Marijuana Growing, Processing, and Extraction Facilities

Mark R. Richards, PE
Fire Protection Engineer
Why Marijuana?

“Aside from cryptocurrency, there is simply no other industry changing as rapidly or as unevenly as the cannabis sector”

- Troy Dayton, CEO of the Arcview Group

Interest in retail marijuana products has surged in recent years.

New topic for many professionals.
New Codes

NFPA 1-2018, Chapter 38: Marijuana Growing, Processing, or Extraction Facilities.

- Primarily contains existing codes applicable to marijuana facilities.
- Does not apply to retail where growing and processing do not occur.
General Building Design

- Use Groups
- Hazardous Materials
- Control Areas
- Mixed vs. Separated Use
- Work Area
General Building Design

- Use Groups
- Hazardous Materials
- Control Areas
- Mixed vs. Separated Use
- Work Area
Use Groups

 Marijuana dispensaries = Mercantile (M).

 Cultivation “Grow” facilities = Factory (F-1).

 Extraction facilities = Factory (F-1).

 Marijuana-infused product kitchens and bakeries = Factory (F-1).
General Building Design

- Use Groups
- Hazardous Materials
- Control Areas
- Mixed vs. Separated Use
- Work Area
Hazardous Materials

- Document hazardous materials.
 - Safety Data Sheet (SDS).
 - Post NFPA 704 Hazard Diamond(s) and no smoking signs on extraction room door.

- Locate in fire cabinet or dedicated storage room.

- Be mindful of MAQ Tables.
 - Reference Tables 307.1(1) and 307.1(2) in IBC-2009.
 - Reference NFPA 1 and NFPA 30.
General Building Design

- Use Groups
- Hazardous Materials
- Control Areas
- Mixed vs. Separated Use
- Work Area
Control Areas

Control Area: Spaces in a building where quantities of hazardous material do not exceed the maximum allowable quantities per control area for storage, closed, and open-use systems.

Maximum allowable quantity (MAQ) of hazardous material per control area.
- Reference Table 307.1(1) in IBC-2009

Implementation:
- Reference Table 414.2.2 in IBC-2009
General Building Design

- Use Groups
- Hazardous Materials
- Control Areas
- Mixed vs. Separated Use
- Work Area
Mixed vs. Separated Use

- Mixed Occupancy: Multiple occupancy, intermingled.
- Separated Occupancy: Multiple occupancy, separated.
- Shared exits = Mixed Use
General Building Design

- Use Groups
- Hazardous Materials
- Control Areas
- Mixed vs. Separated Use
- Work Area
Work Area

- **Work Area:** The portion(s) of a building consisting of all reconfigured space as indicated on construction documents.

- **New building:** Comply with new requirements in NFPA 101-2015 and IBC-2009.

- **Existing building:** Comply with IEBC-2009 and Chapter 43 in NFPA 101-2015.
General Building Design

❖ Use Groups
❖ Control Areas
❖ Mixed vs. Separated Use
❖ Work Area
Marijuana Facilities

- What is Cannabis
- Hazards Associated with Cultivation
- The Extraction Process
- Hazards Associated with Extraction
- Extraction Room Design
Cannabis

- Cannabis is a flowering plant.
- Uses carbon dioxide (CO$_2$), light, and water to grow.
- Used for industrial, medical, and recreational purposes.
- Used in raw form or refined through extraction processes to create cannabis oil.
Cultivation Hazards

- Carbon Dioxide
- Fertilizers
- Fuel load
- Fumigation and Pesticides
Cultivation Hazards

- Carbon Dioxide
- Fertilizers
- Fuel load
- Fumigation and Pesticides
Carbon Dioxide (CO$_2$)

- Earth’s atmosphere contains approximately .04% CO$_2$ by volume.

- CO$_2$ dilutes oxygen (O$_2$).

- Used to cultivate plants.

- Can be used in the extraction process.
Carbon Dioxide (CO$_2$)

- CO$_2$ dispersion system.
- Per OSHA, the permissible exposure limit (PEL) for CO$_2$ is 5,000 PPM (0.5% by volume) over an 8-hour work day.
- Interlock CO$_2$ sources.
- Compressed gas.
Cultivation Hazards

- Carbon Dioxide
- Fertilizers
- Fuel load
- Fumigation and Pesticides
Many fertilizers include Ammonium Nitrate (NH₄NO₃).

Ammonium Nitrate explodes when introduced to a high enough activation energy

E.g.: West Fertilizer Company explosion in West, TX, in 2013.
Many fertilizers include Ammonium Nitrate (NH_4NO_3).

Ammonium Nitrate explodes when introduced to a high enough activation energy

E.g.: West Fertilizer Company explosion in West, TX, in 2013.
Best Practices

❖ Use fertilizers that have limited or no ammonium nitrate.

❖ \(\leq \text{MAQ} \) for reactive materials.

❖ \(\leq \text{MAQ} \) for oxidizers.
Cultivation Hazards

❖ Carbon Dioxide
❖ Fertilizers
❖ Fuel load
❖ Fumigation and Pesticides
Fuel Load

- Plants are susceptible to fire.
- Rack storage = unique problem.
Cultivation Hazards

- Carbon Dioxide
- Fertilizers
- Fuel load
- Fumigation and Pesticides
Fumigation and Pesticides

Toxic

Marijuana is illegal under federal law, so EPA can’t regulate pesticides for use on marijuana.

Extraction vs. concentration of pesticides?
Cultivation Hazards

- Carbon Dioxide
- Fertilizers
- Fuel load
- Fumigation and Pesticides
Disclaimer

疡 This presentation details how to conduct extractions.

疡 Extractions should always be done in professional settings.

疡 Extractions should never be done in residential occupancies.
Simulation of Butane Explosion

Credit: USA Today
The Extraction Process

- Multiple methods exist to extract cannabinoids (water, butters/food oils, CO$_2$, or solvents).

- Goal is to extract tetrahydrocannabinol (THC) from marijuana plants.
Extraction Hazards

- Flammable Liquids
- Liquid Petroleum Gas (LPG, LP-Gas)
- Compressed Gas (CO₂)
 - Reference previous slides.
Extraction Hazards

❖ Flammable Liquids

❖ Liquid Petroleum Gas (LPG, LP-Gas)
Flammable Liquids

Flammable liquids don’t burn.

Classification based on boiling temperatures and flashpoints.

Flammable vs. combustible liquids.
Flammable Liquids

- Extractions must be performed in a ventilated area.
- Electrical components shall comply w/ NEC.
- Proper storage and handling is required.
- Sprinkler protection is likely required.
Extraction Hazards

- Flammable Liquids
- Liquid Petroleum Gas (LPG, LP-Gas)
Liquid Petroleum Gas (LPG)

- Gas at normal room temperature and atmospheric pressure.
- Liquefies under moderate pressure and readily vaporizes upon release of pressure.
 - Transported and stored in liquid form.
- Mainly composed of propane, propylene, butane, and/or butylene.
Liquid Petroleum Gas (LPG)

- Extractions must be performed in a ventilated area.
- Electrical components shall comply w/ NEC.
- Proper storage and handling is required.
- Sprinkler protection is likely required.
- Automatic emergency power required for lighting, exhaust, and gas detection.
Extraction Room Design

- Construction and location
- Means of Egress (MOE)
- Electrical classifications
- Ventilation
- Gas detection systems
Extraction Room Design

- Construction and location
- Means of Egress (MOE)
- Electrical classifications
- Ventilation
- Gas detection systems
Construction & Location

- Noncombustible, fire-rated construction.
- Extraction room must be dedicated to the extraction process.
- Industrial buildings only.
- Many important details…
 Contact a Fire Protection Engineer.
Extraction Room Design

- Construction and location
- Means of Egress (MOE)
- Electrical classifications
- Ventilation
- Gas detection systems
Means of Egress

- Specific MOE for extraction rooms using hazardous materials.
 - Outward door swing.
 - Automatic closing device.
 - Panic or fire exit hardware.

- Similar precautions for electrical rooms.
Extraction Room Design

- Construction and location
- Means of Egress (MOE)
- Electrical classifications
- Ventilation
- Gas detection systems

Nortech Systems • 150 Ham Rd • Barrington, New Hampshire • (603) 664-5050 • www.nortechsystems.com
Electrical Classifications

Class I
Vapor-Air Mixture

Division I
Normal operations
Material Groups A, B, C, D

Division II
Unusual conditions
Material Groups A, B, C, D

Class II
Dust-Air Mixture

Division I
Normal operations
Material Groups E, F, G

Division II
Unusual conditions
Material Groups E, F, G

Class III
Fibers

Division I
Manufacturing
No material group

Division II
Non-manufacturing
No material group
Electrical Classifications

Class I
Vapor-Air Mixture

Division I
Normal operations
Material Groups A, B, C, D

Division II
Unusual conditions
Material Groups A, B, C, D

Class II
Dust-Air Mixture

Division I
Normal operations
Material Groups E, F, G

Division II
Unusual conditions
Material Groups E, F, G

Class III
Fibers

Division I
Manufacturing
No material group

Division II
Non-manufacturing
No material group
Extraction Room Design

- Construction and location
- Means of Egress (MOE)
- Electrical classifications
- Ventilation
- Gas detection systems
Ventilation

Crucial for safe extractions.

Maintain vapors below lower flammability limit.

Perform extractions in **fume hood** or **exhausted enclosure**.

Interlock electrical components with fume hood or exhausted enclosure.
Fume Hood

❖ Not all are suitable for extractions.

❖ Ducted vs. Ductless.

❖ Use an indicator with filters.

Exhausted Enclosure

Construction:
- Locate air intake at ground level.
- Non-combustible ducts.
- Non-ferrous (no iron) propellers.
- Clearance and penetration requirements.

Protect ducts with sprinklers.

Reference the Standard for Exhaust Systems for Air Conveying Vapors, Gases, Mists, and Particulate Solids (NFPA 91).
Extraction Room Design

- Construction and location
- Means of Egress (MOE)
- Electrical classifications
- Ventilation
- Gas detection systems
Gas Detection System

 мн Sensor failure
- Activate/ transmit trouble signal.

 мн Pre-alarm (25% to <100% Lower Flammability Limit)
- Activate/ transmit supervisory signal.
- Alert extraction operator.

 мн Alarm condition (100% or higher LFL)
- Activate/ transmit alarm signal.
- Activate exhaust system (if not already done)
- Initiate notification devices.
Extraction Room Design

- Construction and location
- Means of Egress (MOE)
- Electrical classifications
- Ventilation
- Gas detection systems
Summary

- Extractions should always be done in professional settings.
- Important to understand quantity and location of hazardous materials.
- All preventative techniques are important, but ventilation is crucial.
- When in doubt... Contact a Fire Protection Engineer!

Nortech Systems • 150 Ham Rd • Barrington, New Hampshire • (603) 664-5050 • www.nortechsystems.com
Questions?

Thank you for your attendance!

Mark R. Richards, PE
mrichards@nortechsystems.com
603-664-5050