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’ INTRODUCTION

Research findings over the past decades have highlighted the
benefits of monitoring organic matter (OM) fluorescence to
evaluate water quality in natural1,2 and engineered3,4 aquatic
systems. Produced by the breakdown of terrestrial and aquatic
plant matter to humic, fulvic, and amino acids, organic matter is
found in all natural waters. Dissolved (DOM) and colloidal forms
are often quantified indirectly using excitation emission matrix
fluorescence spectroscopy, in which samples are excited at a
range of wavelengths and emission recorded across a range of
wavelengths, generating three-dimensional intensity landscapes
called EEMs.5 While the potential for accessing important
information on biochemical processes via fluorescence is
recognized,6,7 a major obstacle is that the chemical and biological
basis of fluorescence variability is poorly understood,8 leading to
difficulties in identifying appropriate monitoring parameters.
A limited number of fluorescence peaks (referred to as Peaks
A, B, C, M, and T) that apparently explained most differences
between OM spectra were documented fifteen years ago.5

However, even today, OM fluorescence is still most often
described in broad terms as protein-like (tryptophan- or tyro-
sine-like), humic- or fulvic-like, reflecting its still-incomplete
chemical characterization.

A significant advancement in the interpretation of EEMs
occurred with the introduction to the field of Parallel Factor
Analysis (PARAFAC).9 PARAFAC enables the mathematical
separation of chemically independent but spectrally overlapping
fluorescence components. In theory, providing that the under-
lying assumptions of independence, linearity, and additivity are
upheld, PARAFAC is capable of resolving true underlying
chemical spectra.10 In the case of natural organic matter; how-
ever, it is unclear how often this actually occurs, and despite a
recent proliferation of PARAFAC studies of (D)OM data sets
(e.g., refs 9 and 11-16), few authors have identified more than
broad spectral similarities between PARAFACmodels generated
from unrelated data sets. Whether this may be a function of
genuine differences between data sets, or is due to violations of
the underlying model assumptions, different constraints or
criteria imposed during modeling, or a combination of real
differences and artifacts, remains to be elucidated. Furthermore,
the chemical interpretations assigned to similar-appearing
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ABSTRACT:Organic matter (OM) is a ubiquitous constituent
of natural waters quantifiable at very low levels using fluores-
cence spectroscopy. This technique has recognized potential in
a range of applications where the ability to monitor water quality
in real time is desirable, such as in water treatment systems. This
study used PARAFAC to characterize a large (n = 1479) and
diverse excitation emission matrix (EEM) data set from six
recycled water treatment plants in Australia, for which sources of
variability included geography, season, treatment processes, pH
and fluorometer settings. Five components were identified
independently in four or more plants, none of which were
generated during the treatment process nor were typically
entirely removed. PARAFAC scores could be obtained from
EEMs by simple regression. The results have important implica-
tions for online monitoring of OM fluorescence in treatment
plants, affecting choices regarding experimental design, instru-
mentation and the optimal wavelengths for tracking fluorescent
organic matter through the treatment process. While the multimodel comparisons provide a compelling demonstration of
PARAFAC’s ability to distill chemical information from EEMs, deficiencies identified through this process have broad implications
for interpreting and reusing (D)OM-PARAFAC models.
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PARAFAC components in different published studies is often
contradictory, with “terrestrial” components in some models
considered to be “marine” components in others, and “quinone”
components indicative of redox state identified in some models
but not in others.9,11,13,16

Clearly, a better understanding of organic matter fluorescence is
needed, facilitating more coherent interpretations of PARAFAC
components among studies. Furthermore, the strengths and limita-
tions of PARAFAC in this application need careful examination. For
example, we are aware of no studies in this field demonstrating that
PARAFAC components provided greater resolution for discriminat-
ing among samples, or greater predictive power, than a well-chosen
subset of EEM measurements. Further, a number of recent studies
have refitted existing PARAFAC models to new data sets,14,17,18 a
practice that assumes that all important fluorophores in the new data
set are accounted for in the original model, and that differences
between themodel and reality would not affect interpretation. Actual
sensitivity analyses, however, are lacking.

These questions are particularly relevant to online monitoring
applications, where any requirement to acquire, manipulate and
interpret large data sets in real-time presents a significant cost and
technological barrier. Continuous monitoring of organic matter
fluorescence in oceans, rivers and water treatment facilities is of
great interest,19-22 because many parameters traditionally con-
sidered to be important indicators of water quality correlate with
fluorescence, including total and dissolved organic carbon
(TOC, DOC), Biochemical and Chemical Oxygen Demand
(BOD, COD) and ultraviolet (UV) absorbance (reviewed in
23). However, inconsistent data processing 24 together with
differences in wavelengths studied 23 obscure the identification of
consistent trends across studies.

The aims of this study were to (1) obtain a robust character-
ization of fluorescence in a broad selection of Australian muni-
cipal water recycling treatment plants, using a diverse time-series
data set incorporating multiple treatment stages, (2) identify
consistent features across treatment plants to inform the design
and selection of online monitoring tools, and (3) critically
examine the behavior of PARAFAC when modeling large and
diverse data sets in order to provide new insights on the
strengths, limitations, and interpretation of PARAFAC models
in the analysis of organic matter fluorescence.

’METHODS

Six water recycling treatment plants in four Australian states
were sampled over a 10-12 week period between March 2008
and June 2009, typically on a weekly schedule. These were
Western Treatment Plant (Western TP, n = 246), Rouse Hill
Recycled Water Plant (Rouse Hill RWP, n = 195), Sydney
Olympic Park Water Reclamation and Management System
(WRAMS, n = 364), St Mary’-s Replacement Flows Project
AdvancedWater Treatment Pilot Plant (StMary’s RFP, n = 261),
Pimpama-Coomera Recycled Water Treatment Plant (Pimpama
RWTP, n = 172), and Beenyup Pilot Reverse Osmosis Plant
(Beenyup ROP, n = 241). Beenyup ROP and St Marys RFP were
pilot scale operations that have since been replaced by full-scale
plants operating at the same sites. Plant influents included
municipal sewage, tertiary treated effluent and stormwater.
Fifty-one sites were sampled representing various treatment
stages; see the Supporting Information for details.

Whole water grab samples were collected in polyethylene
terephthalate (PET) bottles or gamma-sterilized polypropylene

(PP) bottles. Samples were 50 mL triplicates extracted in the
laboratory from a 500 mL sample (Rouse Hill RWP) or 50 mL
replicates collected by plant operators otherwise. Samples were
transported cold to the University of New SouthWales (UNSW)
and analyzed within 48 h. Laboratory experiments indicated no
fluorescent leachates from the PET or PP containers over this
time frame.

No sample preparation was undertaken prior to spectral
analysis. Absorbance spectra (200-600 nm) were measured in
a 1 cm cell using a Cary Bio50 UV-vis spectrophotometer
(Varian, Australia) and used to develop a matrix of correction
factors for each fluorescence EEM accounting for inner filter
effects.25 Samples with absorbance exceeding 0.3 at 254 nm were
excluded,25 giving a data set of 1479 EEMs. Fluorescence was
measured with a Varian Cary Eclipse spectrophotometer (Varian,
Australia) for excitation wavelengths 200-400 nm in 5-nm
intervals and emission wavelengths 280-500 nm in 2-nm
intervals in a 1-cm cell. Different methods were applied for
samples pre- and post-RO treatment. Pre-RO samples were
scanned at 9600 nm min-1 with 5-nm slit widths on excitation
and emission. Low fluorescence EEMs acquired from post-RO
samples (14% of samples) were averages of three scans using 10-
nm slit widths. EEMs were corrected for instrument bias and
inner filtering effects, blank subtracted and normalized to the area
under the water Raman peak of the blank at 350 nm, producing
data in Raman Units.24 Sample pH was measured in the
laboratory with a HACH HQ14d portable pH meter (HACH,
Australia); median pH in each plant ranged between 5.6 and 7.1
(see the Supporting Information).
DataAnalysis.The fluorescence data sets were modeled using

PARAFAC,10 which uses an alternating least-squares algorithm
to decompose the data signal into a set of trilinear terms and a
residual array:

xijk ¼ ∑
F

f ¼ 1
aif bjf ckf þ eijk i ¼ 1, :::, I; j ¼ 1, :::, J;

k ¼ 1, :::,K; f ¼ 1, :::, F

where xijk is the intensity of the ith sample at the jth
variable (emission mode) and at the kth variable (excitation
mode); aif is directly proportional to the concentration
of the fth analyte at emission wavelength j; bjf is a scaled estimate
of the emission spectrum of the fth analyte; ckf is linearly
proportional to the specific absorption coefficient (e.g., molar
absorptivity) at excitation wavelength k and eijk is the residual
noise, representing the variability not accounted for by
the model.
PARAFAC models were generated using the PLS toolbox for

Matlab (5.8, Eigenvector Research Inc.) with data scaled to unit
variance in the sample mode and non-negativity constraints
applied on all modes. Models were first derived for each
treatment plant independently, and then for the global data set,
producing seven models (Table 1). Measurements at excitation
wavelengths below 240 nm excitation were excluded, as were
outlier samples identified via influence and leverage plots (<1%
of 1479 samples).26 PARAFAC models were generated for 2-8
components, with the largest model selected for which spectra
were reproduced identically in random halves of each data set (14
additional models). Scores were recovered by modeling the
unscaled data using the validated excitation and emission load-
ings as preconditions, then multiplied by maximum excitation
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and emission loadings to obtain maximum fluorescence of each
component (Fmax) in Raman units.
To compare betweenmodels, Tucker congruence coefficients13

were determined for each excitation and emission spectrum from
each plant model and compared to the global model. Two
components were considered a match if they had the highest
correlation coefficients on both excitation and emission spectra of
all possible pairs of components.
To assess the potential for estimating PARAFAC scores from

EEMs, the measured data were regressed against the maximum
fluorescence of each component determined via PARAFAC.
Thus for each wavelength pair in the EEM, an n x 1 vector of
concentrations were extracted from each data set of n EEMs and
regressed against the n x 1 vector of PARAFAC scores, with this
procedure repeated for each component in the PARAFAC
model. Linear regression was performed to obtain slope (m)
and correlation coefficients (R2) as a function of wavelength.

’RESULTS AND DISCUSSION

Spectral Conformity among PARAFACModels. PARAFAC
models identified 5-7 independently varying fluorescing com-
ponents in each plant. All models converged quickly and each
was reproduced practically identically in independent halves of
the data set. In the global model encompassing samples from all
treatment plants, a total of seven PARAFAC components were
identified (Figure 1), with the variance explained by each
component in the model (of the normalized data set) decreasing
sequentially for components G1-G7. When the model was
applied to the unscaled data set in order to recover Fmax, variance
explained by each component in decreasing order was G3, G1,
G5, G6, G2, G7, G4 with components G4 and G7 each
accounting for <0.5% of total variability.
Comparisons of model spectra between plants revealed strik-

ing similarities (Figure 1). Components G1-3 representing
humic- and fulvic-like fluorescence were identified in all six
plants. All plants also had one tryptophan-like component
(G6) as well as either tyrosine-like G4 and/or G7. Component
G5, which had an emission spectrum almost identical to compo-
nent G6, was found only in the global model; in individual
models, component G5 was absorbed within the spectra of G6.
Only two different components were identified exclusively in
individual models (Figure 1, panel X8); one with an excitation
spectrum very similar to G7 but with a blue-shifted emission
spectrum was found in WRAMS and St Marys RFP (both in
Sydney), and another with an excitation spectrum similar to C6
but a broader emission spectrum was unique to Beenyup ROP in
Western Australia.

The spectra of components identified in different models
varied in peak location and/or spectral shape. Differences in
location were observed primarily for components G2 and G6,
with spectral shifts up to∼15 nm observed in both excitation and
emission spectra (Figure 1). The shape of the excitation spec-
trum was particularly variable for component G1 and for several
other components at lower wavelengths (typically below
300 nm). Thus although component G1 exhibited a single
emission spectrum, three slightly different excitation spectra
were derived, each appearing in the model for two plants.
The irregular excitation spectra for component G1 in the

Western TP and Rouse Hill RWP models coincided with a
spurious secondary emission peak for component G7 having
similar characteristics to the G1 emission spectra, and in the
Rouse Hill RWPmodel, slight distortion of component G3. This
indicates that at times when PARAFAC had difficulty distin-
guishing two components, the models returned hybridized
spectra. Spectra for the global model, although not conforming
to an average spectrum, lay within the range of spectra exhibited
across the individual plants.
Although the convergence of all seven models upon similar

spectral shapes provides convincing evidence that real chemical

Figure 1. Comparison of PARAFAC components (excitation to the left
of emission spectra) in samples from six water recycling plants. Spectra
were derived from six independent models of fluorescence EEMs from
Western TP, blue dash-dots; Rouse Hill RWP, green dashes; WRAMS,
pink dots; St Marys RFP, black dash-dots; Pimpama RWTP, red dash-
dots; Beenyup ROP, orange dots; and matched to similar components
(G1-G7) in the global model of the entire data set (olive green solid
line). Panel X8 depicts each unmatched component.

Table 1. Description and Wavelength Positions of Peak Excitation (λex) and Emission (λem) for PARAFAC Components in the
Global Model (G) and Wavelengths That Track them in EEMs (E) with Correlation Coefficient Rsq

a

λex/λem G λex/λem E Rsq description

G1 <250, 370/464 390/472 0.96 H-ter: Terrestrial humic-like fluorescence in high nutrient and wastewater impacted environments

G2 <250, 320/400 310/392 0.91 H-mic: Microbial humic-like fluorescence

G3 350/428 350/428 0.99 WW: Wastewater/nutrient enrichment tracer

G4 250/304 250/304 0.46 Protein - tyrosine-like, also observed in combination with G7

G5 <250/348 290/352 0.84 Protein, tryptophan-like, also observed in combination with G6

G6 290/352 290/352 1.0 Tryp: Protein, tryptophan-like

G7 270/300 270/304 0.97 Tyro: Protein - tyrosine-like
a See the Supporting Information for quantitative comparisons between G1-G7 and similar components in 11 previous studies.



2912 dx.doi.org/10.1021/es103015e |Environ. Sci. Technol. 2011, 45, 2909–2916

Environmental Science & Technology ARTICLE

phenomena were identified, core consistency (CC) statistics
that track the adherence of the model to the PARAFAC algo-
rithm were well below the ideal of 100%, indicating possible
overfitting.27 No six-component model could be validated in
split halves. However, a five-component global model that
combined component G5 with G6 and component G4 with
G7 had a relatively high core consistency (CC = 60%). The
cleaving of components G4 and G7 was observed in several
individual models (Figure 1) but the cleaving of components G5
and G6 appears to be due to the X8 (Beenyup) component being
absorbed into the G6 spectra, and is probably erroneous.
Modeling by treatment stages provided further support for a
six component solution. Independent PARAFAC models of the
input (secondary and tertiary treated effluent, n = 196) and
output (recycled water, n = 158) streams identified six compo-
nents with similar spectral shapes. This indicates that no new
components were generated within the plants and all were
typically detectable following treatment.
Table 1 summarizes the peak characteristics of each compo-

nent in the global model. Comparisons with spectral data
obtained for 11 published PARAFAC models plus reference
compounds, made by overlaying spectra and calculating
factor similarity statistics, are provided in the Supporting
Information. These show that each PARAFAC component
identified in this study is common to at least two previous models
of fluorescence in wastewater, ballast water, lakes, estuaries or
the ocean. Except for shifts in excitation maxima, the spectra
for three components were almost identical to spectra for the
pure compounds syringaldehyde (C3), tryptophan (G6) and
tyrosine (G7).
Selective Removal of Components through Treatment.

The efficiency of the water recycling treatment process in
removing individual fluorescent components is illustrated in
Figure 2. For each plant, intensities are shown for the five
components common to all individual models, identified as
“WW” (G3 in the global model), “H-ter” (terrestrial humic
G1), “H-mic” (microbial humic G2), “Trypt.” (tryptophan-like
G6), and “Tyros.” (tyrosine-like G7).
In the three plants that did not implement reverse osmosis

(Figure 2A-C), most removal occurred in the first or last
treatment stages, coinciding with initial chlorine dosing. At
Pimpama RWTP, chlorination designed to achieve 10-15 mg
L-1 residual free Cl was implemented prior to the dual media
filtration process. Strong removal between stages 1-2 compared
to negligible removal by later UV and chlorination (between
stages 3-5) indicates that all of the easily oxidizable organics
were already oxidized by stage 2 (Figure 2Bii). At Rouse Hill
RWP, a large effect was associated was chlorination implemented
after UV treatment (concentration � time, CT >300 mg L-
1min-1), whereas in Western TP (CT > 30 mg L-1 min-1), the
effect was smaller. Overall, “WW” component (G3) was removed
most effectively in all three plants, particularly by chlorination,
whereas removal of tyrosine-like fluorescence was relatively poor.
The fluorescent signature of the recycled product varied between
plants, but was typically dominated by terrestrial and microbial
humic fluorescence (Figure 2A-Ciii). In the remaining three
plants (see the Supporting Information), nearly complete re-
moval of organics occurred following reverse osmosis.
Identification of Fmax from EEMs. The principle of parsi-

mony indicates that complex models are unjustified unless
they robustly deliver better solutions than simpler models.
Therefore, the relationship between PARAFAC scores and

EEM measurements, as would be obtained from simple “peak
peaking”, was examined. Figure 3 shows correlations between
PARAFAC intensities (Fmax) for components W1-W5 in the
Western TP model and fluorescence intensities in the original
EEMs. Linear regression fits (R2) range between 0.01 to >0.99
across the EEMs (left-hand panels), with the strongest correla-
tions occurring near the PARAFAC component peaks (depicted
by white crosses), and lower correlations elsewhere. Regression
slopes in the range 0-1.5 are shown in right-hand panels, with
slopes equal to 1.0 indicating that Fmax was identical (excluding
random error) to intensity in the EEM.
For component W1 in Figure 3, the regression fit and slope

(m) at the position of the secondary excitation peak (λex/λem =
300/390 nm) were both close to 1.0, indicating that Fmax for
component W1 was equivalent to EEM intensity at wavelength
position λex/λem∼ 300/390 nm. For similar reasons, EEMs gave
accurate estimates of Fmax for components W2, W4 and W5. For
component W3, the maximum slope was ∼0.6 due to the
emission overlap with component W2, thus W3 can be only be
accurately estimated from EEMs provided that the relative
proportions of W2 and W3 do not change significantly. Compo-
nent W1, W3, and W4 peaks are located in EEM regions where
slopes were relatively stable, indicating that small shifts in the
wavelength position of measurement would not significantly
alter the equation for estimating Fmax of these components.
Conversely, theW2 andW5 peaks are located in regions wherem
changes rapidly, indicating that the equation is sensitive to
precise measurement location. These results indicate that mon-
itoring raw fluorescence at a small number of appropriate
wavelengths could capture the same essential information as
would PARAFAC analyses of full EEMs.
Sensitivity of Fmax to Model Inadequacies. An important

criterion for any complex data manipulation is that the derivation
and interpretation of models is both unambiguous and robust to
small perturbations in the sample set ormeasurement parameters
and to variations in equipment or operators. A potential weak-
ness of PARAFAC is that due to the interdependence of the
simultaneously estimated components in the model, the inclu-
sion of one or more poorly estimated components significantly
affects the spectra and scores of all other components. The effect
of applying imperfect PARAFAC models is illustrated clearly by
comparisons of component intensities according to individual
models versus the global model (Table 2, see also the Supporting
Information). We consider alternative PARAFAC models to be
interchangeable only if both of the following conditions are
fulfilled: (1) Intensities (Fmax) for corresponding components
are linearly correlated with high R2, and (2) slopem = 1, implying
that any differences in spectra between models do not signifi-
cantly affect estimated intensities.
In paired comparisons of corresponding individual and

global components, the first condition was nearly always fulfilled
(typically R2 > 0.95), however, regressions slopes ranged be-
tween 0.73-1.22 and were almost always significantly different
from 1.0 (Table 2). Thus, significantly different fluorescence
intensities and ratios of components were predicted using
each individual model compared to the global model. This
result highlights the problems inherent in relying upon single
PARAFAC representations of diverse sample sets. It also implies
that the practice of forcing existing PARAFAC models onto new
fluorescence data sets is very likely to generate systematically
biased estimates of fluorescence intensities and fluorescence
ratios if the refitted model does not completely and accurately
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represent spectra for each of the underlying components in the
new data set.
Toward a Unified PARAFAC Model. We are aware of more

than 30 published PARAFAC models of OM fluorescence in
natural waters, together with a growing number from waste-
waters and industrial processes. While each new study draws
attention to similarities with previously identified spectra, notice-
able differences are just now beginning to emerge. Component

G1 in this study, which was the dominant terrestrial humic-like
fluorescence, is superficially similar to at least one component
found in nearly every PARAFAC model of OM fluorescence.
However, a precise match for its emission spectrumwas observed
only in three models that included samples from engineered,
wastewater impacted environments 11,15,28 (see the Supporting
Information) and in marine mesocosms installed along a Danish
fjord and subject to nitrogen and phosphorus enrichment.7

Figure 2. Removal of organic matter through the water treatment process at (A) RouseHill RWP, (B) Pimpama RWTP, and (C)Western TP. Subplots
show (i) the process train; (ii) persistence of PARAFAC components through sequential treatment stages (mean of Fmax at each process stage divided by
maximum Fmax across all stages); and (iii) final intensities of components following treatment (mean þ SD).
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Nearly all published models also include one or more microbial
(“M”) fluorescence peaks similar to G2, e.g., refs 7, 11, and 13.
Component G3 appears to have been observed twice previously,
in North American wastewaters 15 and in the Danish study,7

where it was produced by microbial degradation. Like G1, G3
appears to be a fluorescence component found in nutrient-rich
environments.
Similarly, tryptophan- and tyrosine-like components are com-

mon to practically all PARAFAC models with four or more
components, e.g., refs 9 and 11-15; however, in our study these
both had “shadow components” with very similar spectral
characteristics. Thus, two of the three “unmatched” spectra
(X8 in Figure 1) were nearly identical to PF6 described by
Dixon 12 from wastewaters and laundry effluent in Florida and
caused by detergents and optical brighteners. In the current

study, PF6 appeared in two individual models, whereas in the
other four, it was indistinguishable from tyrosine.
Insights are offered into strengths and limitations of PARAFAC

applied toOM fluorescence spectra. In this fifteen-month study of
six Australian water recycling treatment plants, PARAFAC mod-
els for different plants were surprisingly similar, despite geogra-
phically and temporally variable plant influents, variable pH and
slit widths and a data set comprising of nearly 1500 samples from
51 separate water treatment stages. This indicates that existing
PARAFAC models can help to predict the number and char-
acteristics of spectral components likely to be present in new
environments involving similar types of sources, which has
implications for all aspects of experimental design, from instru-
mentation through to sample size selection. In carefully designed
studies, PARAFAC could be a powerful ally for examining spectral
shifts due to pH, interactions with metal ions, and other matrix
effects with greater sensitivity than has been possible from
studying total fluorescence in EEMs. In this study, explicit testing
of the effects of pH on spectral shape was precluded because pH
and treatment process stage were confounded variables.
Broad similarities between OM fluorescence spectra across

world regions would seem to imply that across similar types of
environments, the number of spectrally unique fluorophores
contributing to natural organic matter fluorescence may be
relatively few, such that populating a global database of OM
PARAFAC spectra could represent a useful and achievable goal.
At the same time, limitations to the chemical interpretation of
PARAFAC components have not received enough attention in
the literature. In this study, the act of combining six data sets did
not increase the number of PARAFAC components identified.
Instead, it caused shifts in the positions of some components and
modified the spectra of others. This foreshadows limits to the
sensitivity of fluorescence for distinguishing individual organic

Figure 3. Recovery of Fmax from fluorescence EEMs via linear regression through the origin, demonstrated for Western TP. Plots show R2 on left and
regression coefficients (m) on right for each component (W1-W5) in the individual PARAFACmodel.White crosses locate the excitation and emission
peaks of the PARAFAC component.

Table 2. 95%Confidence Intervals for the Slope of the Linear
Regression of Fmax in Individual Models versus the Global
Model for PARAFAC Components G1, G2, G3, and G6a

component

plant n G1 G2 G3 G6

Beenyup ROP 241 0.85-0.85 0.85-0.85 0.91-0.91 0.80-0.82

Pimpama RWTP 172 0.99-0.99 1.19-1.22 1.16-1.20 0.85-0.88

Rouse Hill RWP 195 1.18-1.18 1.00-1.00 0.94-0.94 0.88-0.90

WRAMS 364 0.93-0.94 0.97-0.98 1.04-1.04

St Marys RFP 261 0.85-0.86 1.08-1.19 1.16-1.17 0.95-1.00

Western TP 246 0.73-0.74 1.04-1.07 1.17-1.19 0.85-0.86
a Intervals excluding 1.00 (bold type) indicate significantly different
intensities according to the two models, blank cell indicates no
correlation.



2915 dx.doi.org/10.1021/es103015e |Environ. Sci. Technol. 2011, 45, 2909–2916

Environmental Science & Technology ARTICLE

matter sources in water mixtures. Further, the presence of a
tryptophan-like “shadow component” in one plant (Beenyup
ROP, component X8) caused the erroneous splitting of compo-
nents G5 and G6 in the global model. Clearly, PARAFAC spectra
from OM data sets describe the probabilistic distribution of an
ensemble of individual spectra belonging to a range of spectrally
similar chemicalmoieties from a range of sources, rather than exact
chemical spectra. Known sources of variability in this study (e.g.,
pH, treatment processes) would undoubtedly have contributed to
PARAFAC’s difficulty. At the same time, diverse data sets are very
likely to be subject to known or unknown sources of spectral
variability,8,24 especially when samples encompass a wide range of
environmental conditions, e.g., refs 4 and 16. The effect of such
diversity on the development and application of “universal”
PARAFAC models deserves wider recognition.
Implications for Online Monitoring. Several results from

this study have direct implications for online fluorescence
monitoring of water treatment plants, including (1) a limited
number of spectrally similar PARAFAC components explained
nearly all of the OM fluorescence variability in water recycling
treatment plants across Australia; (2) similar components were
found in independent models of initial and final treatment stages,
indicating that these components were neither generated within
the plants nor typically entirely removed; (3) PARAFAC in-
tensities (Fmax) could be estimated accurately by multiplying
directly measured fluorescence by predetermined regression
coefficients for each component; (4) the magnitudes of regres-
sion coefficients varied in their sensitivity to deviations in
excitation or emission wavelength.
These results imply that instrumentation for online fluores-

cence monitoring need not be specific to plant or process stage.
In the regression of PARAFAC scores to unprocessed EEMs
(Figure 3), regression coefficients near 1.0 for many wavelength
pairs highlight the autocorrelation of large amounts of data in
EEMs. Thus across all plants and process stages, the scores for
components G1-G3 and G6-G7 could be estimated quite
accurately (R2 = 0.91-1.00) from measurements at the discrete
excitation/emission wavelengths listed in Table 1. This indicates
that monitoring via a small number of simple fluorometers with
appropriate wavelength selectivity should capture essentially the
same information as would online monitoring of full EEMs. By
default, filter-based in situ fluorometers collect fluorescence
signals over a range of wavelengths, which should ameliorate
the effect of slight variations in either the optical parameters of
the instrument or the fluorescence characteristics of samples.
However, Figure 3 suggests that greater precision and smaller
bandpasses may be more important for monitoring some fluor-
escent components than others.
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bS Supporting Information. Nine appendices are provided
reporting sample characteristics, OM removal through treatment
in RO plants, PARAFAC model loadings, model validations,
comparisons with previous studies, and sensitivity analyses
(PDF). This material is available free of charge via the Internet
at http://pubs.acs.org.
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