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a b s t r a c t

For the first time, the application of different robust data mining techniques to the assessment of water
treatment performance is considered. Principal components analysis (PCA), parallel factor analysis
(PARAFAC), and a self-organizing map (SOM) were used in the analysis of multivariate data characterising
organic matter (OM) removal at 16 water treatment works. Decomposed fluorescence data from PCA,
PARAFAC and SOM were used as input to calibrate fluorescence data with OM concentrations using step-
wise regression (SR), partial least squares (PLS), multiple linear regression (MLR), and neural network
with back-propagation algorithm (BPNN). The best results were obtained with combined PARAFAC/PLS
and SOM/BPNN. Both the numerical accuracy and feasibility of the adopted solutions were compared
and recommendations on the use of the above techniques for fluorescence data analysis are presented.

� 2011 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

Trihalomethanes (THMs) are the most common disinfection by-
products formed during the disinfection of drinking water with
chlorine [1–3]. The potential adverse health effects of THMs have
been reported by many authors and have resulted in the tightening
of regulatory standards for THMs to 100 lg/l in the UK (absolute
standard) and 80 lg/l in the US (based on running annual average)
[4–7].

The formation of THMs is a result of chlorine reacting with or-
ganic matter present in water. Organic matter removal in water
treatment is achieved by physico-chemical processes (coagulation,
flocculation and clarification, with some additional removal in fil-
tration and granular activated carbon processes), prior to disinfec-
tion with chlorine. However, the inherent physical and chemical
complexity of organic matter determines its selective removal
and hence the presence of recalcitrant residual organic matter that
can lead to the formation of THMs.

Thus, water companies attempt to improve overall organic mat-
ter removal efficiency and also to develop more accurate analytical
techniques for the identification of THMs in treated water. Stan-
dard methods of THM formation prediction involve time-consum-
ing laboratory analyses. Thus, surrogate parameters assessing
organic matter removal and THM formation in water have been

investigated, e.g. total organic carbon (TOC) removal, ultraviolet
absorbance (UV), fluorescence spectroscopy [8–12]. Fluorescence
has distinct advantages over other surrogate organic matter re-
moval parameters; specifically, the speed of analysis, accuracy of
the measurements and comprehensive organic matter character-
isation [13,14]. Fluorescent organic matter compounds are excited
with light of different wavelengths, and emission light is detected
producing a three-dimensional output (an excitation–emission
matrix, EEM) comprising more than 4000 fluorescence data points.
The EEM exhibits increased fluorescence intensities in particular
spectral regions (fluorescence peaks), depending on the organic
matter constituents present in a sample and their relative con-
centration (Fig. 1). In an earlier study, Bieroza et al. [15] related
organic matter properties and removal to fluorescence properties
derived from EEMs of raw and partially treated (clarified) water
from 16 water treatment works (WTWs) in the Midlands region
of the UK.

From the fluorescence EEMs, the presence and relative concen-
tration of particular fluorophores (fluorescent organic matter frac-
tions) can be derived. For potable water samples, three
fluorescence peak regions are of particular interest (Fig. 1): ful-
vic-like fluorescence (peak C, fluorescence excited between 300
and 340 nm, and emitted between 400 and 460 nm), humic-like
fluorescence (peak A, fluorescence excited between 220 and
250 nm, and emitted between 400 and 460 nm), and tryptophan-
like fluorescence (fluorescence excited between 270 and 280 nm
and emitted between 330 and 370 nm). Fluorescence fulvic- and

0965-9978/$ - see front matter � 2011 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2011.05.031

⇑ Corresponding author. Tel.: +44 121 414 5145; fax: +44 121 414 3675.
E-mail address: j.bridgeman@bham.ac.uk (J. Bridgeman).

Advances in Engineering Software 44 (2012) 126–135

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft



Author's personal copy

humic-like regions can be attributed to natural sources of organic
matter (e.g. derived from the decomposition of plant tissues),
whereas tryptophan-like fluorescence indicates presence of labile,
algal and microbial derived organic matter including anthropo-
genic pollution [16,17]. Fulvic-like fluorescence intensity has been
demonstrated to correlate with TOC concentration [13,18]. More-
over, previous studies have indicated that the fulvic-like fluores-
cence emission wavelength may be used as surrogate parameter
for organic matter aromaticity and hydrophobicity [14,19].

In the standard EEM examination process, the fluorescence
intensities and the spectral location of the fluorescence peaks are
derived (known as the ‘‘peak-picking’’ approach). However, to dis-
cern regularities in a dataset containing a substantial number of
EEMs, robust data mining techniques are required. The aim of this
paper is to evaluate the use of selected data mining and calibration
techniques for the comprehensive characterisation of organic mat-
ter removal at WTWs using fluorescence spectroscopy. In the work
presented here, different pattern recognition and calibration algo-
rithms are tested to retrieve fluorescence information on organic
matter variability and to correlate fluorescence properties with or-
ganic matter removal in drinking water treatment. A range of pat-
tern recognition techniques are used to reduce and decompose the
most important features of the multivariate input fluorescence
dataset. Specifically, the outcomes of principal components analy-
sis (PCA), parallel factor analysis (PARAFAC), and self-organizing
map (SOM) analysis are evaluated and compared with the standard
peak-picking method. Furthermore, different calibration algo-
rithms (multiple linear regression (MLR), stepwise regression
(SR), partial least squares analysis (PLS), and artificial neural net-
work with back-propagation learning (BPNN)) are used to correlate
organic matter properties derived from the above fluorescence
analysis with measured TOC removal at 16 WTWs.

2. Analytical methods

2.1. Fluorescence

Fluorescence and TOC analyses were carried out on samples of
raw and partially-treated (clarified) water collected monthly be-
tween August 2006 and February 2008 from 16 WTWs owned
and operated by Severn Trent Water Ltd.

Fluorescence EEMs were collected using a Cary Eclipse Fluores-
cence Spectrophotometer (Varian, Surrey, UK) equipped with Pel-
tier temperature controller. For each unfiltered water sample, the

fluorescence was measured in duplicate by scanning the excitation
wavelengths from 200 to 400 nm in 5 nm steps, and detecting the
emission intensity in 2 nm steps between 280 and 500 nm. Excita-
tion and emission slit widths were 5 nm. To maintain the consis-
tency of measurements and standardise the fluorescence data, all
fluorescence intensities were corrected to Raman peak intensity
of 20 units measured for deionised water at 348 nm excitation
and 396 nm emission wavelengths.

2.2. TOC

TOC was measured using a Shimadzu TOC-V-CSH analyser with
auto-sampler TOC-ASI-V. The non-purgable organic carbon (NPOC)
determination method was employed and the result NPOC was
calculated as a mean of the three valid measurements. The typical
error of the analyses was less than 10% indicating sufficient
precision of the TOC measurements.

3. Data analysis

3.1. Data pre-processing

Prior to all statistical and computational analyses, fluorescence
data, normalized to the intensity of Raman line of water at 348 nm
excitation wavelength, were pre-processed to remove redundant
fluorescence regions of EEMs. The Rayleigh and Raman scatter fea-
tures (i.e. EEM regions with excitation wavelengths exceeding
emission wavelengths and with excitation wavelengths less than
240 nm) were all removed as containing limited fluorescence
information and low signal to noise ratio [20,21]. The resultant
EEMs ranged from 240 to 400 nm excitation and from 300 to
500 nm emission wavelengths respectively. Finally, fluorescence
data scaling (data variance normalized to one) and mean-centring
(subtracting of variable means) was performed to reduce the con-
centration effects exhibited by intensity [22,23].

The final dataset used in the data mining analyses comprised
290 raw and 290 clarified water samples and 2515 fluorescence
excitation–emission wavelengths. For the purpose of the computa-
tional analyses, the input fluorescence data are represented as a
vector of length, m (number of fluorescence intensities measured
at m excitation–emission wavelength pairs), and number of obser-
vations (raw and clarified water samples), n.

All advanced fluorescence data analyses were carried out in
Matlab� 7.7 with the Statistics Toolbox 7.0 and Neural Network

Fig. 1. Fluorescence EEMs of raw and partially-treated (clarified water) after scatter removal. Em – emission wavelength, Ex – excitation wavelength, R.U. – fluorescence
intensity in 102 Raman units.
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Toolbox 6.0.1, on a 512 MB Dual Pentium III PC computer. For
PARAFAC and PLS algorithms, the N-way toolbox for Matlab� was
used [24], and the SOM implementation was obtained from SOM
toolbox version 2 [25].

3.2. Decomposition methods

Fluorescence EEMs contain abundant information on organic
matter quantity and quality. However, the analysis of fluorescence
data containing more than 4000 data points per EEM presents seri-
ous computational difficulties. Therefore, a common approach in
fluorescence data analysis is the decomposition of the original
EEMs into a set of fewer fluorescence parameters (of size k, and
k 6m) measured at certain fluorescence regions, e.g. maximum
fulvic-like fluorescence intensity. This ‘‘peak-picking’’ method is
useful when the spectral properties of organic matter constituents
are known or assumed a priori, and the analysis is restricted to the
fluorescence regions of particular interest (supervised analysis).
However, in many cases no preceding assumptions or knowledge
on the fluorescence data variability are given, and the aim of the
analysis is to extract the most characteristic fluorescence features
of the dataset.

To retrieve the most important information on organic matter
composition and to reduce the data dimensionality, the raw and
clarified water EEMs were processed with three decomposition
algorithms: Principal Components Analysis (PCA), Parallel Factor
Analysis (PARAFAC) and Self-Organising Maps (SOM); methods
which have previously been used for the exploratory analysis of
fluorescence data [20,23,26,27].

PCA is a multivariate method of high-dimensional data simpli-
fication, where the original data matrix, X, is reduced to a number
of principal components calculated as the directions of maximum
variance of combined variables. The calculated principal compo-
nents are in order of decreasing variance, where the first principal
component describes the greatest variance within the dataset and
all successive components account for the variance in decreasing
order of magnitude. Depending on the overall variability in data
explained by the primary components, in PCA often just the first
few components are analysed to investigate any valid correlations
and relate them to input data structure and functions. The linear
PCA projection is defined as:

Y ¼ XT; ð1Þ

where Y is the pattern matrix (scores matrix) of size n � k, X is the
input data matrix of size n �m, and T is the transformation matrix
(loadings matrix) of size m � k. The loadings matrix expresses the
importance of each variable (excitation–emission pair) in the origi-
nal data matrix, whereas the scores are coordinates of samples in
PCA projection. A detailed description of PCA transformation can
be found in the literature [26,28–30]. For examples of the applica-
tion of PCA for fluorescence data, the reader is referred to Persson
and Wedborg [26], Boehme et al. [23], Spencer et al. [31].

PARAFAC is a three-way decomposition model commonly used
in fluorescence data analysis to extract the most important fluores-
cence components (models of fluorophores) along with their spec-
tral properties (emission and excitation wavelengths) and relative
concentration in a sample. Although PARAFAC is commonly de-
scribed as three-way version of PCA with data decomposition into
scores and loadings, there are significant differences between mod-
els regarding the input data structure and model constrains
[20,22]. Unlike PCA, where an infinite number of models with
equal fit exist, the PARAFAC model produces a unique, chemically
meaningful solution [22].

The PARAFAC algorithm decomposes the three-way data array
I � J � K (sample by excitation wavelength by emission

wavelength) into a trilinear model that minimizes the sum of
squares of the residuals eijk:

Xijk ¼
XF

f¼1

AfiBfjCfk þ eijk ð2Þ

where Xijk is the fluorescence intensity measured at emission wave-
length j and excitation wavelength k for sample i, A, B and C are the
loading matrices and F is the number of components [22].

Previous PARAFAC implementations include characterization of
the organic matter-metal binding process [32], quantitative deter-
mination of the kerosene fraction present in diesel [33], classifica-
tion of ballast water [34], estuarine water [20] and edible oils [35].

The SOM is a powerful pattern recognition algorithm based on a
two-layered Artificial Neural Network (ANN), consisting of a num-
ber of interconnected single processing units called neurons or
nodes. ANNs have the ability to learn the pattern from the input
features (pattern recognition) or model input–output relationship
(calibration) based on training algorithms in which weight vectors
stored in connections between neurons are adjusted to minimise
the overall error of network prediction [36–37].

Like PCA, SOM is an example of an unsupervised clustering
algorithm in which any existing pattern is assigned to one of the
categories, not specified or not known a priori. In PCA and SOM,
the feature extraction from the input domain is performed via lin-
ear (PCA) or nonlinear (SOM) transformations of the input data on
the lower dimensionality k principal components (PCA) or a k-
dimensional map (SOM). In a SOM network, the connection
weights of size of the input data m are stored in input neurons
and during training are projected onto k-dimensional output space
[38]. The analysis of the network output provides the basis for
extraction of relationships and regularities from the original data.

The pattern recognition with SOM involves an iterative process
of neurons weights adjustment, in which for each input sample the
neuron with weights most similar to the input vector is first iden-
tified (best-matching unit, BMU). The weights of the BMU and its
neighbouring neurons are modified according to Eq. (3):

wiðkþ 1Þ ¼ wiðkÞ þ eðkÞhpði; kÞfxjðkÞ �wiðkÞg ð3Þ

where wi(k) is the previous weight of neuron, wi(k + 1) is the new
weight of neuron, e(k) is the learning rate (describes the speed of
the training process), hp(i, k) describes the neighbourhood of the
BMU, k is the number of epochs (a finite set of input patterns pre-
sented sequentially) and p is the index of the BMU neuron.

For the implementation details and examples of data analysis
with the SOM, the reader is referred to Kohonen [25,38].

In data decomposition, the original dataset containing n sam-
ples and m variables is projected onto k-dimensional space and
new coordinates (numerical transformation of m variables) are cal-
culated for each sample. Of the three data decomposition methods
evaluated in this study, PCA and PARAFAC represent multi-way
algorithms, where the original dataset is projected onto a k compo-
nents (principal components in PCA) coordinate plane with the
components scores being the numerical representations of vari-
ables. In SOM, the original data are projected on k neurons ar-
ranged in a two-dimensional map, where the original variables
are transformed into neurons weights. Therefore, pattern recogni-
tion involves analysis of the samples’ distribution in the new coor-
dinate planes calculated with each algorithm (Fig. 2).

The relationship between the original space and the PCA, PARA-
FAC component space or SOM map is expressed by loadings in
multi-way analysis and SOM component planes. In fluorescence
data decomposition, the PCA and PARAFAC loadings and SOM com-
ponent planes demonstrate the importance of particular excita-
tion–emission combinations (fluorophores) for the model and
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therefore provide a basis for interpretation of the variation in or-
ganic matter properties between samples.

To provide meaningful information on the fluorescence data pat-
terns using decomposition methods, the calculated models have to
be valid in terms of the optimum number of components (PCA), opti-
mum number and chemical interpretation of components (PARA-
FAC), and optimum number of neurons comprising the map (SOM).
In the SOM approach the map size is determined by the size of input
data, and the ratio of two greatest eigenvalues is commonly used to
calculate the map size [38]. In this drinking water fluorescence study
the final map contained 120 nodes (size 15 � 8).

3.3. Calibration methods

In the multivariate calibration of fluorescence spectra, a mathe-
matical model relating the fluorescence properties of fluorophores
(e.g. intensity) to an actual, measured quantity (e.g. TOC concentra-
tion) is developed. A set of reference samples containing both inde-
pendent variables (explanatory variables) and target values is
firstly used to calibrate the model (pattern learning), and then
the model’s prediction accuracy is tested (validation) for an un-
known set of samples. Here, the fluorescence spectra were cali-
brated with measured TOC removal for 16 WTWs. The initial
fluorescence dataset, decomposed into PCA, PARAFAC scores and
SOM normalized weights, was used as an input for different cali-
bration models. To evaluate the efficacy of the selected decompo-
sition methods in differentiating the most important features of
fluorescence spectra, the complete EEMs and peak-picking results
were also used in the calibration. The fluorescence dataset was di-
vided into calibration and validation sets by selecting 25% (70 sam-
ples) as validation samples covering the whole range of data
variation in projection of the first two principal components. The
details of the input datasets for the calibration models can be
found in Table 1.

Four different regression algorithms were tested: multiple lin-
ear regression (MLR), stepwise regression (SR), partial least squares
analysis (PLS), and artificial neural network with back-propagation
learning (BPNN). These methods are frequently used in optimisa-
tion analyses [33,39–40].

In a standard MLR model, all dependent variables are simulta-
neously regressed onto all the independent variables to minimise
the squared error of the predictions, according to Eq. (4):

Y ¼ b0 þ b1X1 þ b2X2 þ � � � þ bnXn ð4Þ

where Y is the predicted dependent variable, b0–bn are partial
regression coefficients, and X1–Xn are independent variables.

Both stepwise regression and partial least squares analysis
can be considered as extensions of the standard MLR model.
The SR analysis aims to select a statistically significant subset
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Fig. 2. Fluorescence data distribution with PCA.

Table 1
Details of the fluorescence dataset used in the calibration.

Model Data Calibration
matrix size

Validation
matrix
size

EEM Complete EEMs of raw and clarified
water

220 � 5030 70 � 5030

PEAK Fulvic-like fluorescence intensity and
emission wavelength, tryptophan-
like fluorescence intensity of raw and
clarified water

220 � 6 70 � 6

PARAFAC Scores of three PARAFAC components
of raw and clarified water

220 � 6 70 � 6

PCA Scores of first three PCA components
of raw and clarified water

220 � 6 70 � 6

SOM Normalized weights of three SOM
clusters of raw and clarified water

220 � 6 70 � 6
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of independent variables in decreasing order of importance in
predicting the dependent variable. The analysis involves sequen-
tially testing the independent variables and excluding from the
regression variables those with p-values greater than 0.05.
Although the stepwise regression model has clear advantages
of selecting and grading of independent variables, it is important
to be aware of some of the method limitations. Some authors
[41,42] underline three possible misconceptions with regard to
the application of the stepwise regression method: lack of theory
or model to support the stepwise-derived equation and the pos-
sibility of incorporating accidental variables; the conceivable
inclusion of falsely-best variables; and finally, the possible viola-
tion of the model specification due to the addition of extra
variables to the analysis.

The PLS algorithm enables sequential decomposition of an array
of independent variables into a multi-linear model in which the
scores have the maximal covariance with the yet unexplained var-
iation of the dependent variable. In the PLS model, two sets of vari-
ables, X and Y, are simultaneously decomposed into a sum of k
variables:

X ¼ TPT þ E ¼
X

tkpT
k þ E ð5Þ

Y ¼ UQ T þ F ¼
X

ukqT
k þ F ð6Þ

where T and U are the score matrices, P and Q are the loading matri-
ces, E and F are the residual matrices. The matrix Y, containing for
example concentration data of a particular fluorophore, can be de-
rived from independent data (matrix X, containing for example
the fluorescence spectra) according to Eq. (7):

Y ¼ TBQ T þ F ð7Þ

where B is the regression coefficient matrix for scores T and U.
The artificial neural network with back propagation learning

(BPNN) is the most common optimisation algorithm of neural
networks. For the given input, the actual output is compared
with the desired output, and weights are adjusted iteratively
to minimize the error of the entire network [36,43,44]. The
weight adjustment and error calculation is propagated back-
wards from the output layer until the input layer is reached.
In the BPNN, three parameters are defined: the learning rate,
the momentum factor and the range in which the initial weights
are randomized [36]. The learning rate describes the speed of the
training process, while the momentum coefficient is used in
weight updating to maintain the optimum search stability [37].
The determination of both parameters is a trade-off between
the speed of the training and the likelihood of finding the global,
rather than local, minimum. Therefore a trial-and-error proce-
dure is commonly used to adjust back-propagation algorithm
parameters [43].

Here, the Levenberg–Marquardt algorithm with early stopping
was employed for preventing the data from overfitting [46]. The
optimal network architecture was found to comprise six input
nodes (denoting 6 PCA, PARAFAC scores and SOM normalised
weights, Table 1), four hidden nodes and one output node (denot-
ing TOC removal). One hidden layer with sigmoid transfer function
was used in the model, as recommended for the purpose of multi-
variate calibration by others (Smits et al., 1994; Despagne and
Massart, 1998). The number of hidden neurons was chosen based
on analyses of the performance of different networks. In the EEM
model, for each sample a complete matrix containing 2515 fluores-
cence excitation–emission wavelengths was simultaneously pre-
sented to the network.

4. Results

4.1. Fluorescence data decomposition

The importance of a given component in multi-way analysis is
calculated as a variance explained by this component. The first
component can be attributed to the most important spectral fea-
tures of the dataset and successive components are less important
as indicated by the decreasing explained variance. In this study, the
first three PCA components explained 69.3% of the total variance
(Fig. 2, Table 2). Thus, the PCA analysis revealed the presence of
many distinctly different fluorescence features of similar impor-
tance (explained variance).

In this study, determination of the optimum number of PARA-
FAC components was a complex and challenging operation which
involved analysis of both statistical diagnostics (variance explained
by the model, core consistency analysis (CORCONDIA) [40,45]) and
component loadings. The apparently most appropriate PARAFAC
model (i.e. the one with the highest number of components, high-
est explained variance and valid CORCONDIA value (closest to
100%)) was selected (three-component model, Table 2). However,
visual inspection of the emission and excitation loadings for the
three-component PARAFAC model revealed the likely presence of
more components. From Fig. 3 it can be seen that emission load-
ings of component 1 and 2 demonstrate well-defined, single peaks,
whereas in the excitation loadings, double-peaks can be discerned
for the first two components, together with an increased signal in
the emission loading of the third component between 470 and
500 nm. Double-peaks in the loadings can be attributed to the
presence of variance which is related to another component (visi-
ble as shoulders in the loadings) and which is unexplained by the
trilinear model. An evaluation of more complex models (four and
five-components) confirmed this hypothesis, as the first two com-
ponents were partitioned into two more components of a different
excitation spectra. However, the higher-component models were
unstable as indicated by both the low CORCONDIA values and also
from the results of repeated PARAFAC analyses. For the same data-
set, different PARAFAC models were found, which is in contradic-
tion with the PARAFAC model assumption of producing a unique
solution.

PCA and PARAFAC components and SOM component planes are
models of groups of fluorophores with similar fluorescence charac-
teristics. On the basis of the spectral properties of the PCA and
PARAFAC components derived from the component loadings, the
three components were recognized as protein-like, humic-like
and fulvic-like fluorescence, a result which is in agreement with vi-
sual inspection of EEMs and the fluorescence peaks discerned (Ta-
ble 3). However, the order and specific spectral properties of each
component vary between the PCA and PARAFAC models.

The tryptophan-like component in the PCA results exhibits a
broader peak with excitation wavelengths between 250 and
300 nm and emission between 300 and 350 nm, obscured by the
region of the removed fluorescence of the Raman line. The spectral

Table 2
PCA and PARAFAC model. VARe – variance explained (%).

Component PCA PARAFAC

VARe Sum of
VARe

Residual sum of
squares

Sum of
VARe

CORCONDIA
%

1 47.3 47.3 70243.9 97.7 100.0
2 14.4 61.7 33747.4 98.9 96.9
3 7.6 69.3 24001.5 99.2 90.1
4 1.7 71.0 20623.0 99.3 14.1
5 1.0 72.0 19533.2 99.4 3.3
6 0.8 72.8 18085.9 99.4 -1.9
7 0.6 73.4 17267.9 99.4 1.1
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position of this fluorescence peak demonstrates more complex
properties compared with a well-defined tryptophan-like PARAFAC
component and thus it can be attributed to protein-like fluores-
cence rather than simply tryptophan-like. The humic-like com-
ponent in both models has a similar emission spectra with
distinctly different excitation wavelengths. The shift towards
higher excitation wavelengths in the loadings of PC2 suggests the
presence of a secondary fluorophore, i.e. the visible fraction of ful-
vic-like fluorescence. The fulvic-like PCA component indicates the
presence of an organic matter fraction with a lower degree of
hydrophobicity, rendering it more difficult to remove during the
treatment processes. The relative change in this fluorescence
between raw and clarified water appears to correlate with TOC re-
moval and thus is indicative of organic matter removal efficiency.
Conversely, the PARAFAC fulvic-like component exhibits higher
emission wavelengths pertinent to more a hydrophobic OM frac-
tion, which is easier to remove in conventional water treatment.

In the SOM approach, the component planes depict the values of
weights vectors for different fluorescence variables and allow

correlation between the samples’ distribution and excitation–
emission wavelengths. Three major directions of fluorescence
properties change were observed. (Fig. 4). The horizontal and ver-
tical axes of the map were found to correspond to fluorescence
emission and excitation wavelengths, with increasing values from
the top to the bottom and from the left to the right respectively.
Moreover, the diagonal joining the upper left and lower right cor-
ners of the map was the line of the greatest changes in variance
within the dataset and discriminated the sites of radically different
organic matter spectral properties.

Evaluation of the results of the decomposition models provides
significant information on the differences between WTWs in or-
ganic matter character and removal, differences in organic matter
composition between raw and clarified water, and the relationship
between organic matter character and the efficiency of its removal.

All methods revealed the presence of two groups of WTWs of
distinctly unique spectral properties; the upland reservoir sites 1
and 6, and anthropogenically influenced sites 2, 3, 5, 7. The SOM
shows that there exists good discrimination between raw and

Fig. 3. Excitation and emission loadings of raw, clarified and all data derived from PARAFAC modelling. Factor 1: (a) emission loading, (b) excitation loading; Factor 2: (c)
emission loading, (d) excitation loading; Factor 3: (e) emission loading, (f) excitation loading.
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clarified water fluorescence properties for the first group, whereas
the opposite can be observed for the second cluster. For reservoir
sites 1 and 6, the raw water organic matter exhibits a higher degree
of hydrophobicity and lower microbial fraction (tryptophan-like
fluorescence). Therefore, the raw water characteristics enhance or-
ganic matter removal efficiency (better removal of more aromatic
organic matter) as indicated by the greatest changes in the PC1
scores and the distances on the SOM map between raw and clari-
fied water. Conversely, sites 3 and 7 demonstrate poor organic
matter removal which is related to the predominance of highly-
variable, riverine organic matter with a significant contribution
of highly-microbial and hydrophilic fractions.

4.2. Fluorescence data calibration

In the previous section, the application of PCA, PARAFAC and
SOM analyses for pattern recognition of fluorescence data was pre-

sented. Here, the quantitative outcomes of the decomposition
methods were used for the calibration of fluorescence data with
TOC removal. Different calibration methods were evaluated: multi-
ple linear regression (MLR), stepwise regression (SR), partial least
squares analysis (PLS), and artificial neural network with back-
propagation learning (BPNN). To evaluate the ability of the
decomposition methods to reduce the initial dataset to the most
important fluorescence features, complete EEMs (EEM model)
and peak fluorescence parameters (tryptophan- and fulvic-like
fluorescence of raw and clarified water) (PEAK model) were also
used in calibration models (Table 1).

The models’ performances are compared in Table 4 based on
prediction accuracy (how well the calibrated model performs
when run on unknown samples) and prediction error (i.e. the error
of prediction for unknown samples). First, the abilities of different
data mining approaches to select the most important features of
fluorescence EEMs were compared. Generally, the higher the

Table 3
Characteristics of three PCA and PARAFAC components identified for drinking water fluorescence dataset. Excitation and emission wavelengths maxima and identified
fluorophores. Wavelength in brackets denotes secondary maximum.

PCA PARAFAC

Comp. Exc. max (nm) Em. max (nm) Fluorophore Comp. Exc. max (nm) Em. max (nm) Fluorophore

1 250–300 300–350 Tryptophan -like 1 (<250) 345 460 Fulvic-like
2 260–300 400 Humic-like 2 <245 400 Humic-like
3 350 400 Fulvic-like 3 285 350 Tryptophan-like

Lower organics 

Higher organics 

Good removal 

Fig. 4. Fluorescence data distribution with SOM. ‘c0 = clarified water, no suffix = raw water.

Table 4
Prediction accuracy and prediction error for selected decomposition and calibration methods.

Decomposition model Prediction accuracy (R2) Prediction error (RMSEP)

MLR SR PLS BPNN MLR SR PLS BPNN

EEM 0.75 0.94 0.94 0.92 1.90 0.52 0.52 0.56
PEAK 0.87 0.82 0.92 0.95 0.73 0.78 0.78 0.45
PARAFAC 0.63 0.93 0.93 0.94 1.29 0.55 0.54 0.51
PCA 0.78 0.85 0.85 0.90 0.94 0.77 0.77 0.64
SOM 0.74 0.93 0.93 0.93 1.21 0.56 0.64 0.60
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prediction accuracy, the greater percentage of variance is ex-
plained by the combined data mining-calibration model. For a gi-
ven calibration technique, a higher prediction accuracy is
obtained for a data mining approach which provides a better
numerical representation of the fluorescence data. It can be seen
that the PARAFAC and SOM approaches generally provided better
decomposition of fluorescence data than PCA (Table 4). The accu-
racy and residual error of prediction was similar for EEM, PARAFAC
and SOM models, indicating that those decomposition techniques
can successfully facilitate fluorescence feature extraction from
the whole EEM. However, the peak-picking approach (PEAK model)
was equally good in BPNN modelling and only slightly poorer for
SR and PLS models. Thus, for the fluorescence datasets with known
or similar pattern of fluorophores, the peak-picking approach can
produce similar numerical results to the PARAFAC and SOM models
without time-consuming data pre- and post-processing. However,
not only do PARAFAC and SOM provide good numerical represen-
tation of fluorescence data, but they also offer additional tools for
advanced fluorescence data analysis. Thus, the PARAFAC and
SOM approaches are better in providing direct correlations be-
tween quantitative and qualitative properties of fluorescence data.
In all cases except SR analysis, PCA performance was poorer than
the PEAK model, hence the use of the standard peak-picking ap-
proach is recommended prior to PCA analysis.

The regression models used in this study produced consistent
results, as indicated by the correlation coefficients and prediction
errors (Table 4). For independent validation fluorescence data,
the poorest results were obtained for the MLR model which ac-
counted for 63–87 % of the total variance explained. The SR, PLS,
and BPNN regression models produced similar results, however
for all decomposition methods the latter was slightly more effi-
cient (higher correlation coefficients and lower prediction errors).

5. Discussion

5.1. Fluorescence data decomposition

From the above analysis it can be seen that the evaluated
decomposition models provided both quantitative and qualitative
information on organic matter characteristics and removal at
WTWs. The computation times of all decomposition algorithms
are similar and do not exceed 20 min on an average speed com-
puter. There are however differences in the ease of applicability
of the given method pertinent to interpretation of the results,
post-processing etc.

Both the PCA and PARAFAC models decomposed the fluores-
cence data into a set of components related to the fluorophores.
In the PARAFAC model, supervised evaluation of the obtained com-
ponents based on the analysis of performance statistics, emission
and excitation loadings is required. However, as presented here,
the ambiguous results of different diagnostic tools impeded the
interpretation of the PARAFAC components. PCA and SOM provide
an unsupervised data decomposition which can also pose difficul-
ties in the interpretation process. PARAFAC components can be re-
lated to the real fluorophores, whilst PCA components are more
complex and represent groups of fluorophores or particular OM
properties.

In the SOM approach the characteristic features of the data are
selected automatically. This is a distinct advantage when analyzing
samples from similar sources and with a uniform pattern of fluoro-
phores. Unlike PCA and PARAFAC, the SOM enables easier interpre-
tation of the samples’ distribution and fluorescence variables due
to several visualization techniques available (e.g. component
planes, hit histograms; for details see Kohonen [38]). The geomet-
ric distances on the SOM between raw and clarified water samples

indicated a degree of similarity in spectral properties of organic
matter which correlated with removal efficiency. The greater the
spread of water samples of a particular type on the map, the more
variation in spectral properties was observed.

5.2. Fluorescence data calibration

In practical applications, it is not only the numerical accuracy of
a calibration technique that should be considered, but also the fea-
sibility of the approach is of great importance. The advantages and
disadvantages of the two best calibration techniques are discussed
below.

The BPNN algorithm is considered to be more flexible than the
standard regression methods and therefore more challenging to
implement as its flexibility can pose a danger of overfitting the cal-
ibration data and producing unreliable results. However, the
advantages of this approach include fault and noise tolerance
(the ability to process noisy, uncertain data), self-modelling, self-
learning (by example) and generalization capabilities. Prior to
modelling, the BPNN network requires the topology (number of
nodes in a hidden layer) to be defined, together with parameters
that describe the speed of the training process and maintain the
optimum search stability (the learning rate and the momentum
factor). There are several rules of thumb that facilitate BPNN design
but a trial-and-error procedure is commonly used to adjust back-
propagation algorithm parameters and obtain a feasible network
topology. However, once appropriately designed, trained and vali-
dated, the BPNN can be a robust predictive tool provided that a
substantial amount of training data is available.

Compared to the BPNN, the PLS algorithm is simpler as it does
not require parameter definition in the training phase. However,
the validation procedure involves the selection of an appropriate
number of components (latent variables), which is the crucial step
in generating a valid and robust model. The leave-one-out cross-
validation and the root mean squared error of prediction (RMSEP)
are the most common techniques and statistical diagnostic used in
components selection. The PLS algorithm explicitly incorporates
dimension reduction and generates components explaining the
most important features of the given dataset. Therefore this regres-
sion tool can be also successfully used in exploratory data analysis.
Here, four PLS components were selected. The analysis of PLS
scores provided useful information relating the organic matter
properties (degree of hydrophobicity) with the efficiency of organic
matter removal.

6. Summary

Fluorescence excitation–emission spectroscopy is commonly
used in organic matter characterisation. A common problem in
practical applications of fluorescence analysis is the selection of
effective data mining techniques for the decomposition of the
large fluorescence datasets which are produced. The selection of
appropriate pattern recognition tools is crucial to developing an
understanding of the analysed processes or to reduce the compu-
tation time and complexity of various calibration problems utiliz-
ing fluorescence data. Here, fluorescence analysis was used to
characterise organic matter removal efficiency in water treatment.
To facilitate fluorescence data reduction to the most important
fluorescence properties and to analyse the relationship between
fluorescence predictors and TOC removal for 16 WTWs, three dif-
ferent, commonly used decomposition algorithms (principal com-
ponents analysis, PCA; parallel factor analysis, PARAFAC; and a
self-organizing map, SOM)) were evaluated and compared with
the standard peak-picking approach in calibration tests. The
application of fluorescence analysis for the assessment of water
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treatment performance provided a basis for comparison of advan-
tages and limitations of applied data decomposition techniques.
Visual inspection of EEMs and peak-picking suggested the pres-
ence of three main fluorophores in raw and partially-treated water
samples: fulvic-, humic-, and tryptophan-like fluorescence. The
PARAFAC model revealed the presence of more potential fluoro-
phores that could not have been validated for the entire dataset
or specific water type (raw and clarified). Therefore, to derive a va-
lid PARAFAC model containing all variations in fluorescence spec-
tra, a solution with fewer components had to be chosen. A lack of
good, overall diagnostic for the selection of the number of valid
components impeded robust interpretation of the PARAFAC model
and made analysis a time-consuming process. Compared to the
PARAFAC approach, components derived from the PCA analysis
were more difficult to identify as particular fluorophores on the
basis of loadings interpretation. Thus, it is concluded that the
PCA algorithm can be successfully used in the initial fluorescence
data analysis to provide an insight into data variation and distribu-
tion. However, more advanced analysis requiring the prediction of
fluorophores, their importance and relative concentration can be
facilitated by PARAFAC. When the fluorophores’ composition is
uniform between samples and sites, standard peak-picking and
the SOM analysis can successfully outperform lengthy PARAFAC
modelling. While the peak-picking approach facilitates basic fluo-
rescence data analysis, the SOM model enables advanced interpre-
tation of fluorescence data, samples’ distribution between sites
and water types, and TOC removal-organic matter relationship.
The calibration of TOC removal with fluorescence data decom-
posed with PARAFAC and SOM confirm the similar abilities of
those models in identifying the most important fluorescence
features.

From the calibration methods examined in this study, three
produced consistent results in TOC removal prediction modelling
from fluorescence data (stepwise regression, partial least squares
analysis, and artificial neural network with back-propagation algo-
rithm). However, the lack of theory or statistical model to support
the stepwise-derived model means that, for the purpose of the pre-
diction of organic matter removal in drinking water systems, the
PLS and BPNN models are considered to be the most useful.
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