
MS Access Update Back-end Utility

USER MANUAL

Version 1.3 February 2010

For Microsoft Access 2000 (or later)

Introduction
This utility has been designed to be used by MS Access Developers to update the back-end table

schema of a client’s database file automatically from code within the front-end file. This allows the

developer to add or delete tables and/or fields in the back-end file without having to visit the client in

person. When any new facilities are required which require changes to the tables you, the developer,

can just send a new front-end file to the client who will replace the existing front-end file with the

new version and then, when they first run the program, the back-end updates are made automatically.

The update system works like this - a table, a code module and two forms are imported into the

front-end file. The table holds a list of updates, i.e. new fields, new tables, etc, etc and the Update

form is used to enter data into the table. As the developer, you would open the form and enter the

details of any new field or table whenever you want to add a field or table to the back-end. Click the

Update Back-end button on the form which then adds the new items to your back-end copy. When

the modifications have been completed you can send the front-end .mdb (or .mde) to your client and

when he runs the program for the first time the updates in the table are compared with the current

version (stored in the back-end) and if they don’t match the latest updates are automatically made to

the client’s back-end file. On a multi-user system you should make sure that two users do NOT run

the program simultaneously as both PCs might try updating the back-end at the same time.

This code has been tested on standard Access 2000/3/7 databases (although it should work OK on

other versions) and where all the tables are stored in the same back-end file. If you need something

more complicated you will probably have to modify the code accordingly.

New additions to this code are marked like this : New in this document.

Installation
To use this utility you will first need to create a field in the back-end file which will be used to hold

the current version number. If you already have a table which has just one record (perhaps being

used to store information about the client) then you can add the new field to this table, otherwise you

will need to create a new table with the version number field. The field name must be called

ubeVersion and be a Number type (Long Integer), the table can be called anything you want. Make

sure that initially the value in the field is set to 0. You will need to do this on your own master back-

end file as well as your client’s back-end file, of course. See also section Add Reference Table

below for a new facility to add this table automatically.

Database Modifications
To set up the update facility make the following changes to your database program :-

1. Run your database and import the following items into your front-end file from the

ubeUtility V1-3.mdb file provided with this document :-

One table called ubeUpdate.

Two forms called ubeForm and ubeUpdating.

One module called ubeUpdateCode.

If you want to use a short cut key to open the Update form and you have not already got an

AutoKeys Macro you can also import the AutoKeys Macro from the .mdb file.

2. Open the code module ubeUpdateCode and find the line near the top of the page :-

Public Const gRefTable = "tblGeneral”

Change “tblGeneral” to the name of the single record table in the back-end file which holds

the ubeVersion field. The global variable gRefTable holds the name of the table and is used

in various locations in the ubeUpdateCode module. See also section Add Reference Table

below for a new facility to add this table automatically.

3. In the Form_Open event of your Start Up form (i.e. the form you have designated to open

first in the Startup dialog form) enter the following line of code :-

Call UpdateBackEndFile(False)

If you have any code which automatically re-links the front-end to the back-end when you

first run a new version, the Call UpdateBackEndFile(False) code should be placed

after it so that the tables are properly linked before the back-end updates are executed. See

also Re-Linking Front-end to Back-end under the Make Table section below. If you are

installing this code on Access 2007 using the new format (i.e. accdb) then see the section

Access 2007 Variations below.

4. Since the code uses various SQL functions you must also have a reference to the DAO

Object Library set. You will probably have this set up already but if not, open the References

form from the Tools menu (while displaying VBA code) and tick the Microsoft DAO 3.6

Object Library reference.

5. It would be sensible to now Compile your code to ensure that you have not imported any

duplicate functions or procedures. Select Compile.. from the Debug menu in a VBA module.

Every time you or your client run the database the UpdateBackEndFile function is called which

then checks the current version number of the back-end file (stored in the ubeVersion field of your

table) and if it is less than the latest version number stored in the ubeUpdate table (stored in the

front-end) the back-end updates are executed automatically and then the version number field is

updated. If no updates are required no action is taken. The Boolean value passed to the function

indicates that the function is being called from the Start Up form (i.e. False). If the function is called

from the ubeForm this value is set to True to indicate that the developer’s version is being updated.

Operation
During the program development, to make a change to the back-end tables, you should first open the

ubeForm form. Note that this form has been designed to work in a screen resolution of 1024 x 768

(or higher), if you are using a smaller screen you will need to redesign the form layout to fit. It does

not matter what resolution screen your client uses, of course, since they will not normally see this

form.

Normally you would use this facility to add changes to the back-end file after the database is up and

running to save you having to visit the client to make the changes manually. If you are starting a new

database from scratch (that is the client does not yet have a copy) you could probably still use this

system to modify the back-end file during the development (assuming that you have split the

database) since it would be quicker and easier than opening the back-end file each time and making

the changes manually. I would suggest that if you do it this way then when you are ready to deploy

the database to your client, you delete all the records from the ubeUpdate table, delete any ube…

tables that you may have created, delete any action queries, etc and reset the ubeVersion field back

to 0. This ensures that you have a ‘clean’ front-end and back-end file for the client with no

temporary tables, queries, etc.

Open Update Back End form with Short Cut keys

You can open the form in the usual way by double clicking the form in the database window or by

using a keyboard short cut. I normally use the CONTROL + SHIFT + Z short cut as my clients are

unlikely to press this key combination in normal use. To create a short cut first create a Macro and

name it AutoKeys (if you haven’t already got one). Enter ^+Z in the Macro Name column and

select OpenForm in the Action column. Then enter ubeForm in the Form Name property field and

save the Macro.

Hide Update Form and Update Table
If your client uses the .mdb version of the database you might want to hide the form and table (you

really don’t want them to make any changes to the stored data). To hide them right click on the form

or table in the database window and tick the Attributes: Hidden check box. Also make sure that the

Hidden Objects box is NOT ticked on the View tab of the Options form.

Data Entry
When you open the update form you will see the form shown in Fig 3 below (only with no entries

initially, of course). To add a new item to the list either click in the Action field of the last record or

click the Add New Item button. The Ref column will show the next number in the sequence when

you enter a value in the Action field. The Last Update Ref field at the top of the form shows the

current version number of your back-end file and initially will be zero. When you have entered the

new table and/or field definitions (see later sections for more details) click on the Update Back-end

button and your back-end file will be updated with the new data. While the update is taking place a

message box is displayed on screen as shown in Fig 1 below.

Usually this form will disappear very quickly but if a

Query or Procedure takes a long time to execute the

client (and you) will see that something is happening.

Also the cursor will change to an hourglass when a

query runs (and you may want to do this for any VBA

code procedure as well).

 Fig 1. Update in progress message form.

When the update has completed successfully a message will be displayed at the bottom of the

Update form – All Updates Completed OK (unless there was an error) and the Last Update

Ref field will also show the same number as the last record Ref column. Close the form with the

Cancel button and, when all your program changes are complete, send the front-end file to your

client.

The Ref field in the ubeUpdate table is an Incrementing AutoNumber field and it is important that

the value increments for each new record (although it does not matter if there are any gaps in the

sequence). If there is any likelihood that this field may be converted to a Random type AutoNumber

field, (if the database is used for replication, for example), then you will need to add some code to

provide a means to increment this value by one each time you add a new record.

Client Back-End Update
When your client next runs the database program the changes you have made to your back-end file

(which are now stored in the ubeUpdate table) will also be made in his back-end file from the

UpdateBackEndFile procedure called from the Start Up form. When your client first opens the

database and there are updates to be made, a warning message is displayed as shown in Fig 2 below.

Fig 2. Warning message shown to client before updates.

If he clicks the Yes button the update procedure will execute as normal, if he clicks No the database

program will exit so that the back-end file can be backed up using Windows or some other back up

application.

Fig 3. Example of changing various fields and tables in the Northwind database.

The example shown above adds two new tables and links them together in the Northwind database,

see the Northwind Database Tutorial below for more details. The Date Item Created field will show

the date each record was created when you click on any field in a record.

Action Codes
There are 12 actions that can be selected from the drop down list in the Action column. A brief

description of each action is shown below. Whenever an action is selected, any other columns which

are required are filled in with a brief description of what data should be entered into those columns.

Note that you should fill in the columns from left to right because the data entered into a column can

affect other columns to the right of it. The Table/Query Name column is a drop down box which

will show a list of local tables (i.e. tables in the front-end), linked tables (i.e. tables in the back-end)

or action queries depending on which option has been chosen in the Action column. Note, however,

that it is not always possible to show the table name that you need. For example, if you are adding a

new table and then you need to add a new field to that table on the next line, the table will not appear

in the drop-down list because it has not yet been added to the database. In these cases you will need

to enter the table name manually. Similarly, the Field Name column drop down box will show a list

of fields in the table that you have selected in the Table/Query Name column, again if it is not yet

available you will need to enter it manually.

Make Table
This option allows you to create a table that has just one field, (you can add more fields using the

New Field action later). Enter the name of the table in the Table/Query Name column, the name of

the field in the Field Name column and the type of field in the Field Type column (selected from

the drop down list provided). The field types are the standard SQL names, see the Field Types

section below for further information.

You can also set a property for the field by selecting the appropriate option from the Property drop

down list (see also the Set Property section below). As well as setting a property you can enter

some text in the Field Description column whenever a new field is added to a table, although this is

not a required column.

If your table requires any additional fields you can now add them using the New Field action as

described later.

Re-Linking Front-end to Back-end

One problem that may arise with creating new tables is if some sort of automatic linking code is used

to re-link the front-end file to the back-end file when a new front-end is deployed to the client. If the

pathname for the back-end file is the same on the client’s system as it is on the developer’s system

then there should be no problem. However, where the pathnames are different it is normal to

automatically re-link the front-end and back-end files when the new front-end is installed on the

client’s system.

The problem is that when you, the developer, create a new table a link is established to the table in

your back-end file and the link pathname is stored in the front-end file. When you send the front-end

file to your client and your automatic re-linking code runs, it will attempt to link to the new table but

the new table does not yet exist in the back-end so an error 3011 would normally be generated. If

this is the case you will need to modify the re-linking code to ignore any 3011 errors when a table is

missing. Once the update code runs, (which should be immediately after the re-linking code has

finished), the table will be created and will function normally.

Note that if you need to re-link the front-end to the back-end tables there is code on the same Web

site which will do that, see :-

http://www.rogersaccesslibrary.com/forum/forum_posts.asp?TID=184

Copy Table
The Make Table action above is suitable for small tables but can be a bit cumbersome for large and

complicated tables and cannot easily be used for tables that already have data stored in them. The

Copy Table action allows more flexibility in creating new tables.

First you should create your new table in the front-end file with all the required fields and field

properties set up. If you also need the table to contain data then enter the data. Now open the

http://www.rogersaccesslibrary.com/forum/forum_posts.asp?TID=184

ubeUpdate form, start a new record and select the Copy Table action. For this option only the

name of your table is required in the Table/Query Name column. When you click the Update

Back-end button the table is copied to your back-end file and the original table in the front-end is

renamed with the prefix ‘ube’, for example a table called tblAccounts will be renamed to

ubetblAccounts. This table will remain in the front-end file. When your client runs the database, the

program will copy the table ubetblAccounts to the client’s back-end file and remove the ube prefix at

the same time.

If you need to copy a table that needs to be linked to another table in the back-end you should copy

the table first and then link the tables with the Set Relationship action after the table has been

copied to the back-end. Do not try to copy a table/s that is linked in the front-end.

Remove Table
To delete a table choose the Remove Table action, only the name of the table to be deleted is

required in the Table/Query Name column for this option. Note that if the table has a relationship

link to another table you should delete the relationship first (see below).

New Field
To add a new field to an existing table select New Field in the Action drop down list. Enter the

name of the table in the Table/Query Name column, the name of the new field in the Field Name

column and the type of field in the Field Type column. If you need to change a property of the field

choose the property in the Property column drop down list (see below for more information) and

enter any additional data that may be required in the Additional Data column (not all properties

require extra data). You can also enter a field description in the Field Description column if

required. Remember that any text that you enter in this column will automatically be copied to the

Status Bar Text property of the field if you later add this field to a form.

When a Text or Memo field is added to a table manually in Table Design Mode the Unicode

Compression property is automatically set to Yes. This utility will also set this property to Yes for

Text and Memo fields. If for some reason, however, you do not want this to happen you should

delete the appropriate line of code in the NewFieldDefaults sub-routine.

Also for Text and Memo fields I prefer to set the Allow Zero Length property to Yes for new fields.

The reason being that when importing data into a table using SQL or a DoCmd function the import

can fail with no warning if the property is set to No and the imported field has a NULL value. If you

want to have the property default to No then delete the appropriate line of code in the

NewFieldDefaults sub-routine.

Numeric fields such as Long Integer, Currency, etc normally default to 0 for new fields. Again this

option is set in the NewFieldDefaults sub-routine. If you want new numeric fields to default to Null

then remove the appropriate line of code.

Delete Field
To delete a field in an existing table select Delete Field in the Action drop down list. Enter the name

of the table in the Table/Query Name column and the name of the field to be deleted in the Field

Name column. If the field is part of a Relationship join you must delete the relationship first (see

below). Also, if the field is indexed you must remove the index first by using the Index (No)

property (see below).

Change Type
To change a field type in an existing table select Change Type in the Action drop down list. Enter

the name of the table in the Table/Query Name column and the name of the field to be changed in

the Field Name column. Enter the new field type in the Field Type column. Obviously you will

need to be very careful with this facility since you could lose data if the old and new field types are

not compatible. If the field is part of a Relationship join you must delete the relationship first (see

below). Also, if the field is indexed you must remove the index first by using the Index (No)

property (see below).

Set Property
To change a field property select Set Property in the Action drop down list. Enter the name of the

table in the Table/Query Name column and the name of the field to be changed in the Field Name

column. Select the property to be changed in the Property column, if any other parameters are

required a guide comment will be displayed in the Additional Data column (although not all

properties require further data). A complete list of properties that can be changed are shown below in

the Field Properties Selection section.

Set Relationship
To create a relationship join between two tables select Set Relationship in the Action drop down

list. Enter the name of the table that holds the primary key field in the Table/Query Name column

and the name of the link field for that table in the Field Name column. Next, enter the type of

relationship in the Property column, note that this drop down box list is different for this Action

type. The relationship types available are as follows :-

1 - 1 Not Enforced One to One, Not Enforced

1 - 1 Casc Updates One to One, Cascade Update Related Fields

1 - 1 Casc Deletes One to One, Cascade Delete Related Records

1 - 1 Casc Upd/Del One to One, Cascade Update Related Fields and Delete Related Records

1 - n Not Enforced One to Many, Not Enforced

1 - n Casc Updates One to Many, Cascade Update Related Fields

1 - n Casc Deletes One to Many, Cascade Delete Related Records

1 - n Casc Upd/Del One to Many, Cascade Update Related Fields and Delete Related Records

Now enter the name of the table that holds the foreign key in the Additional Data column and the

name of the foreign key field in the Field Description column. Note that the name allocated to a

relationship is a combination of the two table names (as Access normally does).

The normal rules for relationships apply, of course, the primary key must be unique (for 1 to many)

and the field types must the same. Also you need to bear in mind that the data in your back-end test

file will probably be different than that in your client’s back-end file. This may cause the

relationship operation to fail if there is data in the foreign table which does not match the data in the

primary key table. You may want to run some sort of test procedure first if this is a possibility, see

the Run Query and Execute Code options below.

Clear Relationship
To delete a relationship select Clear Relationship in the Action drop down list. Enter the name of

the table that holds the primary key field in the Table/Query Name column and the name of the link

field in that table in the Field Name column. Next, enter the name of the second table in the

Additional Data column and the name of the second field in that table in the Field Description

column.

Run Query
There may be occasions where you need to add or change some data in the client’s tables when the

back-end file is changed. To do this you can design an Update query to make the necessary changes

and then run the query at start up along with any other table updates. First create the Update query (I

usually prefix it with ‘ube’ to easily identify it) and test it on your own data. Then select Run Query

in the Action drop down list and enter the name of the query in the Table/Query Name column.

Bear in mind that when you come to update your own back-end you will be running the query again

so you may first want to undo any changes you made during testing. Also see the Fill With

command below.

Execute Code
Although an Update query may be sufficient to do most update operations there may be some times

when a more complex operation is required. In this case it may be necessary to run a VBA code

procedure. You can do this by writing the suitable code and storing it in a code module (it is usually

better to create a special Code Module just for this rather than add the routines to an existing module

as they will probably only ever be executed once). When you have created the code and tested it

select Execute Code in the Action drop down list and enter the name of the procedure in the

Table/Query Name column. Bear in mind that when you come to update your own back-end you

will be running the code again so you may first want to undo any changes you made during testing.

Run Macro
This option is basically the same as the previous section except that you can use a Macro (although I

think most Access Developers probably do not use Macros).

Field Types
There are 14 different field types that can be allocated for new fields. A brief description of each one

is shown below.

AUTOINCREMENT AutoNumber (Long Integer) (Random AutoNumber is not available).

TEXT Text (255 characters max).

DATETIME Date and Time.

BYTE Byte (0-255).

SHORT Integer (-32,768 to 32,767).

LONG Long Integer (-2,147,483,648 to 2,147,483,647).

SINGLE Single FP (-3.402823E38 to -1.401298E-45 for negative values; 1.401298E-

45 to 3.402823E38 for positive values).

DOUBLE Double FP (-1.79769313486231E308 to -4.94065645841247E-324 for

negative values; 4.94065645841247E-324 to 1.79769313486232E308 for

positive values).

CURRENCY Currency (-922,337,203,685,477.5808 to 922,337,203,685,477.5807).

YESNO Yes/No (Boolean).

MEMO Text (64000 characters max).

OLEOBJECT OLE Objects.

HYPERLINK Hyperlink. New

ATTACHMENT File attachment (2007 only). New

Field Properties Selection
There are 20 options available under the Property column (although not all are actual field

properties) and some can also be used when adding a new field. When you select a property the

Additional Data column will show a brief description of any additional parameters which may be

required.

Text Field Size
This sets the maximum Field Size of a Text field and should be between 1 and 255 which is entered

in the Additional Data column. When a new field is added this property defaults to 255 so you only

need to change it if you need a smaller value.

Format
This option allows you to set the Format property for a field which is entered in the Additional

Data column.

Caption Name New
This option allows you to change a field’s Caption name, the new caption name should be entered in

the Additional Data column.

Decimal Places
This option allows you to set the number of Decimal Places for some numeric fields. A value

between 1 and 15 should be entered in the Additional Data column. (Note that for some unknown

reason this option does not always seem to work and I don’t know why, but then I don’t use it

anyway as this can easily be done on the forms. If you can fix it please let me know).

Input Mask
This option allows you to set an Input Mask for a field and should be entered in the Additional

Data column.

Default Value
This option allows you to set the Default Value for a field and should be entered in the Additional

Data column (leave this column blank if you want to remove an existing value). If you set this

option on a table that has existing records you may want to enter the default value into the field for

those records using the Fill With option below.

Validation Rule
This option allows you to set a Validation Rule for a field and should be entered in the Additional

Data column. Also enter the Validation Text (which is displayed when an error is generated by

Access) in the Field Description column. If the table already has existing records you may first

want to check that the current data does not break the new validation rules.

Required
This option allows you to set the Required property for a field, enter Yes or Y (or True if you

prefer) in the Additional Data column. If you enter anything else, the column will be set to No

when you leave the column.

Allow Zero Len
This option allows you to set the Allow Zero Length property to Yes or No, enter Yes or Y (or True

if you prefer) in the Additional Data column. If you enter anything else, the column will be set to

No when you leave the column.

New Field Name
This option allows you to change the name of a field which should be entered in the Additional

Data column. However, this option should only be used very carefully since changing the name of a

field could cause problems in your database.

Ordinal Position
This option allows you to change the Ordinal Position that the field appears in the table. The

number should be entered in the Additional Data column. It appears that Access will not accept a

value of 0 to place a field in the first position so you should change the position of the first field to a

higher number first.

Description
This option allows you to set a Description for a field which you see in table design mode and

should be entered in the Field Description column. Note that if you leave the default message in this

column it will be removed when you exit the record, this avoids having your Description fields

showing “(Field Description - Optional)” if you forget to delete it yourself.

Set Primary Key
This option allows you to set a Primary Key for a field or group of fields. If you want to set a single

field as the primary key you should leave the Additional Data column blank, the name in the Field

Name column will be set up as the first key field. If, however, you want to have two or more fields

to be primary keys you should enter the extra field names in the Additional Data column separated

by commas and with no spaces before or after the commas. For example – User ID,User Name,User

Type. The field entered in the Field Name column will still be the first key field. The primary key

field will be allocated the name PrimaryKey as Access normally does. Note that if you leave the

reminder message in the Additional Data column it will be removed when you exit the record, this

avoids generating an error when the program tries to index non-existent fields..

Indexed (No)
This option allows you to remove an Index for a field (including primary keys), no other parameters

are required.

Indexed (Dup OK)
This option allows you to set Indexed Yes (Duplicates OK) for a field, no other parameters are

required. The field name is allocated as the Index name for this option.

Indexed (No Dup)
This option allows you to set Indexed Yes (No Duplicates) for a field, no other parameters are

required. The field name is allocated as the Index name for this option. Obviously you must ensure

that there are no duplicate records in the client’s table for this field before changing this property.

Set Compression
This option sets the Unicode Compression property for Text and Memo fields to Yes, no other

parameters are required. Normally it would not be needed since new fields default to Yes anyway.

However you may need to change it on some existing fields.

Fill With
This option is not actually a field property but it allows you to fill a field for all records with a

specific value. For example, suppose you add a new currency field to a table and you set the Default

property to 0, you would probably want this field in any existing records to hold the same value

since any new records added to the table would set the field to 0. You can also use it to populate an

existing field with the same value, note that only fields that are NULL will be filled. If you want to

fill all records regardless of what is currently present then remove the WHERE criteria clause in the

FillField procedure (although I prefer to do this with an Update query, if required).

Enter the value in the Additional Data column, currency values should be entered without any

currency symbols. Date values should be entered using the local date format (i.e. 10/2/2006). If a

text string is entered any embedded double quote characters are converted to two single quote

characters (you do not need to surround text with single or double quotes).

Rich Text New
This option allows you to change a memo field into a Rich Text type field (or back to a Plain Text

type field). Enter Yes in the Additional Data column to make the field Rich Text and No to make it

Plain Text. If you want to add a new field as a Rich Text field you should set the field type to Memo

and then add the Rich Text property. Note that this will only work on Access 2007 that uses the new

.accdb type format and if you add a Memo field, with no property defined, it will default to Plain

Text.

Smart Tags New
This option allows you to add Smart Tags to any field that supports them. You should enter the

smart tag ID in the Additional Data field. The easiest way to do this is to create a field with the

appropriate Smart Tags property and then copy and paste the Smart Tags ID string into the Update

table. Note that this will only work on Access 2007 that uses the new .accdb type format.

Add Reference Table New
When you first install the Update code in your database project you need to add the ubeVersion field

to a ‘single record’ table in the back-end file. This is simple enough to do for a new project or if you

have easy access to your client’s back-end file, you can just add a new table with the ubeVersion

field to your back-end file and your client’s back-end file, link the table to the front-end file and then

use the Back End Update code as described above.

However, you may have the situation where the database is already in use and the client is at a

location that is not easily accessible, perhaps in another city or country. In this case you will need

some method to add the new table to his back-end file before you can use the update code. This

version includes code that allows you to do that.

First you should make sure that your back-end file is the same as his back-end file (as far as the table

design is concerned that is, the actual data could be different, of course). Import the update table,

forms and module into your front-end file as described earlier. Open the ubeUpdateCode module

and find the following line of code near the beginning of the module.

Public Const gRefTable = “tblGeneral”

Change the name of the table from “tblGeneral” to whatever table name you prefer (or leave it as

it is if you do not already have a table with this name). Now open the ubeForm using the short-cut

keys (or whatever means you have chosen) and you will see the message shown below in Fig 4.

Fig 4. Add new table to back-end file warning message.

If you click No the form will close with no changes made to your database, if you click Yes the table

you have named (i.e. tblGeneral or whatever) will be added to your back-end file, linked to your

front-end file and a blank Update Back-End form displayed. Close this form and confirm that you

have a new table in the back-end file with one field called ubeVersion. It would be advisable at this

stage to send your client a copy of the front-end and instruct him what he should do. He should make

a back-up copy of his front-end and back-end files (which he should do anyway every time you send

an update) and then open the database as normal. When he runs the database for the first time he will

see the same message and he should then click the Yes button, the Update Back-End form will not

be displayed, however. When he has confirmed that the database is working correctly you can then

start adding new tables/fields, etc to the project as described above.

Remember that you can add new fields to this table for your own use but you must NOT add another

record to it.

Access 2007 Variations New
Using the Back-End Update code in Access 2007 is essentially the same as any other version of

Access except that the built-in Switchboard form design is different when using the .accdb format. If

you use the wizard to create a switchboard form using this format the form does not have any VBA

code associated with it, it uses Macros to perform all the functions instead.

To check for updates you can call the UpdateBackEndFile function from the Switchboard form’s On

Open macro. To do this first design your Switchboard form using the wizard as normal and then

open the Switchboard form in Design mode. The On Open event property should show [Embedded

Macro], click on the … button to display the Macro dialog form similar to Fig 5 below.

Fig 5. Typical Access 2007 ‘On Open’ embedded Macro.

Click in the Action column on the next blank line and select Run Code from the drop down, then in

the Function Name field at the bottom of the form enter “UpdateBackEndFile(False)” (without the

quotes). You could also enter some comments in the Comment column if you want. Now click once

on the record button for this line to highlight it and then drag it up the list so that it is on the first line

(to ensure that it runs before any other actions). Save the Macro and exit.

If you are using any table re-linking code you should do the same but make sure that the re-linking

code runs before the Update Back-End code.

Upgrading from Version 1.1 New
If you have been using the previous version of this code and you are upgrading to the newer version

you will need to make the following changes.

The table design of ubeTable has not been changed so any existing update records will still work

correctly. You will need to replace the form, ubeForm, (form ubeUpdating has not been changed)

and the module, ubeUpdateCode, with the new versions. Obviously you will then also need to

change the gRefTable variable to the table name that you are using as well as any other changes you

may have made to the code.

The only other change you may need to make is to the line of code that calls the UpdateBackEndFile

function in your start up code. The function has been changed slightly as it now always returns True

when called from the start up code, this was changed to make it compatible with Access 2007 Macro

use. As described in the Installation section above, you can change it to call the function and ignore

any value returned, if the update should fail or the user cancels the update, the application now quits

before the function returns. On the previous version the application quits when a False value is

returned, if you have changed that code to do something else then you will need to rewrite that part

of the code accordingly.

Error Trapping
Error trapping is a bit tricky in code like this because there are two separate stages of operation. The

first is when you update your own back-end file during the development stage and the second is

when your client runs the update on his copy of the database.

If an error occurs the update operation immediately stops, an error message is displayed and then the

routine exits. If an error is detected during the development stage, i.e. when you click the Update

Back-end button on the Update form, you will get an error message dialog with the reference

number of the line that failed displayed in brackets.

If an error occurs when the code is run from your Start Up form the application will quit

immediately. Normally this would not happen for you, the developer, because you will have fixed

the problem before you close down the database. For your client, however, it is probably ‘restore

from back up’ time. If this does happen to you, you can easily get back in to the database by using

the Shift key on start up but this is probably not an option for your client, especially if they are using

a .mde version.

The solution, of course, is to find and rectify any problems during development so that the client

does not have any problems when updating the data.

One option you do have when errors occur is to wind back the version number on your back-end file

by changing the Last Update Ref field to an earlier number and then running the update again. This

works quite well for changes to properties but not so much for new or deleted objects. For example,

if you add a new table which gets added to the back-end but then fails because of a field property

error (or whatever) you cannot just go back and do it again as you will get another error because the

table already exists (unless you open the back-end file and delete it manually first). You can use this

facility, therefore, but use it with care.

Disclaimer
This is the usual disclaimer, I or the Web Site host do not take any responsibility for any damage

done to your or your client’s database files as a result of using this back-end update code. This is

especially important for this software because your client’s back-end file is probably invaluable to

him and he won’t take kindly if it is corrupted by his own developer. For this reason the ONLY real

safeguard is a complete back up of the back-end file and the existing front-end file before any

updates are attempted. It may be possible to build into the code some sort of automatic back up (for

the back-end file at least), although I haven’t done so on this version because I have managed to

train my clients to back up everything before they make any updates to their database files.

Acknowledgements
To the following experts for help with this project :-

Getz, Litwin and Gilbert (for Access 2000 Developers Handbook).

Dirk Goldgar and Allen Browne for help with Relationships code.

Michael H for some useful VBA code.

Contact
If you find any errors in this document or a bug in the code then please send me a fix, (if possible).

If you have any suggestions for improvements which will benefit other developers, please let me

know, if it is just for your use then feel free to change the code as you see fit.

My e-mail address is pdh_software@btinternet.com

Peter D Hibbs Ringwood, Dorset, United Kingdom.

History
Version 1.0 1 September 2006.

Version 1.1 11 November 2006 Added code to set recordset and database to Nothing on exit.

Moved ‘Updating’ form code so it does not display unless

actually updating tables.

Version 1.2 1 August 2008. Added Hyperlink type fields.

Added Caption property.

Added Rich Text property for memo fields (Access 2007).

Added Smart Tags property (Access 2007).

Added Attachment type field (Access 2007).

Added facility to create reference table in BE automatically.

Added tutorial using Northwind database.

Version 1.3 27 February 2010 Fixed bug in Fill With code that did not fill Boolean fields

correctly.

Fixed bug that sometimes did not show entries on form in order

of ID field.

mailto:pdh_software@btinternet.com

Northwind Database Tutorial New

Introduction
This tutorial will use the standard Northwind database provided by Microsoft to show you how to

convert your database to use the Update Back-End code. You could then use this database to try out

any additions that you want to use on your own system.

The two files provided in the zip file are North Wind.mdb and North Wind_be.mdb. This is the

same demonstration database provided by Microsoft except that it has been split into front-end and

back-end files and has also been converted to Access 2000 format, (actually the front-end file has

two additional tables, a query and a module added to save you a bit of time later).

Install Update Code
To test this demo first create a folder called UBE on the C: drive and copy the two files into it, this

should ensure that the front-end will link to the back-end correctly. If you really need to use a

different folder location then you should re-link the front-end and back-end using the Linked Table

Manager when you first open the database. When you have the two files set up and confirmed that

the database is working correctly you should then make a copy of both files which will be used later

to test the update facility.

The procedure to add the update code to this database will basically be the same procedure for your

own database and is as follows :-

1. Open the front-end file (North Wind.mdb in this demo) and import all the database objects

from the ubeUtility V1-2.mdb file, that is table ubeUpdate, forms ubeForm and

ubeUpdating, macro AutoKeys (if you don’t want to use a short cut key to open the Update

form or you already have an AutoKeys macro you don’t really need this one) and module

ubeUpdateCode.

2. Open any code module and run the Compile option (Debug > Compile Northwind) to ensure

that there are no duplicate procedure names or other errors, etc.

3. Open the ubeUpdateCode module. At the top of the code you will see this line :-

Public Const gRefTable = "tblGeneral". If you want to use a different table

name for the reference table then change it here but for this demo we will just leave it as

tblGeneral. Exit the module code.

4. Now you need to add one line of code to your start up form or module to call the update code

in the ubeUpdateCode module each time the database is opened and it will depend on what

code is run when the database is started. It needs to run before any other actions in your

database but after any automatic re-linking code which re-links your front-end to the tables in

the back-end. In this North Wind database the Startup form is opened from Tools > Startup

> Display Form/Page: and the On Open event of the Startup form runs the OpenStartup()

procedure in the Startup module. So for this demo, open the Startup code module and near

the top of the page there is this line of code:- On Error GoTo OpenStartup_Err

Insert this line of code immediately after that line :- Call UpdateBackEndFile(False)

Note that the user has the option to not show the Startup form each time this database is

opened by ticking a box on the form, you should make sure, however, that you do not

provide a similar option on your own database because if this form is not displayed, then the

UpdateBackEndFile function is not run. I usually provide a switchboard form on start up

and add the line of code to the Open event of the form. You could also use an AutoExec

module to run the code. If you are using Access 2007 in .accdb mode you should also read

the Access 2007 Variations section above.

5. Now open the ubeForm form. You can just double-click the name in the database window as

normal or use the short cut key combinations (Ctrl + Shift + Z) provided by the AutoKeys

macro (assuming that you imported it earlier). Note: I have found that, in Access 2000

anyway, this does not work immediately but if you open the AutoKeys macro in Design

mode and save it again it works OK after that.

6. When you first attempt to open the ubeForm the code checks for the reference table in the

back-end and when it does not find it, an error message is displayed, as shown in Fig 4

above. If you click No then no action is taken, if you click Yes then the table (tblGeneral or

whatever name you chose) complete with the ubeVersion field, is added to the back-end file

and then linked to the front-end file. The main (blank) Update Back End form is then

displayed. You could start adding new fields, tables, etc to the back-end immediately but it

would probably be advisable to exit the database at this stage, run it again and check that

everything still works correctly and then send your client a copy of this front-end so that they

can update their own back-end with the new reference table. See below for details of what

the end user needs to do when they first receive this version of the front-end file.

That is all you need to do to prepare the database for back-end updates. You can now start adding

new tables and/or fields as and when they are required.

Updating Client’s Back End File
When you send the new version of the front-end file to your client he will run the database and will

immediately be shown the same error message shown in Fig 4 above. He should click on Yes which

will add the reference table to his back-end file and then run the database normally. If you have

already added some tables and/or fields to this initial version, then those updates will be executed as

well.

Note that the situation regarding the front-end/back-end code is slightly different for your update and

your client’s update. When you opened the Update Back End form for the first time there was no

reference table (tblGeneral) in your back-end file or a link to it in the front-end file, this generates an

error 3265. However, when you send a copy of your front-end to the client, the front-end has a link

to the reference table but the client’s back-end file does not have the table itself, this will generate

error 3078. The code handles both situations to provide the table and/or link but you may need to be

aware of this if anything other situation should arise.

Updating Back End Schema
This section shows a few methods of adding tables and fields and changing property settings in the

North Wind database, try them out yourself to see how easy it is to change the back-end.

Exercise 1. Add two new tables and link them together.

The current database has a Customer table with fields for a Contact Name and Contact Title. Let’s

suppose that any company could have multiple contact names, this means that we need another table

to store the contacts and link it back to the Customer table. Let’s also suppose that we would want to

store a set of notes for each contact name, this means we need another table to store the notes and

link it back to the contacts table. So we need to add a table for contacts, call it Contacts, and also a

table for diary notes, call it DiaryNotes. We need to link the Customer table to the Contacts table

as a 1 to Many relationship, we can use the CustomerID field which is the Primary Key field in the

Customers table and we need to link the Contacts table to the DiaryNotes table, also a 1 to Many

relationship.

When we have created the Contacts table we need to copy the contact names from the Customer

table to the Contacts table and then we can delete the ContactName field in the Customer table. As

the ContactTitle field and Phone field also ‘belong’ to the contact we will copy those over as well.

As mentioned earlier, there are two methods to create tables in the back-end and for this exercise it is

better to first create the blank tables and then copy them into the back-end. To save you time I have

already created two tables – Contacts and DiaryNotes. If you open the tables you will see that the

table Contacts has six fields and table DiaryNotes has four fields and neither has any records. We

will use field ContactRef (AutoNumber) as the primary field to link to field ContactRef in table

DiaryNotes.

Open the Update Back End form and enter the following into the first seven rows :-

Ref Action Table/Query Name Field Name
Field
Type

Property Additional Data
Field
Description

1 Copy Table Contacts

2 Copy Table DiaryNotes

3 Set Relationship Customers CustomerID 1-n Casc Upd/Del Contacts CustomerID

4 Set Relationship Contacts ContactRef 1-n Casc Upd/Del DiaryNotes ContactRef

5 Run Query ubeUpdateContacts

6 Delete Field Customers ContactName

7 Delete Field Customers ContactTitle

Here is a brief description of each line, see the full explanations in the Action Codes section above.

Line 1 – Copies the Contacts table to the back-end.

Line 2 – Copies the DiaryNotes table to the back-end.

Line 3 – Create a 1 to Many relationship between tables Customers and Contacts using field

CustomerID and with Cascade Updates and Deletes active.

Line 4 - Create a 1 to Many relationship between tables Contacts and DiaryNotes using field

ContactRef and with Cascade Updates and Deletes active.

Line 5 – Run the ubeUpdateContacts update query which copies the ContactName, ContactTitle

and Phone field data from table Customers into table Contacts. I have already saved this query in

the database to save time.

Lines 6 & 7 – Delete the ContactName and ContactTitle fields from table Customers, the Phone

field is left in table Customers because that really belongs to the company.

Note that in some columns you can choose the table/field from the drop down and others you will

have to enter the names manually, this is because the data may or may not be available at the time

you are entering the data.

When you have entered all the lines above click the Update Back End button, the updating form

will show briefly and then the All Updates Completed OK message will be displayed. Close

the form and open the Customers, Contacts and DiaryNotes tables in turn, check that the two fields

have been removed in the Customers table and that the Contacts table is populated with the contact

names. The DiaryNotes table will be empty at this time, of course. You could also open the back-

end file and check that the relationships have been set up correctly. If you were doing this for real

you could now add the appropriate forms to display the Contacts and DiaryNotes table data.

Exercise 2. Add new field and change field properties.

Let’s assume that some company names in the Customers table are longer than 40 characters (which

is what the field size property is set to). We will change it to 100 characters. Also in the Customers

table we want to add a Hyperlink field to display Word documents associated with the company. The

Orders table has a date field called OrderDate where the Format property is set to Medium Date,

we will change that to Short Date (of course, it makes no difference to how the date is stored but it

will demonstrate the facility). We will also add a new field to the Products table called Weight to

store the weight of each product in Kilograms. In this case the Update code automatically sets the

Default property of all Numeric fields to 0 (although you can change this if you want to), this means

that when the user adds a new record to the Products table the Weight field will be set to 0 until a

new value is entered by the user. The problem then is that the Weight field for all the existing

products will be Null which may cause problems for various queries and reports if this field is used

as part of a sum or totals calculation. We need to fill all the existing product records with 0 when the

new field is added. You could do this as a separate line but most properties can be set at the same

time as a new field is added to a table.

Add the following records to the Update Back End form :-

Ref Action Table/Query Name Field Name Field Type Property Additional Data
Field
Description

8 Set Property Customers CompanyName Text Field Size = 100 Changed size

9 New Field Customers Documents HYPERLINK New Hyperlink

10 Set Property Orders OrderDate Format = Short Date
Changed
format

11 New Field Products Weight SINGLE Fill With = 0 Add weight

Here is a brief description of each line, see the full explanations in the Action Codes section above.

Line 8 – Change Text Field Size property of CompanyName to 100 characters.

Line 9 – Add new Hyperlink field called Documents to table Customers.

Line 10 – Change format of OrderDate field to ‘Short Date’ in table Orders.

Line 11 – Add new field called Weight to table Products and set all existing fields to 0.

Click the Update Back End button to change the back-end tables. Close the Update Back End

form and check the tables to see if the changes have been made.

Exercise 3. Execute VBA code on update.

Sometimes it is necessary to make changes to the back-end file using VBA code and you can do this

using the Execute Code command. What you should do is write the VBA code and save it in a

module and test it thoroughly, I normally create a module called ubeMiscellaneousCode and save

any procedures, functions, etc in this module so that they are all kept together and this code is ONLY

used by the Updater code. I have created a module with this name in the demo program for you to

try out.

It is useful to change the SubdatasheetName property for all back-end tables to [None] to speed up

network traffic. The ubeMiscellaneousCode module has some code to do this (provided by Tom

Wickerath, I think). If you open any table that is linked to another table (table Orders for example)

you will see a small + sign at the left of each record and when you click on that symbol, the

associated table data is displayed. Setting the SubdatasheetName to [None] on all tables will

remove that facility.

Add the following record to the Update Back End form :-

Ref Action Table/Query Name Field Name Field Type Property Additional Data
Field
Description

12 Execute Code TurnOffSubDataSh

Click the Update Back End button to change the back-end tables. Close the Update Back End

form and check the tables to ensure that the + symbol is no longer available.

Exercise 4. Try your own updates.

Now try out your own changes. Use this database as a test bed for any changes you may need to

make in your own projects.

Updating Client Back End
You can test what the client will see when you send him a copy of the new front-end file. Close the

database and replace your current back-end file with the copy of the back-end file that you made

earlier (before adding any tables).

Run the database again which will simulate what the client will see when he does the same, as his

back-end file will not have the new tables/fields etc. The message shown in Fig 4 above will be

displayed first, click the Yes button to add the reference table to the back-end file.

If you have then made more changes to the back-end (as we have for this demo) then the message

shown in Fig 2 above will be displayed. Click Yes again to make the changes, the normal start up

form should then be displayed after a short delay. Check the back-end file to ensure that all the

requested changes have been made.

Note that if you have also provided some re-linking code to link the front-end to back-end then that

code will run before the updating code.

