = ~l,t. Then  we find a flow (t ~ such tha t  34 1 is an incompressible 2-flow, 
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i.e. r ) + r/1 t*(aldx) = dx. This  is a p rob lem of Moser  type.  After  
solving it (for example ,  in an explicit  way, as above,  in L e m m a  1.2), we 
ob ta in  a flow Ct 1, s m o o t h  in t. Now, set rh z = (r  o ~2,t, and  find r 
sat isfying relat ion Ct 2. (b2dx) + r/zt* (a2dx) = dx, once more  using L e m m a  1.2; 
etc. 

After  (p - 1) s teps we shall ob ta in  the  desired represen ta t ion  of a mul- 
tiflow M as a compos i t ion  of 2-flows M i, i = 1 , . . .  ,p  - 1. All 2-flows M i 
are smoo th  in x, t, if M is, and satisfy the  b o u n d a r y  condi t ions  

r/l  =  or/0  ; 

=r162 ; 

r 1 6 2  ( i = 2 , . . . , p - 1 ) ;  

S t e p  5. Given an incompress ible  2-flow 2,4 = (a(x), b(x); r/t, Ct), such tha t  
r/1 = ~ o r/0, r = ( o r we shall cons t ruc t  a s m o o t h  flow at ,  approx imat ing  
it in a weak sense together  wi th  the act ion and such tha t  a0 = Id, ax = (. 

Suppose  tha t  b(x) = b = c o n s t ,  a(x) E C ~ ( K ) ,  fK a(x)dx = 1 - b, and 
~s--I r/t (a dx) + r ' (bdx)  = dx. Let  p(x, t)dx *-' = r / t  ( a d z ) ,  ( 1 - p ( x , t ) ) d x =  

r (b dx). 
These  are the  densit ies of the  1st and 2nd phases.  Let  v(x, t )--0t  o r/i -1 (x), 

w(x,  t) = ~t o r (x) be  the  veloci ty fields of the  phases,  so tha t  div(pv)  + 
div(1 - p)w = 0, and p = 0 in some ne ighbourhood  of OK. 

The  first subs tep  is the const ruct ion  of a discont inuous flow in K ,  ap- 
p rox imat ing  2-flow .M together  with the  action.  

S t e p  5.1.  Let  u(x , t )  = pv(x, t )  + (1 - p)w(x , t )  be the m e a n  veloci ty  
field. It  is incompress ib le  and vanishes in t h e  ne ighbourhood  of OK. Let 
~t be  the  flow genera ted  by  the field u(x, t), ~0 = Id. Then  for the  2-flow 

: - - 1  ~ - - i  .A,4' = (a, b; ~t or/t,~t oct)  the  mean  veloci ty field u = 0; if we approx ima te  

' the  flow ~t o a', = at will app rox ima te  2-flow M .  ,s by  the s m o o t h  flow at ,  
So it is sufficient to consider  the  2-flows with the  mean  veloci ty  equal  to 
0. Thus  we have excluded the  mean  mot ion.  Expl ic i t ly  this means  tha t  
pv + (1  - p ) w  -- 0; w = - 

S t e p  5.2.  Let  us divide the  t ime interval T : 0 < t < 1 into N equal  
i-1 < t < i (i = 1,. N) .  Consider  a modif ied vector  subintervals  Ti : ~ -~ . . ,  

field vN(x , t )  = v(x ,~R!) ,  if ~ _< t < ~ .  This  is a piecewise s m o o t h  
vec tor  field, diScontinuous in t. Let pN(x, t) be  the solut ion of the  mass  
conservat ion  equa t ion  

Op N 
O---i- "4- div(pN v N) = 0 
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p (x, o) = p(., o) .  

It is easy to see t h a t  pN(x, t) --, p(x, t) uniformly together with all deriva- 
tives in x, when N ~ cr 

N N Let w N = -l_-e_--~ov ; l e t  r/N, ~N be the flows satisfying the equations 

vN(t,C(x)) 
o t  = ' o------i- - 

with the initial conditions yN(x) _= yo(X), ~N(x) -- ~(x). Then .~,4 N = 
(a,b; N N rh , ~t ) is an incompressible 2-flow, and .hA g approximates 2k4 weakly, 
when N --+ oc. 

S t e p  5.3. Now we introduce the notion of a sand-like domain. 
Let C > 2, 1 > r > 0, H > 1 be fixed (in what  follows, r will be small 

and H large). Consider a cubic lattice 121 in K with mesh size C �9 r; let 111 
be the union of the balls of radius rl = r with centers at the points of the 
lattice 121, contained entirely in K. These (disjoint) balls we shall call the 
balls of the first generation. 

Let 122 be the cubic lattice with mesh size C.H-1;  denote by/-/2 the union 
of the balls with the centers in the points of 122, having radius r 2 = r .  H - 1 ,  

contained entirely in K and such that the distance between each ball of 1t2 
and each ball of Ul is more than r2 (these balls are called the balls of the 
2nd generation). Proceeding in the same manner, we obtain the domains 
113,...,11n, consisting of the balls of 3 r d , . . . ,  n-th generations. 

Le t /4  = 111 U . . .  t.J11n. Its volume is more than 1 - (1 - a  + e)n-1,  where 
c~ = (Cr)-~.  (volume of the ball of radius r) < 1, and e --* 0, when H ~ oo. 

Hence, choosing n sufficiently large, we may reach the volume of /4  ar- 
bitrarily close to 1. 11 may be called a sand-like domain. 

S t e p  5.4. Now, we turn to the approximation of a 2-flow by a discon- 
tinuous flow, which is a preliminary step in approximating it by a smooth 
flow. We shall divide K into 2 domains with piecewise-smooth boundary,  
R(t) and S(t) = K \ R ( t ) .  These domains depend on t, and they bear  2 
phases of the discontinuous flow, approximating the 2-flow. We are work- 
ing on the t ime interval Ii; hence, the vector field vg(x ,  t) = v(x, ti-1) is 

constant in time and wN(x,  t) = -- p(=,t) vN(x, t) has a constant  direction. 1-p(~,t) 
Let us define the domain R at the t ime moment  t = ti-1. Let us divide K 
into 3 sets K = Ko U K1 U K2; 

K o  = {xlv(x, ti-1)=0} ; 

K1 = {x [0  < Iv(x, ti_l)[ < 6} ; 

K2 = K x ( K 0  U K1) �9 
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If mesK0 -- 0, we set Rti_l n (K0 U K1) -- 0. Otherwise, we choose some 
61, 0 < 61 < 6, and set K~ = {x I Iv(x, ti-1)l < 61}. Then we take 

Rt,_l N (gl",K'0) = 0. Let us describe Rt,_l N g~. Let p(x, ti-1) be the 
density of the 1st phase at the moment  ti-1. Density is bounded off from 
1: p(x, t) < p0 < 1. Let us construct a sand-like domain H in K~ with 
parameters  r, H, C, so that  r is small enough. Then the finite number 
of generations (say, n) is enough for the average density pl o f / 4  to be 
more than p0. T h e n / ~  N K~ is a union of a finite number of disjoint balls, 

L( N K~ = uM1 B(xi,  ri) with the center at the point zi and radius ri. Let 

R = uiM=I B(xi,/~iri), where Hi = ( ee~-d)l/". If the radius r of the balls 

of the first generation tends to O, the function Xu(x) --* p(x) weakly in 
L~(K~).  

Now let us consider the domain I(2, where lvN[ • 6. The whole of this 
domain is foliated into the integral curves of the field vN; there they have 
bounded curvature, and all their derivatives are bounded too. Consider 
one ball, call it B, of the sand-like domain/4 .  Let us perform a volume- 
preserving change of coordinates in the neighbourhood of B (its radius is 
small compared to the inverse of the curvature of stream-lines), so that  the 
stream-lines in these coordinates become parallel straight lines. If these 
coordinates are (ya , . . . , y~ )  = (y',y~), the equations of the stream-lines 
have the form y' = const. But the field v N is not constant and, in the new 
coordinates, has the form v = b(y) o-~. " . Domain B in the new coordinates 
is close to the ball; anyway, it is strictly convex. Let us divide B by vertical 
planes into rectangular bars (for simplicity we confine ourselves to the case 
u = 3; the case u > 3 is considered similarly). The size of these bars is small 
enough. Call them Bij. Let us divide each bar Bij into two by the surface 
Fij : Xl = g(x2, x3). At the instant ti-1, this surface is a plane, parallel to 
the (x2, x3)-plane, cutt ing a sub-bar B + from the bar Bij, such that  the 

volume of B + = p(xo)vol(Bij) (here x0 is the center of the ball B).  

Note: Instead of the bar Bij NB  with curved upper and lower surfaces, we 
consider the "rectangular" bar, so that  the domain B becomes "steppy". 
The width d of the bars Bij is small enough. (We are not bounded by 
anything in choosing the small parameters.)  Let us cut the bars Bij by 
vertical planes, parallel to xl - x3 planes, and let us work in these planes. 
Let (Xl,X2) --~(~1,~2) be the left side of this section. In the subdomain 
Bi +, consider a vector field V of the form (A(x3 , t ) ( x l -51) ,  0, b(~1,~2, x3)), 
where A(x3, t) is chosen in such a manner  that  the field V is solenoidal (we 
define V simultaneously and independently in all the sections of Bij, for all 
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Bij and all the balls of our sand-like domain). This means that  

Ob 
oX3 4- A(x3) = 0 .  

In the complementary subdomain B~,  we define a vector field W such that  
entire s tream through each horizontal section of Bij is zero. The best way 
to do it is to use the stream function. If r x3) is the s t ream function of 
the flow in Bi +, then r = const (we may set if 0) on the left side of B'+',3 ' and 

is linear along each horizontal section of B + . Let us continue it linearly with 

respect to Xl in B~,  so that  it vanishes on the right side of B~.  To define 
the flow at all points, we continue it piecewise-linearly in the triangles with 
the base on the ends of Bij and height equal to the base; thus the flow is 
defined in the plane section of Bij, with added triangles in the same plane. 
Now, let us do it in all the sections of Bij, for all i,j, corresponding to one 
ball B, and for all the balls of our sand-like domain/t/.  Outs ide  the union of 
these polygons, set the fields V and W identically zero. Let us choose the 
width of the bars Bij so small that  the added triang!cs do not intersect other 
balls of the domain U. Now, set R = (J B +, where the union i is taken over 
all balls of the domain/4,  all bars Bij and all sections of these bars, parallel 
to the coordinate plane (Xl, x3) (in the local coordinate system, consistent 
with the field vN). 

The domain R depends on t, for it is approximately transported by the 
field v N. Choosing the width of Bij sufficiently small, we arrive at the 
flow in R that  has the velocity field V, arbitrarily close to vN(x,t). The 
longitudinal component of V is the same as that  for v N, and the transverse 
component may  be done arbitrarily small. R is invariant under the flow with 
the velocity field V. So the 1st phase (contained in R) moves arbitrarily 
close to the 1st phase of 2-flow 34 (on the time interval (ti-1, ti)). To prove 
the similar result for the domain St = K',(Rt U Ko U K1), observe that  St 
may be decomposed into 2 domains, St = Sl,t U S2,t such that  rues S2,t < 61 
(and 61 may  be done arbitrarily small), IW-wl  < 62 on S,,t and Iwl < C on 
S2,t, where 61,62 may be done arbitrarily small, choosing parameters  of our 
construction, and C does not depend on these parameters.  The measure 
of points x in S, moving with speed W, such that  they spend a total time 
r from the time interval [ti-1, ti] in S 2 , t ,  is no t  more than 61 �9 ti-ti-l~_ If 

,~1/2 then T------  1 , 
_ _ ~ 1 / 2  

m e s ~  < (ti t i - 1 ) ' v  1 , 

where 

~i2= {zeS t ,_ ,  Imes{te[ t i_ l , t i ] lZt(x)  eS2} > ' 1  } '  
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and Zt : St,_~ ---* St is the flow defined by the velocity field W for t i _  1 < 

t < t i .  
On the set Zt(E~) the speed W is bounded by some constant C. If 

�9 : _ , g l / 2  X ~ ~"]~] Sti_lXE~, then, for all t E [ t i _ l ,  ti] but  the set of measure < "1 , 

i w ( z t ( x ) , t  ) _ ( z , ( x ) , t ) l  < 

and W is bounded by C for all t. Hence, if Ct is the flow of the second phase 
of the initial 2-flow and x E El ,  then 

Ir 0r -1 ( x ) -  Zt(x) I < q 2(t,- 
~ i - - I  - -  " 

Thus for all the points of S but  the set of the measure < C ~ / 2 ( t i  - t i -1 ) ,  
the deviation of the motion Zt (with the field W) from the motion Ct (with 

the field w W) is less than C(62 + 6~/2), and ~1,62 may be done arbitrarily 
small by the choice of the parameters of construction. 

S t e p  5.5. We constructed some discontinuous flow on the time interval 
[ti-1, ti] (i = 1 , . . . ,  n); this flow simulates a 2-flow .A//on this interval. Now 
let us construct an intermediate flow connecting that on the time intervals 
[ti-1, ti] and [ti, ti+~]. Let r be small enough to compare with ti - t i-1,  
and stop the previous flow at the moment  ti - 7-. If the flow is immobile 
on each interval [ti - T, ti], then for T --* 0 it will tend to the flow with 
r = 0. So take 7- small enough and let us define a reconstruction, i.e. 
a discontinuous flow g)~ on the time interval [ti - T, ti], transferring the 
domains R t i - r ,  S t i - r  into R q ,  Sti. To do this, let us divide K into small 
equal cubes K (/) of size L Let us construct domains Rt~, Sty, serving the 
flow for ti <_ t < ti+l - 7-, as described above, and in such a manner that 
mes(Rq n K(J)) = mes(Rt~_r n K(J)) (i.e. the volume of the 1st and 2nd 
phases in each cube K (i) are invariant during the reconstruction). Now 
let us construct a discontinuous flow in all the cubes / ( ( J )  (separately and 
independently in each), so that  to transfer all of the 1st phase into the new 
position. 

Let us divide each cube K (j) into M "  equal cubes n; call the cube tr 
black, if it is entirely contained in Rt~-r.  The volume occupied by the black 
cubes in K (j) tends to vol(Rt~_~ N K(J)) when M ---* cx~. Let us define 
the black cubes for the new domain Rt~. Suppose that  the numbers of the 
black cubes in 'Rt~-~ n K (j) and in Rt~ n K (j) are equal; otherwise take 
the least of them and denote it by p. Take p black cubes from the domain 
Rt~-r  O K(J); there exists some permutat ion ~(J) of all the cubes ~ in K(J), 
transferring these black cubes into p cubes, contained in Rt~ n K (j). As was 
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proved in IS1], there exists a piecewise-smooth flow Ct in K ,  t i - l r  < t < ti, 
Ct~-~ = Id, Ct~lgo ) = ~(J), Ct is smooth in each small cube n, and the 
length of this flow is not more than C �9 g (where g is the size of the cubes 
g(5)). 

Let us organize this flow simultaneously and independently in all cubes 
K (j). Then the action of this flow t~ J { r  <- C~2 /7 ,  and may be done 
arbitrarily small by the appropriate choice of L For M sufficiently large, the 
measure of the set of points x E R( t i  - T), such that  their images after r 
are contained in R(t i ) ,  may be done arbitrarily close to m e s R ( t i ) .  After 
this permutat ion �9 we divide K once more into domains R(t i )  and S(t i ) ,  
as described above; most of R(t i )  consists of the pieces of R(t i  - r). After 
this the reconstruction is over, and we proceed as above. The flows ZI 
for ti-1 <_ t < ti - r, and the flows Ct, ti - r < t <_ ti (i = 1 , . . . , N ) ,  
form together a discontinuous flow Xt : K ---* K ,  0 _< t < 1, X0 = Id. 
K is divided into 2 domains, R0 and So, trajectories )It(x) of most points 
x E R0 are close (in H 1) to the trajectories ~t(x) of the points of the first 
component of the 2-flow ./P[; trajectories of the points of So are Hi-close 
to the trajectories 41 (x) of the points of the second component  of .s The 
points of K,  for which this is not true, form a set of small measure and 
the actions of trajectories of all such points are bounded. The measure of 
such an exclusive set, and the distance in H 1 between trajectories Xt(X) and 
yt(x) ,  or ~t(x), may be done arbitrarily small by choosing the parameters 
of construction. 

S t e p  5.6. Now we shall construct a smooth flow, approximating a 
discontinuous flow Xt. Let z(x ,  t) = )~ o X~ -1 (x) be an Eulerian velocity field 
of discontinuous flow Xt. Let us choose a function p(x) = p(IxD E C ~ ,  
such that  ~(x) _> 0, ~(x) = 0, if Ixl > 1 and f ~ ( x )dx  = 1. Let z~(x, t )  be 
a smoothed velocity field: 

= f -  )dy, 

where ~ ( x )  ~ ~ 7)" 
Let X~ be a flow in K generated by the vector field z~(x, t). I fc  ---* 0, then 

z~ ~ z in C ~ in each domain where z is smooth. The field z transports its 
smoothness; i.e. for almost all x E K ,  z(x ,  t) is smooth in the neighbourhood 
of its t ra jectory (Xt(x),  t) (0 < t < 1). Therefore, for each 5 > 0, 

l i m m e s { x  E h" I Ix,(x)- O < t < l }  = 1 
e--'*O ' ' 

and I~(x) l  < C, I~,(x)l < c for all x. Hence, X~ also approximates the 
2-flow A4 together with J.  
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S t e p  6. Now we shall approximate the generic multiflow 34 = ( a l , . . . ,  ap; 
(1 , t , . . . ,  (p,t) by a smooth flow, using representation of 34 as a composition 
of 2-flows. 

We shall construct this approximation inductively. Assume that  for 
each p-flow 34 = ( ax , . . . ,  ap; ~ l , t , . . . ,  ~p,t) we can construct a smooth flow 
Ct C D, approximating it in weak �9 topology together with J.  

Let 34 '  = 34 * st4P where 34P = (ap, bp; rh p, (~) is a smooth 2-flow. Let 
X~ be a smooth flow, approximating the 2-flow 34P, constructed in Step 5. 
Then the flow 34! may be approximated by the p-flows of the form 

3 4 "  = o x f )  �9 

This is a smooth p-flow, which, by the inductive assumption, may be ap- 
proximated by the smooth flow Ct. But each (p+ 1) flow may be represented 
as a composition of a p-flow and a 2-flow, as was proved above. So, each 
multiflow may be approximated by (a sequence of) the smooth flows in K. 

S t e p  7. We started our construction from the approximation of a given 
GF r connecting Id and (, by a GF pi connecting Id and ~, such that  
#i-almost all trajectories x(t) are t- independent for 1 - i-1 _< t ._<. 1. 

~ z , 2  In Steps 2-6 we have constructed a sequence of smooth flows ~'t , approx- 
imating GF p / t oge the r  with J and t-independent for q - i -x < t < 1. But 

~l,i,f- these flows do not, in general, satisfy the boundary condition: ~x-i-~ ~ (" 

LEMMA 1.3. I/'@~ 'j is a sequence of smooth incompressible flows in K (j = 
#i weak *, then 'a ~ ~ in L2(K, R~). 

�9 . - ' ~ / ~ 1 _ i _ 1  j _ _ ~  
1, 2, .), such that l%~,, j _ ~  

Proof: Consider the function 

f { x ( t ) }  = [r - x ( t  - < 1 ) 1 2  

For the GF #/, f f { x } # i { d x }  = 0, because GF pi satisfies the boundary 
condition. By the definition of weak .-convergence, 

"r 1 _ i - 1  I1"~ 1 _ i - 1  j _ . . ~  

ij If I[r - ~[[L, = 6y and v > 3, it was proved in [S1] that  

�9 i,j 
dastv(gv)(r  ~) _< C6~ , 

where C > 0, a > 0 depend on!y on u. Therefore , there exists a path r 
1 ~2,s2~. i; thus, 1 - i - 1  < t < 1, such that  r ~ = ~, a n d  J { r  _< ~ v  vj 
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if ~j . ~ 0, the sequence of the smooth flows r satisfies the boundary 
3 - - *  o O  

�9 . I / )  �9 . 

conditions r 5 = Id, r = (, #0~,~ , #~, and 

j{r ~ j { # i } l  (j ---+ oc) . 

GF p~, in its turn, approximates GF # together with the action. Thus 
the Approximation Theorem is proved. 

2. A p p l i c a t i o n s  o f  t h e  A p p r o x i m a t i o n  T h e o r e m  

2.1 E s t i m a t e  o f  D i s t a n c e s  in  :D. The Approximation Theorem makes 
evident the following assertion. 

LEMMA 2.1. IEu > 3, then t'or each ~ E / )  dist(Id,~) = inf(2- j{~}1)1/2, 
where inf is taken over all GF/L, connecting Id and ~. 

In fact, for each GF p, connecting Id and (, there exists a sequence of 
W *  smooth flows (~, connecting Id and ( and such that #e, , #, j{(~}l  __~ 

J{~u}01. But L{~}01 < (2J{~}01) 1/2, and the equality may be attained after 
some change of variable t. 

Our first result, concerning the geometry o f / ) ( K  ~) = / ) ,  is the following. 

T H E O R E M  2.1.  I[  v >_ 3, and K"  is a unit u-dim cube, then 

diam :D _< 2 V ~  

Proof: Our construction is almost identical to that  of Brenier [Brl], who 
proved that  all fluid configurations on the torus are attainable by GF. For 
each ~ E / ) ,  we construct a GF #, connecting Id and ~, such that  J{/~}0 ~ = 
2v.  -5-, then our main theorem states that  for each c > 0 there exists a smooth 
flow at, connecting Id and ~, and such that J{a t}  1 < ~ + 6. After some 

reparametrization of at, L{at}  <_ V/-~ + 2~; this just means that  diam:D _~ 

2V/-~-. Suppose that the cube K is defined as follows: 

1 V} I ,1< i =  1 , . . . ,  . 

Let F be a discrete group of motions of R",  generated by the reflections 
in the faces of K. For each y E K, v E K, we define a path xy,,(t) C K,  
0 < t <  1- 

2" 
= + 4tv) n I,: .  
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This is a billiard t rajectory in K. The mapping Cy: v --* xy,,( �89 is a 2"-fold 
covering of K,  and Cv is volume-preserving. Let Ky, K , ,  Kz, Kw be 4 copies 
of g with coordinates y, v, z, w correspondingly (i.e. Kv = {y e R~ [ [yi[ < 

�89 etc.) Let us define a s e t  f~ C K~ x K ,  x Kz x Kw; w = (y, v, z, w) E f~, 
if z = ~(y), and xu,v(�89 = xz,w(�89 

For each y �9 K,  let Sv = ({y} x K ,  x {~(y)} x I(w) N fL This is a graph 
of a correspondence in {y} x g ,  x {~(y)} x Kw, that  is a 2~-fold covering of 
both {y} x Kv and {~(y)} x Kw. This correspondence is locally a motion, 
and f~ = UyEKy Sy. Let dw = 2-~dydv  be a normed volume element on fL 
Then the required GF # is a random process with probability space (f~, dw) 
and is defined as 

{ 1 
x(t ,w)  ---- Xy,v(4t) , 01 < t < 

xr  ~ < t < l ,  

where w = (y, v, ~(y), w) �9 ft. This GF may be described as follows: each 
fluid particle is split at t -- 0 into a continuum of parts, all the parts of a 
particle, si tuated at t = 0 at the point y �9 K1, move independently along 

1 they fill K uniformly. After the billiard' trajectories in K and at t = 
t = �89 they start  moving along other billiard trajectories and at t -- 1 they 
all arrive at the point ((y).  All the particles split and move independently 
in the same manner:  homogeneity is fulfilled automatically. 

The action of this GF 
1 

J { , }  = ~ 16v2dv = u . ~  16x2dx = - ~  
v 2 

Thus, the estimate of the diam 79 is proved. 

2.2 E s t i m a t e  o f  t h e  d i s t a n c e s  b e t w e e n  t h e  e l e m e n t s  o f  79. 79 is 
isometrically embedded into the Hilbert space L2(K ~, R~), and there is a 
"coarse" distance between its elements: 

= II (x) - , ( x ) f l  . 

Is there any connection between the distances dist and 6? In IS1] it was 
proved that  if u > 3, there exist C = C(u) > 0, cr -- ~(u) > 0, such that  

dist(~, •) _< C6 ~ (~, ~) . 

Direct construction of IS1] provides a very weak est imate for ~; for example, 
if u -- 3, then ~ > ~4" Our approximation theorem enables us to improve 
this estimate. 
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T H E O R E M  2.2. I f  u > 3, then for all ~, r I E D, 

dist((, ~/) _< C6~((,  T/) , 

where o~ > 2 
- -  u+4" 

Proof: It is sufficient to prove this estimate for r / - -  Id, because both dist 
and 5 are right invariant metrics. 

Let us denote by A(x) the function {~(x)-x{, and suppose that  {{A(x)H~2 
= 6 2 is sufficiently small. We shall construct a GF tt, connecting Id and ~, 
and such that  J{P}~o <- C5~-~+'~. Instead of the cube K, let us consider the 
u-dimensional torus T ~. In fact, this is equivalent. Really, let us consider 
the group F of motions in R ~, generated by reflections in the faces of the 
unit cube K C R"  and if the subgroup F r consisted of the parallel shifts. 
The fundamental  domain of F p is a cube 2K, that  may be subdivided into 
2 ~ shifts of K. Each ~ E D(I ( )  may be prolonged to the mapping ~-of 2K 

onto itself by conjugation: ~(~/x) = 3' o ~ o 7 -1 (x), ~' E F. It is evident the 
~(x + b) = ~(x) + b for each vector b E 2Z and, therefore, ~ may be regarded 
as a mapping of the torus R " / 2 Z  into itself. 

For each trajectory ~(t) on W we may construct a t ra jectory x ( t )  -- 

Fx(t)  M K = 7c(x(t)). Let ~ be a GF on T,  connecting Id and ~; then 
# = ~r(~), the image of the measure p under the transformation 7r, is a GF 
in K,  connecting Id and ~. Evidently, g(#) -- J(~) .  

So, let ~" E D(T);  we shall construct a GF ~, connecting Id and ~', and 

such that  L{#} < C5;~+~, where 5 = {[A{IL~ = {{~(x) -- xI{n~. 
Let us take as a probability space f~ the tangent space T T  u, (x,p) are 

the coordinates in 9. Measure ~ in f~ has a density 2 - ~ s - ~ p ( ~ ) ,  where 
p(p) E C ~ ,  p(p) = p({p[), p(p) _> 0, p = 0, if [p{ > 1; p(p) -= 1, if 
0 < p < �89 and f~y(p)dp = 1. For each w = (x,p) e f~, let us define a 
t rajectory on T ", 

x + 4tp , 

x ( t , w ) =  x + p + 2 ( t - � 8 8  

~(x) + 4(1 - t )p ,  

0 < t < !  
- - 4 

1 < t ~  3 

3 < t < l  
4 

(2.1) 

This GF may be described as follows: at the moment  t = 0 each particle x 
splits into continuum of particles (x,p); they spread into a blob of size c; 
all these blobs are moving with constant speed to their final positions with 
the center in ~-(x), and then they concentrate into a single particle at the 

point ~'(x). 
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This flow is not in fact satisfactory, for it is not incompressible. So, 
3 ( o n  we must introduce a correcting mapping f t  : T ~ T,  �88 < t < 

the 1st and the 3rd stages our GF (2.1) is incompressible). In the case 
of torus construction of the mapping f t  is much simpler and more explicit 
than in the general case (see [Mol D. Let x l , . . . ,  x~ be the coordinates on 
T (0 < xi < 2). Let p(x) be arbitrary a smooth positive normed density. 
Then we may  construct  transformation f : T --* T,  translating the measure 
p dx  into the measure with constant density, and having "triangular" form: 

f (x l , . . . ,x~)=(y l , . . . ,y~)  

~1 = f~ (x~ )  ; 

Y2 = f2(Xl ,X2)  ; 

yv : f v ( X l , . . . , X ~ )  �9 

The functions f l , . . . ,  fv may be found from the following relations, express- 
ing the fact that  f * - l ( p d x )  = dx, 

Oxl - p ( x l , . . . , x ~ ) d x 2 . . . d x ~  , 

Ofl Of  2 J 
COXl COx2 = p ( x l , z 2 , . . . , x v ) d z 3 . . . d x u  , 

Of~ COl2 Of .  
. . . . . .  p ( X l , . . . ,  x~) ; 

OX 1 COX 2 COX v 

The integration constants may be chosen arbitrarily; we choose them so 
that  the centers of mass of the (v - 1)- dim, (v - 2)- d i m , . . ,  sections remain 
unchanged. 

Let us est imate -~t" If p = p(x,  t), then 

Oxl = -~ p ( x l , . . . ,  x~, t ) d z 2 . . ,  dz~ ; 

0 0z. 0 r0 11-1] 
COx2 0---~ -- COt [COx1J p ( x l , . . . ,  xv,  t ) d x 3 . . ,  dx~ ; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  o . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . . .  

COxi COt - COt [COXl J "'" [COxi-l J p ( x l , . . . , x ~ , t ) d x i + l . . . d x ~  ; 
o , o o , , o , , , o o , o o , . o o , . o . o o . o  . . . . . .  o o  . . . . . . .  ~ 1 7 6  . . . .  ~ . . . . . . . . . . . . . .  , o ~  

o o:. o:._,]-1 
COt COx, = ICOxl " "  COz,_I j p ( X l , . . . , x , , t )  . 
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It is easy to observe t ha t  if 0 < cl < p(x,  t) < c2, the opera tors  Ft : ~ ---* 
of are uni formly  bounded  in L 2 ( they have un i formly  bounded  kernel) and,  
Ot 

therefore,  

- 3 /4  f O p dt J{#}1/4 < 1 3 / 4  
2 

-- C j I /4  0t 
o 

L 2 

But  the bounds  for -~t and  p depend  on the pa rame te r  c; we have to choose 
it in such a ma nne r  tha t  p us uni formly  bounded  from bo th  sides. Let  us 
es t imate  it. If �88 < t < 3 and the GF  ~ is defined by (2.1), p(x,  t) m a y  be 
es t ima ted  as follows: 

Cc  -u  mes } 
< c~ -~ mes {x I ]x+T/,(x)-yi<~}, 

where A ( x )  = ~ ( x )  - x ,  7 = 2 ( t  - �88 
NOW~ 

p(y , t )  <_ Ce -~" rues {x I lx - yl ~ C1c}-~ 

+ C e - "  mes {x l l x -  yt > c,~, and [A(x) I > 61~}. 

If 6 2 = f ]A(x)12dx, then  

p(y, t) <_ Cc -~ c ~" + --~ , 

and if e _> c 6 ; ~ ,  then  

In a similar  manner ,  

p(y, t) < const  . 

P(Y,t) >_ c~-~ [mes {x l lx - ~l 

-mes{x  I Ix-~l < 

> C o - "  c" - 

<~ 

4}] ~,  IA(x)l > 

2 
if we set c > C5; -~ ,  then  

p(y , t )  > const  > 0 . 
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Now, we may est imate ~t" P(Y, t) = f pz(y, t)dx, where 

0p= I = la(.)l = 
Ot L = --  " " ; 

Ir =dx <- 

- •  )1 <_ ce ~ A(x dx <_ 

("t  ~) C e -  ~.+v _< c ~ -  IIAllL~ = �9 6 ;  

if e > C6 ~-?~a , then 0 < C1 < p(y) < C2 ,  and 

] O f t l < C e - ( " ~ + ~ )  

Hence 

. 6 .  

L{l-t}01 ~-- L { ~ }  1/4 -~- L{~}315~ -11- L { ~ } l / 4  _~ 

< C e  + C e -  ~.+=1 . iS. 

In order to optimize the estimate for L{#}, we take e = Ce-(.+2~ . 6; this 

gives e = C6.--~ > 6~+  ~ for small 6. This means that,  with our choice of 
e, p remains bounded from both sides and our estimates are self-consistent. 
Thus Theorem 2.2 is proved. 

2.3 T h e  n e w  p r o o f  o f  t h e  fact  t h a t  i f  v = 2, t h e n  dJarnD(K) = oo. 
Our result is a little more precise. 

T H E O R E M  2.3. Let G( t) C R 2 be a domain o/a rea  S, depending smoothly  
on t, 0 <_ t < 1; let {t-: G(O) --+ a f t )  be a family of the area preserving 
diff eomorphisms, such that for each two points Z l , x2 E G ( O ) , their images 
~t(x) and ~t(x2) make at least N revolutions around each other, when t 
passes from 0 to 1. Then 

w h e r e  

j{{t}a _> C S  2 " N ,  

j{~,}l  = ~01 

is the action of the flow ~,. 

1 0 ~ , ( x )  12 
dt fc(o) 2 Ot dx 
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Proof: 1. Let us do a homotopy with coefficient S-�89 It will reduce the 
problem to the case S -- 1, and remove the factor S 2 from the estimate 
of J .  

2. Let us reduce the problem to a more simple one for the generalized 
flows. Consider the moving domain Gt = Gt x Gt C R 2 • R2;  let A be a 
diagonal in R z x R 2. For each 2 points Xl, x2 �9 G0, denote ~ = (Xl, x2) 
and consider the t rajectory 

= c R 2 • R 2 

It is clear, that  
J{~t)01 _- 2J{~t)01 . 

The flow ~t in Gj is evidently incompressible, the diagonal A is iuvariant 
and each point ~t(5) makes at least N revolutions around A (0 < t < 1). 
The volume of Gt is equal to 1, and the area of the intersection of Gt and 
arbitrary plane /kh, parallel to A, does not exceed 2 (in fact this plane 

consists of the points having the type (x, x + h ) ;  the area of Gt NAb is equal 
to the doubled area of Gt N (Gt + h)). Thus the measure of 5-neighbourhood 

of A, intersected by G~, does not exceed 27r62. Let us est imate J{~)01. Let 
E be ortho~onal complement to A in R 4. If we take a projection of each 
trajectory ~t(x) on E, then we get a GF/ t{dy}  in E (with the probability 

space (f~ = G(0)) such that  
1. for each domain A C E, and each to �9 [0, 1], 

/t{y(t0) �9 A} _< 2rues(a) ; 

2 . / t { x }  = 1 ;  
3. /t-almost all trajectories make at least N revolutions around the origin 

in E. 

We are going to prove 

T H E O R E M  2.4. For each GF tt, satisfying (1)-(3), 

J { # } ~ > C . N ,  

where 

3. We start  the proof of Theorem 2.4 with a sort of symmetrization.  Let 
#~ be a measure obtained from tt by rotation through the angle ~ around 
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the origin. Let ~ be a measure obtained by averaging/% over all ~ E [0, 270. 
Then J{~}~ = J{#}0 t, and the measure ~ is axisymmetric. 

4. Let us represent each trajectory y(t) in polar coordinates: y(t) = 
(r(t),  p(t)).  Measure ~ is invariant under the transformation (r, ~) --* (r, ~ +  
90) for each fixed ~0. Let ( r ( t ) ,p( t ) )  be some trajectory 0 < t < 1. We 
shall construct another trajectory (r(t), r  such that 

1..i-1 d e ( t ) =  fo 1 d~(t); 
2. g{(r(t) ,r  is minimal. 
If we replace the trajectories (r(t), p(t)) by (r(t), r  the density of par- 
ticles will not change. 

This is a variational problem: find a function ~b(t), such that  J = 
12 f1[§ + r2(t)r dt is minimal provided f l  de( t )  = f :  d~(t) _> N. 
The Euler Equation is 

and 

this implies 

r2(t)(~(t) = C ; 

C 
r (t) ' 

fo dt fo 1 C r~-t) - dp(t) > N ; 

/ ~o 1 dt 
C >_ N r2(t ) , 

and the estimate for the action: 

1~01 l fol C2dt J{y( ' )}~ _> ~ § dt + ~ r2(t) -> 

1 9fo I 1 N 2 >- 2 § + 2 f :  at ' 

is an axisymmetric measure on the functions y(t) = ( r ( t ) ,~( t ) ) ;  if we 
neglect the second variable ~(t),  we obtain a measure u on the space of 
scalar functions r(t) (v is projection of ~ on the first component).  

Denote the modified action of r(t) by JN{r(.)}lo: 

1 ~01 N 2 
§ a, 
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Then  the action of GF ~ is es t imated from below by the modified action of 
GF u: 

J{~}o ~ _> s~{~}o ~ = f~ s~{~('l}~{d~} �9 

Measure u satisfies the "one sided incompressibility" condit ion 

u{r(to) E A} < 4rC /A rdr , 

where A C R +. 
Let us es t imate  JN{U}~ from below. Suppose tha t  Jg{u}~ < B; then  

1 . {r( . )  I JN{,.}0 ~ < 2~}  > ~ 

Let x(r(')) be a characteristic functional of the set 

.M : {r(.) ] JN{r}~ < 2B} , 

and the measure ~ = x( r )"  u; then n ( M )  _> �89 = �89 and 

~{r(.) ] r(to) e A} ~ 47r /Ardr . (2.2) 

For n-almost  all trajectories r(t) ,  

JC § -< ; (2.3) 2B 

N 2 
~ < 2 B ,  

1 d t  - -  

~(~) 
o r  

~o 1 dt N 2 
r2(t) -> 2-B (2.4) 

Condi t ion (2.2) means that  

oz = g{r( . )  [ r(0) < a} < 27ra 2 ; 

if a < a0 = (St)  -1/2, then  a < �88 and 

1 ~{r(-) ] r(0) > a0} > ~ �9 
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For a given ro > 0 consider the (measurable) set 

. ~ l ( r o ) = { r ( . ) ] r ( O ) > a o ,  min  r ( t ) < r o }  . 
O < : t < l  - -  

Now observe tha t  

f ~  ~{dr} ~o 1 dt 
r2(t) \.~(ro) 

~ n 47r d r 
o r 

R 
= 47r In - -  , 

r o  

where R is some upper  bound for r(t) (0 _< 1). And (2.4) implies tha t  

N 2 

4~rln--R > g(A//\A/i(ro)) . 2 B ," 
r o  

~ ( M \ M ( r 0 ) )  < 8 r r l n R -  g 
r 0  N 2 " 

N 2 1 If [lnro] < C1-D--, then ~(A4\.a/l(ro)) < 1, and nA/l(ro) > ~. 
This  means  tha t  a large share the trajectories r(t) �9 A4 (say, more than 

a quarter),  s tar t ing from the point r(0) > ao, reaches the point  ro for some 
t � 9  [0,1]. 

5. For each r > 0, t �9 [0, 1], let X~,t be a characteristic functional of the 
set { r ( . ) l r ( t )  < r}; then we may  define a non-negative measure  

0 

in ,ad. Condi t ion (2.2) implies, that  ~r,t,ar < C �9 r. The  measure nr,t is 
concentrated on the trajectories r(t),  passing the point  r at m o m e n t  t. The 
radial part  of the action of the GF ~ is 

JR{~}= f~ ~(dr) fol r(--~-~ dt > _ 

In order to es t imate  JR(n) from below, let us introduce a modified GF. If 
r(t) �9 .M(r0), then  set 

I I r ( t ) =  { r ( t ) '  i f r ( r ) < r o  for a l l r < t  
r0 , if r(T) = ro for some T < t . 
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Let us define a new measure 

"~,t = g~,t �9 X{n~(t)=~(t)} ; 

this means that  we take into account only the trajectories that  are passing 
the point r at t ime t, but have not reached r0 before this. 

It is clear that  

Let ~(r , t )  = f n  ~ ( t ) ~ , t { d r } .  This is a flow rate through the point r of the 
particles that  have not reached the point r0 before t. From the definition of 
M ( r 0 )  we see, that  

o ~(r, t )dt  >_ C 

for all r E (to, ao). (All the particles from A~f(ro) pass the point r at least 
o n c e . )  

(2.2) implies that  f~g{dr}  < C . r ;  by the Schwartz inequality 

1 1 

( /  / r(t)'~r,t{dr)dt) 2 <-~ ( /  / r2(7~)~r,t{dr)dt) 1/2" ( ~ ( j ~ ( r o ) ) )  1/2 , 

0 • ( r o )  0 M ( r o )  

and this implies that  

Consequently, 

j0iL.o  �89247 > C r  -1 . 

L //%' > �89247  dt > C]lnro]  . 
(~o) o 

But lnro was defined above as C - ~  for some C > 0. Hence J{#}~ >_ 

JR{~} 1 > C-~ .  But we started with conjecture that  g{#} < B. These 
inequalities do not contradict  each other only if B > C . N .  Thus, Theorem 
2.4 is proved; it implies Theorem 2.3. 

COROLLARY.  If v = 2, then d iam/ )  = oo. 



616 A.I. SHNIRELMAN GAFA 

Proof: Consider a circle B or radius p > 0 si tuated entirely in K. Let 
T(r) E C~(0 ,  p), ~ ~ 0. Consider the mapping ~ : K ---* K,  having, in 
the polar coordinates, the form (r, T) ~ (r, ~ + N r  where N is a large 
parameter.  ~(x) = x in a neighbourhood of OB, and we may  continue it, 
se t t ingS(x)  = x  for al lx  E K x B .  Choose the values0 < rl  < r2 < r3 < 
r4 < p, such that  r  > 0 on the segment [rl,r4]. Denote by Gi the 
annular domain ri < r < ri+l (i = 1, 2, 3). Let ~t C l) be arbitrary flow, 
connecting Id and ~. For x, y E K,  let us denote 

The following fact is evident: 

LEMMA2.5. inf aJ(x,y)--  sup w ( x , y ) = N ( r  
x,yEG3 x,y6G2 

Hence, for at least one of the domains Gi (i = 1,3) 

[~(x,y)[ > g r  r  
2 

for all x, y E Gi. 
By Theorem 2.3, J{~t}01 > CN 1/2, for each path ~t connecting Id and 

~. N is unbounded and hence diam l) = oe. 

2.4 U n a t t a i n a b l e  d i f f e o m o r p h i s m s .  In [$2], it was proved that  if v > 3 
then for each ~ E I) there exists a path ~t, connecting Id and ~, such that  
J{~,}l  < oo. Here we demonstrate  that  this is not true f o r ,  = 2. 

T H E O R E M  2.6. If  u = 2, then there exists an unattaii~able diffeomorphism 
E l). Moreover, this diffeomorphism may  be chosen continuous up to OK, 

and fixed on OK. 

Proof: Choose a sequence of nonintersecting circles B1, B 2 , . . . ,  in K, with 
centers Xl,X2, . . . ,  and radii pi, P2, . . . ,  such that  the points xi converge to 
OK. Let ~ be fixed outside [.J~l Bi, and let (IB, be a switch map, having 
in the polar coordinates, with the origin at xi, the form 

if ~t C 79 is a flow, connecting Id and ~, then 

oo  

J{r176 -) E J i ,  
i = 1  



Vol.4, 1994 GENERALIZED FLUID FLOWS 617 

where by Theorem 2.3 

fo' f. 10 t(X) 2dx > Cp2Ni Ji = dt , 2 Ox - ; 

if g{~t}lo < oc, then ~ i = ,  Ji < oo. But we may choose Ni > p~-2, and then 
oo 

~i=1  Ji = co. Thus ~ is unattainable.  

Note: The result of this section may be obtained using the methods of 
[E1R] as well. 

2.5 O n c e  m o r e  a b o u t  t h e  n o n e x i s t e n c e  of  t h e  s h o r t e s t  w a y  in :D(K) 
for v ~ 3. The GF may simplify and clarify the proof of the main result 
of [$1]. 

T H E O R E M  2.7. Let u >_ 3. Then there exists an element ~ E D, such that 
there is no shortest way in 7) connecting Id and ~. This means  that for 
each way ~t, 0 < t < 1, ~0 = Id, ~1 = ~, there exists another way ~ C D, 
connecting Id and ~ and such that J{~}01 < J{~t}~. 

Let us describe the construction of ( and the proof of Theorem 2.7 for 
/ 2 ~ 3 .  

K is defined by the inequalities [xi[ < �89 i = 1, 2,3. Let us consider 
E D having the form ~(Xl, x2, x3) = (h(xl,  x2), x3), where h E D(K2).  

T H E O R E M  2 . S .  

dist V(K3)(Id, ()  < dist 9(K~)(Id, h ) ,  

then there is no shortest way in D ( K  3) connecting Id and ~. 

Proof: First of all, it has been proved above that distw(K3)(Id, ~) _< 2; on the 
other hand it was just demonstrated that  distv(K~)(Id, h) may be arbitrarily 
large (and even infinite). Hence, there exist h E D(K2),  satisfying the 
conditions of Theorem 2.8. 

Consider arbitrary flow (t C D(K3), connecting Id and (, and construct 
the shorter one. Let ~ (x )  be the i-th coordinate of the point ~t(x). Let 

/01/  = + 

1 = 

by the vertical and horizontal components of the action. Now, we construct 
the GF p, connecting Id and ~. The space ~ = K • [0, 1]. If y E K ,  z E [0, 1], 
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(y ,z )  E ~, then the path x ( y , z ; t ) : =  (~ (y ) ,~2(y ) , z )  is the projection of 
the trajectory ~t (x) on the plane x3 = z. From the form of ~ we see that/~ 
is an incompressible GF, connecting Id and ~, and J{#}o 1 = Jh{~t}o 1. 

If J,{~t}~ > 0, then J{p}o 1 < g{~t}o 1. By the Approximation Theorem, 
there exists a smooth flow ~ ,  connecting Id and ~, such that ~' approximates 

1 1 .  /t together with J, so that ]J{~}01 - J{~t}01] < ~J,{~t}o,  hence, J{~}01 < 
J{~t}~o . 

If Jv{~t}01 = 0, then ~t 3 = 0 a.e. in K, each horizontal section x3 = z 
is invaxiant under ~t, and we have a family of flows ~ in these sections, 
connecting Id and h. By our hypothesis J{~}0  ~ > inf,,Or(K3 ) J{~t}~ and, 
therefore, ~t cannot be a minimal path connecting Id and ~. This contra- 
diction proves the theorem. 

2.6 C o n j u g a t e  poin ts  in I). Let J~4 be a Riemannian manifold, and let 
7 : t--~ x(t) C A d ,  0 < t < T,  be a g e o d e s i c i n A t .  Apo in t  x(to) i s t h e  
first conjugate to x(0) along the geodesic 7 if, for each tl < to, the piece 
of 7 connecting x(0) and x( t l )  has the least length (and action) among 
all close paths, connecting the points x(0) and x(t),  and for tl > to this 
segment fails to be locally the shortest: i.e. for each ~ > 0, there exists 
a path y(t) C A t ,  connecting x(0) and x(tl) such that dist(x(t), y(t)) < 

for all t, 0 < t < tl ,  and L{y(t)}to 1 < L{x(t)}to ~. This is one of the 
possible definitions of conjugate point; all of them are equivalent for finite- 
dimensional Riemannian manifolds, but they split into different definitions 
for infinite dimensional ones (see [G]). 

The problem of existence of conjugate points on the manifold D was 
posed by Arnold in 1966 ([Ar]). Recently G. Misiolek proved the existence 
of conjugate points on D(G), where G is a flat 2-dimensional torus ([Mi D. 
This construction is likely to generalize on the general case of D(A/[) for 
arbitrary 2-dimensional compact manifold 2~4. Misiolek also conjectured 
(and proved for a flat torus) that for each 2-dimensional manifold there 
exist geodesics without conjugate points. 

But for v > 3, the situation is quite different: the conjugate points 
become indispensible: on each sufficiently long arc of geodesic in D(G) 
there exist conjugate points. More precisely, the following assertion is true. 

T t tEOREM 2.9. Let  G = K ~ be a unit v-dimensional cube, t~ > 3. Let  
C I)(G), 0 < t < T,  be an arbitrarilypiecewise-smooth curve such that its 

length L{~t} T is more than diam:D(G). Then ~t is not  locally the shortest 
path  connecting ~o and ~T. This  means that for each e > 0 there exist a 
smooth  path 7it C l), 0 < t < T,  rio = ~o, ~1~" = ~T, such that dist(~t, ~t) < e 
for all t e [0, T], and L{rlt}To < L{~t}To . 

In particular, this means that on each geodesic line longer than diam:D 
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there  exist  con juga te  points.  

Proof: If n { ( t }  T > diam~9 = s u p ~  dist79(~,r/), then there  exists  a pa th  

~t, 0 < t < T, connect ing  ~0 and ~T, such tha t  j { ~ t } T  < j {~t}T.  Let  
# ~ ,  #r be  cor responding  GF's .  Let  us consider  the  mix tu re  of these GF ' s ,  
v = (1 - 6)tt~, + 5#r 0 < 5 < 1. This  is a G F  connect ing  ~o and ~T, and 
its act ion 

J { v }  T = (1 - 5)J{#~,}o  T + 5J{#~,}1 o < J{pe ,}T o . 

If 6 ---* 0, then  u ----, tt~, weak *. For each 5, by  the Approx ima t ion  Theorem,  
we m a y  find a s m o o t h  flow t/t, s.t. it is a rbi t rar i ly  close (in the  weak �9 
sense) to the  G F  v, and  J{t/t}To is a arbi t rar i ly  close to J { v }  T. Hence,  
we m a y  find t/t such tha t  J{t/t} [ < J{( t}  [ .  But  the  flow rh is w , -c lose  
to (t .  B y  T h e o r e m  2.2, this means  precisely tha t ,  for each finite sequence  
0 < tl <_ t2 < . . .  < tN = T, and for each c > 0, we m a y  find 5 and a 
s m o o t h  flow t/t approx imat ing  t/ = (1 - 5)#~, + 5#r such tha t  mes{x  [ 
It/t~(x) - ~t~(x)l > e} < c for all i = 1 , . . .  , N .  For each other  t ime m o m e n t  
ti, ti < t < t i+l ,  

1 1 6 -  t/tllL~ < 1 1 6 , -  - (t - t i )  ] 
L 

-< I1~,, - t/t, llL~ + c ( t  - t~) 1/~ <_ 

_< II~t, - ~t,llL~ + c .  m .ax( t j+ l  - tj) a/2 , 
3 

~2J{<t}T~ 1/2] 
+ \ - ( - ; : U  ] 

and for max( t i+ l  - ti) sufficiently small,  

I1<, - t/tlli < 2c 

for all t E [0, T]. By  T h e o r e m  2.2, this means  tha t  

d i s tv (~ t , t / t )  < C c  a , cr > 0 , 

and is small  toge ther  wi th  c. Thus,  for each a > 0, we have cons t ruc ted  a 
pa th  t/t, such tha t  J{t/ t} T < J{~t} T, t/0 = ~0 t/T = ~T, and distz,(~t, t/t) < 
Cr ~. This  concludes  the  proof. 
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