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a  b  s  t  r  a  c  t

Large datasets are common in chemical and environmental engineering applications and tools for their analysis are

in  great demand. Here, the outputs of a series of fluorescence spectroscopy analyses are utilised to demonstrate

the  application of the self-organising map (SOM) technique for data analysis. Fluorescence spectroscopy is a well-

established technique of organic matter fingerprinting in water. The technique can provide detailed information

on  the physico-chemical properties of water. However, analysis of fluorescence spectra requires the application of

robust statistical and computational data pre-processing and analysis tools.

This paper presents a tutorial for training engineering postgraduate researchers in the use of SOM techniques using

MATLAB®. Via a tutorial, the application of SOM to fluorescence spectra and, in particular, the characterisation of

organic matter removal in water treatment, is presented. The tutorial presents a step-by-step example of the appli-

cation of SOM to fluorescence data analysis and includes the source code for MATLAB®, together with presentation

and  discussion of the results. With this tutorial we hope to popularise this robust pattern recognition technique for

fluorescence data analysis and large data sets in general, and also to provide educational practitioners with a novel

tool  with which to train engineering students in SOM.

©  2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

The study of engineered processes often generates large,
complex datasets and, whilst these datasets contain vast
amounts of useful information, obtaining that information
via data mining can often prove to be a significant hurdle,
particularly for less experienced students and researchers.
The University of Birmingham, UK, offers both generic and
discipline-specific training in research methods to all its
postgraduate researchers. As part of the development oppor-
tunities offered to engineering research students, a package
of training in data analysis and statistical techniques has
been implemented in the School of Civil Engineering. The
school’s cohort of research students is drawn from a broad
base of initial disciplines, including chemical engineers, math-
ematicians and environmental scientists, in addition to civil
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engineers. Senior researchers in the school recognised the
need for training of new researchers in robust data analysis
and pattern recognition techniques in order to elucidate key
mechanisms from large, complex datasets. Included within
this training is the use and application of several data mining
techniques, including principal component analysis, paral-
lel factor analysis, and artificial neural networks (ANN). To
demonstrate the use of one form of ANN, the self-organizing
map  (SOM), a tutorial has been developed as a training tool.
In the tutorial, the SOM is applied to the exploratory analysis
of fluorescence data. The application of the SOM technique
to the characterisation of organic matter removal in drink-
ing water was first demonstrated by Bieroza et al. (2009a).
However, a wide interest in the application of this technique
to fluorescence data analysis created a demand for a step-
by-step tutorial explaining the practical and computational
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aspects of the algorithm in real life examples. To meet this
demand, we developed this EEM-SOM tutorial for MATLAB®,
which we  now offer as a general teaching aid for SOM.

2. Fluorescence  spectroscopy

Fluorescence excitation–emission matrix (EEM) spectroscopy
has become a common method for the characterisation of
organic matter in aqueous systems. The technique enables
rapid, non-invasive and accurate characterisation of different
organic matter fractions from various environments: terres-
trial (Senesi et al., 1991), freshwater (Baker et al., 2008),
estuarine (Stedmon et al., 2003), and marine (Coble, 1996).
Recently, the EEM technique has been successfully utilised in
drinking water treatment for comprehensive characterisation
of organic matter removal across different treatment stages
(Bieroza et al., 2009b, 2010).

Although acquisition of fluorescence spectra has become
easier with recent advances in the spectrofluorometric
technology, fluorescence data analysis still remains a com-
putational and interpretive challenge. Standard techniques
for fluorescence data mining, e.g. the peak-picking approach,
regional integration technique and principal components
analysis (PCA), operate solely on a portion of EEM data avail-
able or produce new, tentative variables that are difficult to
interpret (Coble, 1996; Persson and Wedborg, 2001; Chen et al.,
2003). Therefore, attempts have been made to facilitate other
methods for fluorescence data analysis that overcome the
drawbacks of the standard techniques and make use of the
entire available EEM spectral information.

Parallel factor analysis (PARAFAC) is currently considered
as a state-of-the-art tool for fluorescence EEM-organic matter
characterisation (Hudson et al., 2007; Henderson et al., 2009).
This multi-way technique has been shown to be useful in
discriminating between aquatic samples of different origins
(Stedmon et al., 2003; Murphy et al., 2008). Several PARAFAC
tutorials and review papers are available (i.e. Andersen and
Bro, 2003; Stedmon et al., 2003; Stedmon and Bro, 2008).

3.  Artificial  neural  networks  and
self-organising  maps

Artificial neural networks (ANNs) are powerful computational
tools, frequently used in the modelling of water resources
(Maier and Dandy, 2000; Dawson and Wilby, 2001; Bowden
et al., 2005). ANNs can be described as mathematical models of
a specific structure, consisting of a number of single process-
ing elements (nodes, neurons), arranged in inter-connected
layers. A typical artificial neural network is comprised of three
layers, namely the input, hidden and output layers (Bos et al.,
1993). The input layer is passive and presents the input data
vector to the hidden layer through weighted connections. The
overall output of the network is calculated as the sum of the
outputs of the neurons in the final, output layer. The network
is calibrated in the training stage, as weights connecting the
layers are modified appropriately. The trained network needs
to be validated on data not used in the training phase. If the
trained network subsequently returns appropriate results for
the independent dataset, it can be used as a calibration or
classification model (Bos et al., 1993).

The self-organizing map  (SOM, or Kohonen ANN) is a
two-layered ANN that provides the conversion of nonlinear
statistical relationships between high-dimensional data into

simple geometric relationships on a low-dimensional map,
whilst keeping the most important topological and metric
relationships of the input data (Kohonen, 2001). The SOM is an
example of an unsupervised clustering algorithm in which any
existing pattern is assigned to a category, not specified or not
known a priori. It is often used in the exploratory data analysis
to discern any reasonable relationships among the data, often
without prior knowledge or assumptions on the given dataset.
The SOM algorithm explores the input data to find and extract
features, describing an elementary pattern of information that
represents partial aspects or properties of an item (Kohonen,
2001). The SOM’s feature in relation to fluorescence analysis
can refer to the presence of a particular fluorophore (or group
of fluorophores) or its specific spectral properties. This fea-
ture extraction facilitated by the SOM involves a nonlinear
transformation of the input data onto a two-dimensional map.

Examples of the application of SOMs to water manage-
ment issues include classification of fluorescence data (Lee
et al., 2005), modelling of water quality (Bowden et al.,
2005), and characterisation of various hydrological processes,
i.e. rainfall–runoff (Hsu et al., 2002; Kalteh et al., 2008).
Recently, the authors have successfully adopted the proce-
dure described in this tutorial for the evaluation of continuous
fluorescence data and the detection of diesel pollution when
monitoring river organic matter (Carstea et al., 2010). This
approach was used successfully to discriminate between over-
lapping fluorophores. The authors concluded that an expert
system incorporating SOM for the on-line evaluation of fluo-
rescence data can be applied as an early warning system of
failure of water quality in natural and engineered water sys-
tems, thus demonstrating the value of the SOM technique as
a real-time water management tool, as well as a technique to
be applied to laboratory data.

This tutorial is addressed to those in the wider fluorescence
community who seek an alternative data mining tool, and also
to everyone interested in the application of the SOM technique
to a large environmental dataset. The tutorial consists of two
parts; viz. data pre-processing and SOM application, and a
brief analysis of results. In the first part, common problems
regarding fluorescence data pre-processing and preparation
for computational analysis are addressed. In particular, to
demonstrate the possibility of combining different EEM analy-
sis techniques, the application of the scatter removal tool from
the DOMFluor toolbox for MATLAB® is presented (Stedmon and
Bro, 2008). In the second part, the step-by-step application of
the SOM algorithm to fluorescence data is presented and dis-
cussed. The use of the SOM visualization tools is presented
and a brief discussion of the results is provided. This tutorial
does not intend to present a thorough description of all avail-
able SOM tools, but provides a solid background to start the
reader’s own exploration of this powerful data mining tech-
nique.

4.  Tutorial

4.1.  Tutorial  dataset

Organic matter removal is of the greatest importance to
water treatment companies. Residual organic matter reacts
with chlorine (when used as a disinfectant) leading to the
formation of potentially harmful disinfection by-products.
Fluorescence EEM spectroscopy offers rapid and non-invasive
measurements with the possibility for incorporation into
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Fig. 1 – Excitation–emission matrices for raw (top) and
corresponding clarified water (bottom). Location of the peak
maxima: peak A (Ex. 230 nm/Em. 420 nm), peak C (Ex.
320 nm/Em. 420 nm), and peak T (Ex. 220 nm/Em. 330 nm).
Fluorescence intensity in Raman units.

on-line monitoring systems. It has been shown to provide an
accurate assessment of organic matter removal efficiency dur-
ing treatment processes (Bieroza et al.,  2009a).  The dataset
provided in this tutorial is taken from a study of fluorescence
spectroscopy measurements on samples of raw and clarified
water from 16 surface water treatment works (WTWs), col-
lected monthly between August 2006 and February 2008. The
WTWs  treat a range of raw water types, each exhibiting differ-
ent quantitative and qualitative organic matter properties and
varying degrees of anthropogenic impact, (e.g. microbial pol-
lution). A detailed interpretation of this dataset can be found
in Bieroza et al. (2009a).

Fluorescence data were collected by scanning excitation
wavelengths in the range from 200 to 400 nm in 5 nm steps,
and detecting the emitted fluorescence in 2 nm steps between
280 and 500 nm.  For a detailed description of all laboratory
analytical methods, refer to Bieroza et al. (2009a). For the pur-
pose of this tutorial, a subset of 72 EEMs of raw and clarified
water derived from six WTWs  was selected. During the pre-
liminary analysis of the fluorescence data, the region with
excitation wavelengths less than 240 nm was removed as it
contained redundant and noisy signal. Thus, each of the resul-
tant EEM ranged from 240 to 400 nm excitation and from 300 to
500 nm emission wavelengths respectively, producing an array
37 × 111.

Examples of typical EEMs for raw and clarified water are
presented in Fig. 1. Fluorescence EEMs exhibit increased inten-
sities in particular regions and these fluorescence regions can
be attributed to both natural fluorescence (humic- and fulvic-
like), defined as peaks A and C and microbial derived organic
matter (tryptophan- and tyrosine-like fluorescence, defined as

Table 1 – Excitation and emission wavelength pairs for
principal peak fluorescence intensities.

Peak �Ex (nm) �Em (nm)

Humic
A 237–260 400–500

Humic (highly coloured)
C 300–370 400–500
C1 320–340 410–430
C2 370–390 460–480

Tyrosine
B1 225–237 309–321
B2 275 310

Tryptophan
T1 275 340
T2 225–237 340–381

Humic (marine)
M 290–310 370–410

peaks T and B) at shorter emission wavelengths (Coble, 1996)
(Table 1). In drinking water treatment, organic matter removal
results in the decrease in fluorescence intensity in all regions
between raw and clarified water samples. From the differ-
ences in the fluorescence properties of raw and clarified water,
Bieroza et al. (2009a) inferred information regarding organic
matter removal. In particular, the decrease in fluorescence
intensity between raw and clarified water was correlated with
the measured decrease in total organic carbon (R2 = 0.91).

4.2.  EEM-SOM  tutorial

4.2.1.  DATA  pre-processing
In preparing this tutorial, version 7.7.0.471 of MATLAB® has
been used.

1. Before starting the tutorial, ensure that the folder EEM-
SOM tutorial has been downloaded and saved to a known
location.

Start a new MATLAB® session by double-clicking the
MATLAB® shortcut on the Windows desktop. This opens the
MATLAB® desktop application containing by default the Com-
mand Window, Workspace Window and Command History
Window.

To use the SOM tutorial, your MATLAB® environment needs
to locate all required files. Therefore select File -> Set Path -> Add
with subfolders.  . . and find the folder EEM-SOM tutorial. Then
press Save and, after checking that the new path to your folder
appeared at the top of combo box, close the editor. Now you
are ready to start working with the EEM-SOM tutorial.

2. To load the tutorial workspace, type in the command
window of MATLAB®:

load EEM SOM tutorial.mat

and press Enter. This will read the previously prepared
binary files associated with fluorescence data into the tuto-
rial workspace. The variable OriginalData is a three-way array
of size 72 × 111 × 37 which contains 72 fluorescence EEMs
(samples) each comprising 111 emission and 37 excitation
wavelengths. The variables Em and Ex contain the emission
and excitation wavelengths respectively, whereas in array
EmEx, all 4107 (111 × 37) emission and excitation wavelengths
pairs are stored. Finally, the three variables Samples, Sites and
Variables contain the number of samples, sample labels and
fluorescence emission–excitation wavelength labels respec-
tively. Double-clicking on any of the variables in the workspace
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window opens an additional Variable Editor window that
enables editing and analysis of the data. Alternatively, typ-
ing each of the variables in the command window shows the
data and its structure.

3. The variable OriginalData contains raw fluorescence data
normalized to Raman scatter peak value. To enhance the
modelling of fluorescence data with SOM, the removal of
Rayleigh and Raman scatter is recommended. There are sev-
eral scripts and toolboxes facilitating scatter removal available
for MATLAB®. Here, the DOMFluor toolbox for MATLAB® was
used (Stedmon and Bro, 2008). The toolbox contains sev-
eral useful functions for fluorescence data processing (i.e.
identification of outlier EEMs) and modelling with paral-
lel factor analysis (PARAFAC). The toolbox is available at
(http://www.models.life.ku.dk/source/DOMFluor).

4. Install the DOMFluor toolbox, repeating the steps
described in point 1. Prior to using the toolbox, you need to
re-format the original data to prepare the structure contain-
ing all the relevant information on the fluorescence dataset.
In MATLAB®, structures are multidimensional arrays that can
contain different types of data, e.g. numerical, textual and
logical in a single variable. Here, we can create a structure
EEM that contains fluorescence intensity data for all samples,
emission and excitation wavelengths, number of samples, and
an additional back-up copy of the fluorescence data. In the
command window, type:

EEM = struct(‘Ex’, Ex, ‘Em’, Em,  ‘X’, OriginalData, ‘nEx’, 37,
‘nEm’, 111, ‘nSample’, Samples, ‘XBackup’, OriginalData)

and press Enter. This command generates a structure EEM
with the following properties:

EEM =
Ex: [37 × 1 double]
Em:  [111 × 1 double]
X: [72 × 111 × 37 double]
nEx: 37
nEm: 111
nSample: 72
XBackup: [72 × 111 × 37 double]

You can access any of the structure’s elements by typing the
structure’s name followed by the appropriate field designator.
For example typing:

EEM.nSample

returns the number of fluorescence samples stored in the
structure EEM (72).

5. To remove scatter from the fluorescence data use the
EEMCut function. For a detailed description of function argu-
ments and output, refer to the MATLAB® command help. Type:

help EEMCut

In the input arguments of the EEMCut function the size of the
first and second order scatter have to be defined. The func-
tion replaces the original values with a not-a-number constant
(NaN) and zeros. Type:

EEM cut = EEMCut(EEM, 40, 40, 15, 15, ‘No’);

For each sample, EEMCut plots the input and resultant EEM.

6. Prior to further modelling of fluorescence data with SOM,
the three-way fluorescence data array has to be transformed
(unfolded) to a two-dimensional array with a size of 72 × 4107.
By entering the following commands:

DimX = size(EEM cut.X);
EEM som = reshape(EEM cut.X, DimX(1), prod(DimX(2:end)));

first you create a variable DimX that contains information on
the cut fluorescence data size, and then you can unfold the
three-way array by using the command reshape. To check the
size of the new variable EEM som type:

size(EEM som)

In the new variable, each row contains one sample. In
the columns fluorescence intensity values are kept for
each emission–excitation wavelength pair. The order of
emission–excitation wavelength pairs is given in the array
EmEx. All emission wavelengths are stored in the first row,
whereas the corresponding excitation wavelengths are in the
second row.

7. Before proceeding with the tutorial, the NaN constants
inserted in the place of scatter values have to be replaced with
zeros. This is achieved by typing:

index = find(isnan(EEM som));
EEM som(index) = zeros(size(index));

Firstly, the function find determines the indices of array ele-
ments that are NaNs and stores them in the variable index.
Then, for the selected columns, zero values are inserted.

Columns containing zeros are redundant and if not
removed can impede further modelling. Therefore typing:

empty = find(sum(EEM som) == 0);
nonempty = find(sum(EEM som) ∼= 0);
EEM som (:, empty) = [];
EmEx som = EmEx;
EmEx som(:, empty) = [];

first finds the columns of the EEM som array that contain only
zeros and then removes them from both the fluorescence
intensity data and the array containing emission–excitation
wavelengths pairs (EmEx som). The final fluorescence dataset
EEM som comprises 72 samples and 2615 fluorescence
emission–excitation pairs and this can be used in SOM mod-
elling.

8. SOM toolbox for MATLAB® (Alhoniemi
et al., 2002) can be downloaded from
(http://www.cis.hut.fi/projects/somtoolbox/download). To
get started, and familiarize yourself with the SOM termi-
nology, type help somtoolbox. This entry contains a full list
of available functions and references to useful, step-by-step
tutorials:

som demo1 SOM Toolbox demo 1: basic properties
som demo2 SOM Toolbox demo 2: basic usage
som demo3 SOM Toolbox demo 3: visualization
som demo4 SOM Toolbox demo 4: data analysis

9. Similar to the DOMFluor toolbox,  the SOM toolbox operates
on data stored in a particular structure. Type:
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SOM data = som data struct(EEM som, ‘labels’, Sites,
‘comp names’, Variables);

to generate a SOM data structure containing fluorescence data
(EEM som), sample labels (Sites), and variable (component)
names (Variables).

Prior to SOM analysis, the data need to be normalized to
improve the algorithm’s numerical accuracy (Kohonen, 2001).
In practice, the data can be normalized in the way that the
variance of the dataset is equal to unity or the mean is sub-
tracted from each variable (normalization in the range 0–1).
The function som normalize also enables different types of nor-
malization, i.e. logistic or histogram equalization (for a full list
of the available normalizations refer to help som normalize).

To normalize the fluorescence data type:

SOM data = som normalize(SOM data, ‘var’);

The parameters of the normalization are stored within the
SOM data structure within the comp norm field designator.

4.2.2.  SOM  analysis
1. The self-organizing map  is an example of a two-layered arti-
ficial neural network (ANN). The input layer constitutes the
interface between the map  and the input data. Each neuron
from the input layer is fully connected with all input samples
and the numerical representation of this connection is held in
the associated reference vector. The reference vector contains
weights that are adjusted in the training process to project the
input data. The reference vector (also called the codebook or
weight vector) can be defined as di = [di1 di2 . . . dim], where m
is equal to the dimension of the input vectors (2615 fluores-
cence excitation–emission pairs). Each reference vector from
the input layer is associated with one neuron from the output
layer (two-dimensional map).

The SOM map  building process consists of three principal
steps. At first the size of the map  is usually determined by
finding the ratio of the two greatest eigenvalues of the input
matrix. For the calculated size, a map  is initialized using lin-
ear initialization along the two greatest eigenvectors of the
input matrix. Then the SOM algorithm learns the pattern of
the input data in the training process. Input data are simulta-
neously presented to the SOM network. For each sample, the
output neuron with the reference vector most similar to the
unfolded fluorescence spectra is selected (the winning neuron).
Once the best-matching reference vector for each input vec-
tor is found, its weights and the weights of its neighbouring
neurons are modified and moved towards the input vector (Eq.
(1)):

wi(k + 1) = wi(k) + ε(k)hp(i, k){xj(k) − wi(k)} (1)

where wi(k) is the previous weight of neuron, wi(k + 1) is the
new weight of neuron, ε(k) is the learning rate, hp(i, k) describes
the neighbourhood of the winning neuron, k is the number of
epochs (a finite set of input patterns presented sequentially)
and p is the index of the winning neuron.

During map  training, both the learning rate (which
describes speed of the training) and the radius of the neigh-
bourhood decrease monotonically. Map  training involves a
two stage process; viz., the rough training phase (with a large
neighbourhood radius) and the fine-tuning phase (with a small
neighbourhood radius).

Fig. 2 – The self-organizing map  (left) and the U-matrix
(right).

To create a SOM map  type:

SOM map  = som make(SOM data);

The whole process should take up to 10 min  on a standard-
speed computer.

The newly created map  has the dimensions 11 neurons × 4
neurons. The quality of the map  projection is estimated with
two diagnostics: final quantization error (here 16.949) and final
topographic error (here 0.056). The final quantization error is
the average distance between each input vector and its best-
matching vector and can be used as a measure of the map
resolution. The final topographic error is defined as the pro-
portion of all input vectors for which the first and second
best-matching vectors are not adjacent (for measuring topol-
ogy preservation) (Kohonen, 2001).

A new variable SOM map contains the specific characteris-
tics of the map  (i.e. topology, type of neighbourhood between
map  units, sample labels) and the results of the map  training
stored in the codebook field. The codebook contains a numeri-
cal representation of the map’s reference vectors; thus it is a
two-dimensional array of a size corresponding to the number
of nodes (44) and the number of variables (2615 fluorescence
pairs).

2. The SOM map  evaluation begins with the analysis of the
unified distance matrix (U-matrix) (Ultsch, 1993). Type:

som show(SOM map,  ‘empty’, ‘SOM map’, ‘umat’, ‘all’);

The U-matrix demonstrates the distances between neighbour-
ing map  units that are calculated and visualized using grey or
colour scale on the trained map  (Park et al., 2003). Compared
with the original map  size (11 × 4 neurons), the U-matrix com-
prises additional map  units to visualize the distances between
neurons (Fig. 2). High values on the U-matrix indicate large
distances between neighbouring units and hence can be help-
ful in determining the cluster borders. Clusters typically form
uniform areas of low values. Here the presence of a few clus-
ters can be discerned, e.g. the cluster in the upper right side
corner.

Type help som show to learn more  about this SOM visual-
ization function.
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To evaluate the sample distribution on the SOM map  type:

SOM map  = som autolabel(SOM map,  SOM data, ‘vote’);
som show(SOM map,  ‘umat’, ‘all’, ‘empty’, ‘Sam-

ples’);
som show add(‘label’, SOM map,  ‘Textsize’, 12,

‘TextColor’, ‘b’,
‘Subplot’, 2);

First, the function som autolabel automatically labels the neu-
rons. During training, each neuron can be the winning neuron
for more  than one sample, based on the similarities of the
input data. Thus, each neuron stores the labels of all sam-
ples assigned to this neuron. In the som autolabel function
with vote mode, only the label with the most instances is
kept. Finally, the som show add function defines the proper-
ties of label visualization on the SOM map,  i.e. text size, font
colour. The command som show add can only be applied to
som show visualization, therefore both commands should be
pasted together in the command window.

As a result, both the U-matrix and sample distribution on
the map  are presented (Fig. 3). The samples grouped together
have similar fluorescence properties, i.e. the same pattern of
fluorophores, similar spectral location of the humic peaks.
For instance, the upper right side corner on the U-matrix
comprises clarified water samples from sites 1, 4 and 6, indi-
cating similarities in the post-coagulation residual organic
matter properties. Furthermore, it can be observed that the
raw water samples are located in the bottom part of the SOM
map,  whereas the corresponding clarified water samples are
to be found in the upper part. Thus, the vertical direction on
the SOM map  reflects the relative decrease in fluorescence
intensity and organic matter quantity. Site 1 exhibits uniform
and stable organic matter fluorescence properties of both raw
and clarified water, whereas site 2 presents a more  complex
nature, with raw and clarified water samples distributed over
the entire map.  The horizontal map  direction differentiates
between sites 1 and 3, and hence the opposing organic matter
character of those sites can be hypothesized.

3. Another basic visualization technique of the som show
function is the hit histogram.

For each neuron, the hit characteristic is calculated on the
basis of the map  response to the input data. The hit charac-
teristic shows how many  times each neuron was the winning
neuron for the dataset. Type:

hit1 = som hits(SOM map,  SOM data);
som show(SOM map,  ‘empty’, ‘Hits’);
som show add(‘hit’, [hit1], ‘Marker’, ‘lattice’, ‘MarkerColor’,
[1 0 0], ‘Text’, ‘on’, ‘TextColor’, [0 0 0], ‘TextSize’, 12);

The function som hits calculates the number of hits for the
map  over the given domain (here for all samples). The impor-
tance of each neuron (hit characteristic) can be presented
graphically with different size markers or with a label show-
ing the number of hits. It can be seen from Fig. 4a that data
are uniformly distributed over the map,  with a number of neu-
rons located at the edges of the map  being the most frequent
neurons (neuron 7–4 hits, neuron 33–5 hits, neuron 34–6 hits,
neuron 41–5 hits).

Similar to the single hit histogram, a multiple hit histogram
can be defined. To compare the hit response for raw and cor-
responding clarified water for site 1 type:

Fig. 3 – Sample distribution on the SOM map.  Labelling
used (e.g. 1r – site 1 raw water; 1c – site 1 clarified water).

hit1 = som hits(SOM map,  SOM data.data(1:6,:));
hit2 = som hits(SOM map,  SOM data.data(7:12,:));
som show(SOM map,  ‘empty’, ‘Hits site 1’);
som show add(‘hit’, [hit1, hit2], ‘Marker’, ‘lattice’, ‘Marker-
Color’, [1 0 0; 0 1 0]);

Ignore the warnings regarding RGB colour. For site 1, two  hit
histograms are defined: h1 for raw water (samples 1–6) and h2
for the corresponding clarified water (samples 7–12).

Similarly for site 3 the above entry takes the following form:

hit1 = som hits(SOM map,  SOM data.data(25:30,:));
hit2 = som hits(SOM map,  SOM data.data(31:36,:));
som show(SOM map,  ‘empty’, ‘Hits site 3’);
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Fig. 4 – Single hit histogram (a), multiple hit histograms
site 1 (b) and site 3 (c). Red marker – raw water; green
marker – clarified water.

som show add(‘hit’, [hit1, hit2], ‘Marker’, ‘lattice’, ‘Marker-
Color’, [1 0 0; 0 1 0]);

A comparison of hit histograms for both sites (Fig. 4b and c),
reveals the differences between both raw and clarified water
organic matter properties. Site 3 shows a great variation in
both raw and clarified water properties that may be indica-
tive of differing organic matter removal efficiency. Conversely,
site 1 demonstrates uniform fluorescence properties for both
water types.

4. To correlate the location of a sample on the map  with
the fluorescence spectra, an analysis of the reference vec-
tors should be performed. To retrieve the spectral information
stored in the neuron of interest, (here neuron 34 pertinent to
sample 1c with the highest number of hits), type:

EEM den = som denormalize(SOM map);
REF vec(1, nonempty) = EEM den.codebook(34,:);
REF eem = reshape(REF vec, 111, 37);
contourf(Ex, Em,  REF eem(:,:)), colorbar
xlabel(‘Ex. (nm)’)
ylabel(‘Em. (nm)’)

First, the de-normalized fluorescence data (function
som denormalize) is transformed to include the empty columns
removed prior to SOM modelling and reshaped to a three-way
array (sample by emission by excitation wavelength). Then, a
filled contour EEM is plotted (Fig. 5a).

The above procedure can be repeated for neuron 41 (5 hits,
reflects spectral properties of sample 1r, Fig. 5b) and neuron 7
(4 hits, reflects spectral properties of sample 3r, Fig. 5c). A dis-
tinctive decrease in fluorescence intensity in all fluorescence
regions can be observed between the raw and clarified water
properties of site 1 (Fig. 5a and b). Furthermore, a shift towards
lower emission wavelengths can be discerned for the corre-
sponding clarified water sample, indicating selective removal
of the more  hydrophobic organic matter fraction. The raw
water of site 3 (Fig. 5c) exhibits more  hydrophilic and micro-
bial character than its clarified water (Fig. 5b) as indicated by
the presence of tryptophan-like fluorescence.

5. The importance of each fluorescence variable in
determining the samples’ distribution on the map  can be
depicted with the use of the component plane. Thus, for
each excitation–emission wavelength pair, a corresponding

Fig. 5 – Reference vectors of neuron 34 (a), neuron 41 (b),
and neuron 7 (c).

component plane can be obtained that enables a correlation
between a sample’s location on the map  and fluorescence
properties. In the current study there are 2615 variables, there-
fore only a subset can be displayed at one time. Type:

som show(SOM map,  ‘comp’, [1:10]);

to display the first ten component planes, showing a very dif-
ferent response due to the presence of noise signal. The high
values in the component plane denote a higher fluorescence
intensity. To enhance the analysis, a few fluorescence vari-
ables have been selected from the entire fluorescence dataset
to cover the most interesting fluorescence regions (Table 2).

After typing:

som show(SOM map,  ‘comp’, [162, 187, 212, 234, 1112, 1137,
1162, 1187, 2021, 2031, 2056, 2081]);

it can be observed (Fig. 6) that for each excitation wavelength,
with increasing emission wavelength, the centre of the highest
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Fig. 6 – Selected component planes (excitation/emission wavelength nm).

Table 2 – Emission and excitation wavelengths of the
selected component planes.

Ex/Em (nm) 300 350 400 450 500

230 162 187 212 234 –
280 – 1112 1137 1162 1187
340 – 2021 2031 2056 2081

values moves from the left, through the bottom of the map,  to
the right. Thus, the horizontal plane of the SOM map  reflects
the degree of aromaticity, whereas the vertical plane can be
correlated with fluorescence intensity. Combining the obser-
vations derived from the component planes and samples’
distribution provides useful information on the organic matter
character. For example, the highest values on the compo-
nent plane related to tryptophan-like fluorescence (excitation
280 nm,  emission 350 nm), correspond with the location of site
3 raw water samples, indicating the predominance of micro-
bial organic matter.

5.  Discussion

The procedure described in this tutorial can be adopted
directly for other environmental datasets when recognition
of the underlying patterns is of interest but the large size of
the dataset (large number of variables) prevents the applica-
tion of common statistical methods, i.e. correlation between
variables.

The first part of this tutorial described the pre-processing
procedure pertinent to fluorescence excitation–emission data

including transformation of three-dimensional EEMs into two-
way arrays. This step of the analysis is dependent on the
particular dataset being considered and specific problems
associated with data pre-processing. However for most envi-
ronmental datasets, some general issues have to be addressed
prior to further modelling; e.g. how to treat missing values.
Here, NaNs were inserted in the place of scatter signal. As
these data did not contain any important information, they
were treated as a redundant data and simply removed from
further SOM analysis. Nevertheless, for other datasets, miss-
ing values may hold vital process information which should
be incorporated in the analysis after adequate treatment (e.g.
interpolation). This decision is dependent upon the dataset in
question.

Assuming that any environmental data can be presented
as a two-way array of observations (e.g. sampling points) and
variables describing the process (e.g. process parameters), the
second part of the tutorial (SOM analysis) can be directly
applied to any dataset. The speed of SOM modelling (map
building) depends on both the number of observations and the
number of variables. Simple tests were performed to assess
the speed of SOM map  formation using fluorescence datasets
of varying sizes. It was found that the number of variables
is of greater importance to the speed of the algorithm than
the number of observations. For a constant number of obser-
vations (72), doubling the number of variables (from 2615 to
5230) resulted in a 6.5 times increase in map  building time
(2 and 13 min  respectively). Modelling with varying number
of observations did not generate significant changes to mod-
elling time (for 36 samples, 1 min  55 s; for 72 samples, 2 min).
It should be also noted that variables can demonstrate vary-
ing importance in explaining dataset variation; therefore the
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more  difficult the pattern which is analysed with the SOM, the
longer the map  building stage will be.

The SOM interpretation process involves evaluation of the
sample distribution and importance of the particular vari-
ables. The latter can be analysed using component planes.
However, as the number of process variables corresponds to
the number of component planes to be evaluated, for large
datasets this SOM interpretation tool can present certain
limitations. For instance, in the example presented in this
tutorial, there were 2615 fluorescence variables, for which the
same number of component planes was formed. As the visual
inspection of 2615 component planes could impede the inter-
pretation process, a selection of interesting component planes
was performed based on prior knowledge of the fluorescence
properties of the dataset. Thus, component planes demon-
strating fluorescence properties of certain fluorophores were
analysed in more  detail (Fig. 6). However, the availability of
other SOM interpretation methods (i.e. analysis of hit his-
tograms) can successfully overcome this potential limitation
for large datasets.

The validation stage commonly used in calibration with
neural networks is not performed with the SOM. In calibration
tasks where an ANN is required to model the input–output
relationship, the error of the prediction can be calculated
for a validation dataset not used in the training process.
In SOM, validation refers both to the comparison of net-
work performance with the objectives and evaluation of its
usefulness (i.e. finding the pattern, discriminating between
sampling sites). The SOM explores the original data whilst
preserving all topological and geometric properties and thus
enables direct comparison between samples. In this way,
the SOM output for a given dataset is always valid and
its usefulness depends on the properties of the data them-
selves. The addition of new samples changes the distances
between data vectors and therefore produces a new SOM
map.  Furthermore, in the SOM an important step is the
validation of data to select a reliable dataset for training
of the SOM algorithm (i.e. detection and removal of out-
liers and scatter). However, compared to other techniques
used for fluorescence data analysis (e.g. PCA or PARAFAC),
SOM offers high noise and fault tolerance that makes it an
appropriate tool for analysis of fluorescence data without
pre-processing, i.e. removing of scatter. Here the scatter was
removed  solely to enhance the speed of the analysis as the
number of variables has a significant impact on the training
times.

The main advantage of SOM over more  commonly used
techniques for fluorescence data analysis is that SOM is an
entirely data-driven approach where the entire EEMs can be
used to discriminate between samples, and consequently no
assumptions have to be made regarding spectral location of
fluorophores or final components. A further, not inconsider-
able advantage of SOM over PARAFAC is its ability to analyse
fluorescence data at short excitation wavelengths. The analy-
sis of these interesting data is usually impeded due to limited
experimental conditions and lack of instrumental capability.
Here, the SOM modelling results were compared for both the
full dataset (excitation wavelengths >200 nm)  and the trun-
cated EEMs (excitation wavelengths >240 nm). The size of the
SOM map  and the main topological and structural features
remained the same for both datasets. There were only minor
differences in sample distribution and number of hits. Thus,
there is no limitation within the SOM to analyse the short UV
spectral range.

6.  Conclusions

This tutorial has presented a step-by-step application of
a robust unsupervised SOM algorithm to fluorescence
spectroscopy data. The technique was employed for the
characterisation of fluorescence EEMs obtained for raw and
partially treated waters at 16 WTWs  in the Midlands region of
the UK. The fluorescence data contain a substantial amount
of information on the organic matter properties of the water
samples. However the complexity of the data impedes any
direct correlation between sample distribution and spectral
properties of organic matter. Here, the SOM facilitated pat-
tern recognition of the fluorescence data. With reference to
the fluorescence differences between raw and partially treated
water, the SOM enabled correlation of the fluorescence proper-
ties with organic matter removal efficiency and properties for
particular WTWs.  These results demonstrate that SOMs can be
a robust tool in the analysis of fluorescence data characterising
organic matter properties in aquatic samples.

Appendix  A.  Supplementary  data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.ece.2011.10.002.
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