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Terrestrial LiDAR Survey and Morphological
Analysis to Identify Infiltration Properties in

the Tamala Limestone, Western Australia
Kashif Mahmud, Gregoire Mariethoz, Pauline C. Treble, and Andy Baker

Abstract—Caves are an ideal observatory of infiltration water
in karstified limestone, and the application of remote sensing
techniques can bring new insights toward flow patterns and pro-
cesses. We present an exhaustive characterization of Golgotha
Cave in SW Western Australia, based on a light detection and
ranging (LiDAR) measurement campaign. The cave is developed
in Quaternary age aeolianite (dune limestone) and its infiltration
waters form speleothems. We collect ground-based LiDAR scans
of the cave ceiling at three sites within the cave system. The result-
ing point-clouds are analyzed using mathematical morphology to
determine statistical information on stalactite widths, lengths, and
spatial distributions. We establish a relationship between stalac-
tite diameter and length that is in agreement with the platonic
ideal of stalactite shape. We relate stalactite density variation with
topography of the cave ceiling and variations in hydraulic gradi-
ent. From this analysis, it appears that longer stalactites tend to
occur in comparatively lower ceiling elevation, which, we hypoth-
esize, represents greater mass of water in the limestone above the
roof of the cave. We also investigate the relationship between sta-
lactite distribution and ceiling features such as fractures. We apply
this to identify different types of possible flow patterns such as
matrix flow and fracture flow. This analysis demonstrates a spa-
tial variability, with one site having linear groups of stalactites and
another site mostly dominated by stalactite clusters.

Index Terms—Cave, infiltration, karst, morphology, stalactites.

I. INTRODUCTION

L IGHT detection and ranging (LiDAR) is a commonly
used remote sensing technology that allows recording

high-resolution surface maps [1]. While it was initially used
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for mapping particles in the atmosphere [1], today LiDAR has
applications in archeology [2], geography [3], geology [4], geo-
morphology [5], [6], seismology [7], forestry [8]–[11], remote
sensing [12], atmospheric physics [13], [14], hydraulic mod-
eling [15], vehicle extraction [16], and contour mapping [17],
[18]. It determines the distance to an object or surface by
emitting laser pulses and by measuring the properties of the
scattered light. It is, therefore, similar to radar technology, but
uses visible and infrared light instead of radio waves. The range
to an object is determined by measuring the time delay between
transmission of a pulse and detection of the reflected signal.
Ground-based LiDAR or terrestrial laser scanner (T-LiDAR)
has been used since the early 1990s and is capable of producing
maps with under 1-cm resolution [1].

Karstic aquifers, formed by the dissolution of soluble rocks,
represent 25% of the water resources worldwide [19]. These
aquifers contain valuable freshwater resources, but are chal-
lenging to exploit and vulnerable due to a strong degree of
heterogeneity and connectivity. Karstic formations typically
contain conduits that allow the flux or storage of large amounts
of water, but also favor quick flow and, therefore, migration of
contaminants. To manage the karst resource better, it is impor-
tant to understand and predict how the water flows in karstified
limestone. This includes having an idea of the typical geome-
try of karst conduits, and how they are connected, as well as
a quantification of the relative importance of conduit, fracture,
and matrix flow. However, the accurate and complete recording
of subsurface karstic features is challenging since it can only
be observed in specific caves that are accessible. The walls,
floors, and ceilings of a cave typically present irregular sur-
faces, characterized by flowstones, stalactite, and stalagmites,
which can indicate past and present water flowpaths. Reference
[20] presents an investigation of the applicability of the Kinect
sensor for capturing common karst features in caves and com-
pares the point-cloud with a reference terrestrial laser scan. It
suggests that the Kinect-based acquisition is rather suitable for
capturing cave surface features such as flowstones. Here, by
performing a quantitative analysis of the morphology of karstic
features within a cave, we can estimate infiltration water flow
processes through fractures and the matrix of the karst system.

T-LiDAR is capable of capturing hundreds of millions of
three-dimensional (3-D) points coordinates and its use in geol-
ogy has been growing [21]–[25]. Once a high-resolution 3-D
record of the site features is available, one can visualize, study,
and extract two-dimensional (2-D) and 3-D information at
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various scales and from several points of view. Research involv-
ing the T-LiDAR technique for karstic model development
is still evolving and requires further enhancement, especially
concerning the processing, interpretation, and integration with
other data types. In this context, this study is the first use of
T-LiDAR data to investigate quantitatively the speleothem mor-
phology and distribution within a subterranean site—in this
case, Golgotha Cave, SW Western Australia.

Most studies on karst systems show that variability in the
infiltration processes governs both the location and the shape
of stalactites [19], [26]–[27]. The karst literature describing
the spatial distribution of speleothems mostly consists of qual-
itative descriptions [28]. Research on karstogenesis [19], [29]
associates the presence of stalactites with typical growth fac-
tors, such as the presence of soils with high partial pressure
of CO2, water flow, and a low partial pressure of CO2 in
the cave atmosphere [30]. For example, [26] correlated the
main speleothem shapes with different feed water regimes.
However, such studies did not investigate the relationship
between speleothem morphology and their location and rela-
tionship to karst structure. So far, only a few studies have
quantitatively described speleothem spatial distributions in a
cave system, or even in a chamber or passage of a cave [31].

According to [19], three levels of porosity can be distin-
guished within karst aquifers: 1) primary porosity associated
with intergranular pores in the rock matrix; 2) secondary
porosity associated with common rock discontinuities such as
fractures (fissures) and bedding planes; and 3) tertiary porosity
with solutionally enlarged voids such as channels and conduits
developed from the initial discontinuities. Whereas ground-
water flow in the matrix and small fissures is typically slow
and laminar, flow in karst conduits (caves) is often fast and
turbulent. Some hypothetical karst water flow pathways are
illustrated schematically by [32] and [33], showing possible
mechanisms by which water might be delivered to individual
speleothems, although in reality combinations of these flow
pathways will always occur. Thus, stalactite shape and water
chemistry seem to be controlled by two water flow types in
karstified limestone: 1) matrix flow, which is likely to homog-
enize the growth, shape, and chemistry of stalactites and 2) the
fracture network that usually generates heterogeneities in sec-
ondary porosity causing variations in stalactite growth rate,
shape, and chemistry.

We propose that the geometry of stalactites could indi-
cate possible flow types or combinations of flow types.
Stalactite morphology has long been studied. For example,
[34] described the morphology of “soda-straw,” the slender
and hollow stalactites, and suggested some controlling factors
in determining the smallest possible equilibrium diameter of a
stalactite. Reference [35] modeled growth of solid stalactites
as a free-boundary problem and compared the actual and
theoretical stalactites shape. According to [36], soda-straw
stalactites are the low discharge and low discharge variability
end-member of speleothem that are associated with water
ingress to a cave roof. On the other hand, at increasing dis-
charge and discharge variability, typical forms are “icicle-shape
stalactites” and “curtains.” In these later morphologies, the
stalactites thicken outward and downward with time, and often

Fig. 1. (a) SW Western Australia map showing coastal belt of dune calcarenite
(adapted from [38]) (inset indicates SW Western Australia region). (b) Plan
view of Golgotha Cave map showing all three ceiling sites (green dots) and
T-LiDAR positions (red dots).

a surface rippling is observed with a characteristics wavelength
of approximately 1 cm.

The above literature suggests that hydrological flow proper-
ties could be identified from the geometry of stalactites and
other morphological features in relation to the cave ceiling.
In this study, we use T-LiDAR data to image a cave ceiling
including individual stalactites. We, then, perform statistical
and morphological analyses of cave ceiling comprising differ-
ent sizes and shapes of stalactites. Among these, we analyze
the spatial distribution of stalactites for various sites and estab-
lish relationships between stalactite diameter and length. We
relate stalactite density variation with topographic elevation of
the cave ceiling, indicating groundwater flow distribution gov-
erned by hydraulic gradient deviations. The role of the type
of water flow processes (matrix or fracture flow) is also ana-
lyzed by studying the spatial distribution of a large population
of stalactites in three sites within the same cave system.

II. SITE DESCRIPTION AND DATA ACQUISITION

SW Western Australia has a Mediterranean-type climate,
with dry summers and wet winters associated with the sea-
sonal migration of the midlatitude westerly winds. Rainfall,
recorded at Forest Grove [34.07◦S 115.10◦E, weather station
number: 9547; Fig. 1(a)] 5 km from our monitored site since
1926, is 1136.8± 184mm annually with approximately 75% of
the annual rainfall occurring between May and September [37].
Mean maximum daily temperatures range from 16 ◦C (61F) in
July to 27 ◦C (81F) in February.

The field site, Golgotha Cave [36.10◦S 115.05◦E, Fig. 1(a)],
is in aeolianites (dune limestone) of Quaternary age, which
are wind-blown calcareous sands that have deposited widely
around the coast of Australia. The cave is 200-m long and up
to 25-m wide, and the dune limestone is 20–30-m thick over
the cave [Fig. 1(b)]. Vadose zone water flow, and subsequent
widening by ceiling collapse, formed the cave chamber.

The T-LiDAR measurements were taken adjacent to two
locations where cave drip waters have been sampled for drip
rate and chemistry for the previous 10 years (2005–2014) [38].
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These two areas of the cave have contrasting discharge, dune
facies, and karst features [38] that make these two sites more
interesting in terms of water flow and are known as site 1
(located approximately 60 m into the cave) and site 2 (located
a further 30 m into the cave). Site 3 is in-between sites 1 and 2
[Fig. 1(b)] where we also find significant drip water discharge
and recent stalactite formations. Moreover, the T-LiDAR posi-
tions 1, 2, and 3 were selected such as to cover the significant
portions of the ceiling from a perspective close to vertical to
minimize the occlusion of other stalactites further away from
the scanner line-of-sight. Another criterion for site selection
was the accessibility of the site within the cave.

Site 1 ceiling contains straw stalactites that tend to clus-
ter in the areas of lowest elevation. Sites 2 and 3 are in a
large chamber, which appears to be less stable than that hous-
ing site 1, as evidenced by roof-collapse, dense rubble on the
floors, and small breakdown chambers in the walls and ceilings
[38]. Stalactites in site 2 tend to be more isolated, emerging
either along fractures or at the margins of relict dune surfaces
revealed by roof-collapse, indicating the possibility of lateral
flow dispersion.

In this study, a FARO Focus3D terrestrial LiDAR has been
used to acquire 3-D geological images of the cave ceiling
of all three sites with detailed stalactite distribution from a
single point in each site. The resulting point-cloud provides
detailed omnidirectional information on the cave morphology
and the stalactite size and shape. Each scan lasts approximately
10 min with a resolution of 1 mm. The point-cloud from all
three sites are cropped to retain only significant portions of
the ceiling that have a clear view of the stalactite distribu-
tion, and to efficiently manage the data storage requirements
and reduce the computational time. Cropping is done using
the SCENE 3-D laser scanner software, which was also used
for 3-D visualization, meshing, and file formats conversion.
After cropping, the point-clouds were exported to MATLAB
for further processing.

For site 1 and with a coarsened resolution of 4 mm, the
cropped data set comprises 1.9× 106 measurements within a
total ceiling area of 9.5m × 3.2m [Fig. 2(a)]. This portion of
ceiling has two areas that consist of stalactites, the left portion
having smaller ones [zone 1 in Fig. 2(b)] and the right side with
longer ones [zone 2 in Fig. 2(b)]. Fig. 3(a) shows site 2, which
has a lower ceiling elevation compared to the other sites. The
cropped data set, we have used, for site 2 comprises 3.45× 106

measurements with a resolution of 4 mm and a total ceiling area
of 8m × 6.9m shown in Fig. 3(b). Site 3 is shown in Fig. 4 hav-
ing a total of 1.406× 106 measurement points with a ceiling
area of 4.5m × 5.0m.

III. CEILING TOPOGRAPHY ANALYSIS

The stalactite shapes were analyzed using a two-stage pro-
cedure. In a first stage, we carry out a statistical analysis of
the shape of all the stalactites measured, without taking into
account their spatial distribution. The second stage involves a
spatial study of the data set to examine possible correlations
between stalactite shape and geographical location, and later
develop a relationship with water flow distribution.

Fig. 2. (a) T-LiDAR scan of site 1. The blue half circle mark indicates the
base of the T-LiDAR. (b) Site 1 ceiling portion considered for morphological
analysis. Ellipses indicate the two zones in stalactites cluster.

Fig. 3. (a) T-LiDAR scan of site 2. The blue half circle mark indicates the
base of T-LiDAR. (b) Ceiling portion of site 2 considered for morphological
analysis.

A. Identification of Stalactites

This section describes the methodology, we have used, to
identify individual stalactites based on the T-LiDAR point-
cloud. The original 1-mm data are interpolated to a resolution
of 4 mm that is sufficient for the purpose of identifying individ-
ual stalactites, even soda-straw stalactites as [34] suggested the
minimum diameter of soda-straw stalactite is 5.1 mm. Higher
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Fig. 4. (a) T-LiDAR scan of site 3. The blue half circle mark indicates the base
of T-LiDAR. Site 2 is far in the right top corner of this image. (b) Ceiling portion
of site 3 considered for morphological analysis.

resolution data would make it difficult to differentiate between
small stalactites and natural rock surface variability. Moreover,
the decreased resolution allows for smaller data set storage and
faster processing time, which would be needed if applying our
methodology to a full-scale case study. An initial processing
step of the T-LiDAR data is to separate the ceiling surface
into two components: 1) the general trend (low-frequency com-
ponent corresponding to the overall ceiling topography) and
2) the small-scale fluctuations (high-frequency component cor-
responding to small dissolution and precipitation features, most
notably stalactites), from where we can extract the stalactite
information. This is accomplished by computing the moving-
window average M(x, y) of the surface [Fig. 5(b)], which
results in a smooth surface representing the low-frequency com-
ponent of the ceiling topography. Different possibilities for the
size of the window for the moving average have been tested,
including a variogram analysis where the variogram range gives
the size of the structures on the surface considered. As a result,
a window of 40× 40 grid cells is found to be optimal for the
separation of high-frequency and low-frequency fluctuations
for all three sites. Then the high-frequency surface anoma-
lies A(x, y) are obtained by subtracting the moving average
M(x, y) [Fig. 5(b)] from original ceiling surface topography
T (x, y) shown in Fig. 5(a)

A(x, y) = M(x, y)− T (x, y). (1)

The anomaly surface A(x, y) shown in Fig. 5(c) reflects
the occurrence of stalactites. Locations of stalactites are found
by isolating all pixels having an anomaly higher than a given
threshold. This threshold is defined based on the histogram of
A(x, y) (Fig. 6). Our tests showed that for the sites investigated

in this study, a threshold defined as the 97th percentile of the
topography anomalies allowed the appropriate identification of
individual stalactites (vertical red lines shown in Fig. 6).

The thresholding operation results in a binary variable
B(x, y) that represents the occurrence of anomalies in the sur-
face, believed to correspond to stalactites. While this binary
variable indicates the presence or absence of a stalactite, it can-
not be directly used to separate individual stalactites. The mor-
phology of a stalactite on a cave ceiling can be conceptualized
as an anomaly in the topography that is not connected to other
anomalies. In this definition, it is assumed that each stalactite
is a separate object, disconnected from the other stalactites. To
apply this principle, we use a connected component analysis
[39], [40], which is applied to B(x, y) to distinguish individual
stalactites. Each identified connected component then corre-
sponds to a separate stalactite. Statistics can be computed on
properties of the connected components such as their area or
their shape. Across all three sites considered, this methodology
allows automated identification of 5075 stalactites on a total
area of almost 108 m2.
B(x, y) depends on the threshold value and to a lesser extent

on the size of the window used for computing the moving aver-
age. In particular, a lower threshold will result in stalactites
located close to each other being grouped in a single large
connected component. Increasing or decreasing this threshold
changes the size of all connected components, in the same
way as a changing water level emerges or submerges islands.
Similarly, different threshold values can be used to reveal
different morphological properties of the stalactite clusters.
Thus, our analysis uses two possible threshold values: 1) the
97th percentile of the topography anomalies is used to iden-
tify individual stalactites and 2) the 94th percentile is used to
identify stalactites clusters (vertical red and green lines shown
in Fig. 6).

The segmentation process is semiautomated, in the sense,
that the user controls parameters (i.e., moving average win-
dow size, threshold), which are specific to a particular cave
site. It is known [41] that such parameterization necessarily
involves a tradeoff balance between over- and undersegmen-
tation. In other terms, one may either mistake a single stalactite
cluster for multiple nearby stalactites, or, on the other hand,
merge several individual stalactites into a single cluster. While
the optimal parameters minimize both types of error, there is
generally no parameters combination that results in a perfect,
error-free segmentation. Here, identifying stalactites clusters
using a 94th percentile threshold is highly a sensitive parameter,
because incorrectly classified clusters often represent the most
extreme outliers in the segmented flow types and can, therefore,
substantially affect the flow classification.

B. Stalactite Morphology

The identification of separate stalactites on the cave ceil-
ing, together with the detailed topography information, allows
computing the length and diameter of each stalactite. Fig. 7(a)
shows the relationship between stalactite length and diameter
excluding soda-straw stalactites, which are characteristically
nonplatonic and have a variable length and a typical width of
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Fig. 5. (a) Cave ceiling topography in 2-D T (x, y). (b) Moving averages with a window of 40 grid pixels M(x, y). Color scales represent elevations in meters
relative to the T-LiDAR receiver. (c) Topographic anomalies maps A(x, y). (d) Locations of stalactites B(x, y) representing pixels where topography anomalies
are above the threshold.

Fig. 6. Histograms of the topography anomalies and threshold used to identify the individual stalactites (97th and 94th percentile thresholds, shown as vertical
red and green lines).

about 5–10 mm. Fig. 7(b) displays the relationship between
stalactite length and ceiling elevation relative to the T-LiDAR
receiver. We have used a separate coordinate system for each
site, using the LiDAR position as origin. This is appropriate for
our purpose since we are only interested in characterizing the
morphological properties of each site. Hence, in Fig. 7(b), the
Z coordinate of the ceiling position represents, for each site,

the elevation above the T-LiDAR. In this context, ceiling eleva-
tion is an indicator of the column of water pressure over a given
volume of rock (vertical hydraulic gradient) and is investigated
here as a possible driver for the occurrence of stalactites within
a particular site.

Due to the large number of points in the plots of Fig. 7, we
chose to display these relationships as density estimates by the
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Fig. 7. Scatterplots with application of kernel smoothing. (a) Stalactite length
versus diameter excluding soda-straw stalactites. (b) Stalactite length versus
ceiling elevation plots. The elevations are relative to the T-LiDAR position.
Color scales represent probability. Lengths and diameters are in cm and the
x-axis scales are all different.

application of kernel smoothing [42]. The reason for applying
kernel smoothing is that most data points are superimposed in
the scatter plot and it is, therefore, difficult to visualize the den-
sity of points. Kernel smoothing constructs a small Gaussian
shape (called kernel) on top of each point, then sums all of these
kernels. It allows more accurate display of the density of points
that are, otherwise, not visible in a scatter plot.

C. Determination of Flow Type

We differentiate different types of flow patterns using two
properties of the stalactites: 1) aspect ratio and 2) cross-
sectional area. The aspect ratio denotes the ratio of the major
axis to the minor axis in the ceiling surface of an individ-
ual connected component (an individual stalactite or a cluster
of stalactites). Cross-sectional area is the area of the stalac-
tite section in the ceiling surface. Based on the typical types
of porosity and infiltration processes in karst, we define three
categories of flow and identify their spatial signature according
to the following criteria.

1) Type 1: Matrix flow that is caused by water seeping
through the rock matrix. It includes smaller fractures,
typically creating icicle-shape stalactites and defined by
lower aspect ratio, and lower cross-sectional area of indi-
vidual stalactites. Within this definition, we differentiate

Fig. 8. Identification of flow type based on aspect ratio of stalactite-connected
components. The ceiling portion is taken from site 2.

soda-straw stalactites that are further characterized by
lower stalactites diameter and a higher length/diameter
ratio. Soda-straw stalactites are an important feature of
matrix flow and do not follow the platonic ideal shape.
Groundwater flow processes through the porous lime-
stone matrix are essentially the same as groundwater flow
in porous media [46], and can be described using the
matrix flow formulation of Darcy, which states that the
discharge is proportional to the hydraulic gradient and
the cross-sectional area, with the hydraulic conductivity
being the proportionality factor [44].

2) Type 2: Pure fracture flow where water circulates within
the fractures openings. It typically forms curtain-shape
stalactites or groups of stalactites aligned in the direction
of highest fracturing (such as the linear feature shown
in Fig. 8) and defined by a higher aspect ratio of sta-
lactite clusters. The fracture flow formulation simplifies
the fractures to have parallel walls and uniform aper-
ture [45]. Assuming impermeability for fracture walls, the
steady-state flow rate can be described by the cubic law
derived from Navier–Stokes equation for a viscous and
incompressible fluid [44].

3) Type 3: Combination of conduit, fracture, and matrix
flow, which typically forms circular features as shown
in Fig. 8 and defined by lower aspect ratios of stalac-
tite cluster and a higher cross-sectional area of stalactites.
Combination of different processes can occur, e.g., when
conduits are the result of preferential calcite dissolution
along preexisting fractures, or if the base of the pipe
conduit is closed, resulting in a stalactite cluster. The
resulting conduit networks are the key phenomenon that
separates karst aquifers from porous and fractured-rock
aquifers. Corresponding karst aquifers include conduits
with both rapid flow with low storativity and no flow
with high storativity. The flow in conduits can occur as a
free surface open-channel regime driven by gravitational
gradients, as a pipe flow under pressure, with the possi-
bility of both occurring in different reaches of a conduit.
Alternatively, the conduit could have no flow, providing a
water store [44].

The detailed classification criteria is summarized in Fig. 9
and the overall rationale can be described as follows. Since
flow type 1 is related to discrete features of very limited
spatial extent (fractures and conduits), we define the loca-
tions of flow type 1 according to the geometry of individual
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Fig. 9. Flow type classification criteria based on aspect ratio and cross-
sectional area.

stalactites. These are identified based on a threshold at the 97th
percentile of A(x, y). Using this threshold, locations with cross-
sectional area <75 cm2 and connected component aspect ratio
<10 are defined as flow type 1, including the soda-straw sta-
lactites, which we further define by diameter <10mm with a
length/diameter ratio >8.

To validate our approach, we manually counted both icicle-
shape and soda-straw stalactites visible in the high-resolution
T-LiDAR image and compared that to those features classified
from the morphological analysis. As it is difficult to manually
classify large portions of the ceiling, a smaller ceiling por-
tion was taken from site 2, and the optimum parameters were
selected through this validation process (Fig. 10). The chosen
parameters were then used for analysis of the larger images in
later analyses. The individual stalactites in both high-resolution
T-LiDAR image [Fig. 10(a)] and morphological analysis out-
come [Fig. 10(b)] are presented. Table I compares the total
number of stalactites identified using visual count and our
automated methodology, for each stalactite type. Most icicle-
shape stalactites are correctly identified. However, several soda
straws close together could be misidentified as an icicle-shape
stalactite, or a ceiling bedrock shape could be incorrectly clas-
sified as an icicle-shape stalactite. Another possibility might be
the occlusion of sheltered soda-straw stalactites that are fur-
ther away from the scanner line-of-sight and behind another
large one from the angle where we took our LiDAR scans.
Therefore, the number of soda-straw stalactites tends to be
further underestimated.

We characterize flow types 2 and 3 based on a lower thresh-
old that corresponds to the 94th percentile of A(x, y). With this
lower threshold, stalactites that are close to each other become
grouped and form one large cluster. If a cluster has a large
aspect ratio, it means that these stalactites have formed along
a linear feature like a fracture or a fault (type 2), such as illus-
trated on the right side of Fig. 8. On the other hand, if this large
cluster has a smaller aspect ratio, it means that this cluster of
stalactites has a more circular shape, indicating a combination
of conduit, fracture, and matrix flow (type 3), as on the left side
of Fig. 8.

It should be noted here that using different threshold val-
ues for characterizing flow type 1 and flow types 2/3 causes
the cross-sectional area of a connected component to change.

Hence, the areas defined as flow type 1, which have cross-
sectional areas below 75 cm2, now have larger cross-sectional
areas with the reduced threshold. We observed that the change
in threshold resulted in a one-third increase of the area of
the connected components, resulting in type 1 connected com-
ponents having areas up to 100 cm2. In consequence, the
areas of flow types 2 and 3 are defined as connected compo-
nents with an area >100 cm2 with a 94th percentile threshold
(Fig. 9).

Among these larger clusters, the ones with a high aspect ratio
(>8) are classified as pure fracture flow (type 2). The more
circular ones (aspect ratio <8) are classified as type 3.

IV. RESULTS

A. Morphological Analysis of the Stalactites

Table II indicates the different threshold values used for each
of the three sites considered, i.e., corresponding to 97th and
94th quantiles of A(x, y). Based on these threshold values, we
compute various cave ceiling statistical properties that are also
presented in Table II, such as the number of stalactites and their
densities, the range of values for stalactites diameter, the aspect
ratios of connected components. The minimum stalactite diam-
eter we found with 4-mm resolution is 0.51 cm for all sites,
supporting the statement of [34]. The average length of the sta-
lactites is larger for sites 2 and 3 compared to site 1, and on the
other hand, the average aspect ratio of individual stalactites is
larger for site 1.

We find moderate to low correlation coefficients (r) between
stalactite diameters and lengths (0.62, 0.23, and 0.69 for sites
1, 2, and 3, respectively). The shape of these relationships
[Fig. 7(a)] agrees with the platonic ideal of stalactite shape
described by [35]. Numerical studies involving the simulation
of stalactite growth and surface dynamics performed by [35]
showed the existence of an attractor in the space of shapes,
toward which stalactites will be drawn regardless of initial con-
ditions. This ideal shape is scale-independent and is named the
platonic ideal stalactite shape. It is described by a universal,
parameter-free differential equation. The shape of any single
real stalactite will vary from this ideal shape in a variety of
ways due to instabilities such as those producing crenulations,
inhomogeneous cave conditions, and unidirectional airflow.
Mindful of this, [35] found that an average of natural stalactites
appropriately cancels out these imperfections, and compares
extremely well with the platonic ideal, which is the case of
Fig. 7(a). The median gradients or ratio of diameter to length
for all three sites are 1.10, 0.96, and 1.22, respectively, with
interquartile ranges of 0.83, 1.4, and 1.12. The ratio of diam-
eter to length for the platonic ideal stalactite found by [35] is
1.3. Our ratios are similar to lower, which is due to the pres-
ence of soda-straw stalactites shown in Table II and Fig. 11.
All three sites have significant presence of soda-straw stalac-
tites, which do not agree with the ideal stalactite shape [35]
as they have low diameter to length ratios. Therefore, we per-
form the same test excluding the soda-straw stalactites and find
the median gradients for all three sites 1.21, 1.35, and 1.32,
respectively, with high interquartile ranges of 0.83, 1.8, and
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Fig. 10. (a) High-resolution T-LiDAR image of site 2 ceiling portion (125 cm × 175 cm) for validation process. Some stalactites are not visible in the T-LiDAR
image (such as 19 and 21) from this angle due to the shadow of another stalactite, however, can be seen from an opposite view. (b) Locations of individual stalactite
identified using the morphological analysis. Few stalactite locations are numbered to compare both the cases in terms of stalactite identification.

TABLE I
STALACTITE COUNT VALIDATION

1.05. These outcomes satisfy the platonic ideal stalactite shape,
however, the high interquartile ranges represent a significant
level of heterogeneity between the sites. From Fig. 7(b), the
concentric pattern indicates that longer stalactites tend to occur
in comparatively lower ceiling elevation, which we hypothesize
represents greater hydraulic gradients within a ceiling area, i.e.,
greater mass of water in the limestone above the roof of the
cave. This is evident for site 1, which is dominated by flow type
1 in the limestone roof, however, not that strongly apparent in
sites 2 and 3 (Table II). The reason might be that the limestone
porosity in these sites does not favor hydraulic gradients simi-
lar to site 1 due to the domination of fracture flow (as shown in
Fig. 11). Also the cropped ceiling portion we consider for mor-
phological analysis of site 1 consists of two nearby stalactite
zones [Fig. 2(b)]. Among these two areas, the lower zone [with
ceiling elevation less than 22.2 m in Fig. 5(a)] has longer sta-
lactites representing the lower ceiling elevation, probably due
to higher hydraulic gradient at low elevation.

B. Flow Pattern

The locations of various flow types for different sites are
shown in Fig. 11. For each site, we compute the proportions
of the ceiling representing different flow types and also no
flow area (Table II). We find significant counts of soda-straw
stalactites in all three sites that also fall within flow type 1,
however, the proportions are little, approximately 1% of the
ceiling area with stalactites (Table II). From the flow patterns
illustrated in Fig. 11 and the proportions provided in Table II,

TABLE II
STALACTITE PROPERTIES FROM T-LIDAR DATA ANALYSIS

it is apparent that both sites 1 and 3 are mostly dominated
by flow type 1: matrix flow representing water flowing down
and seeping through rock matrix. The wide distributions of
both icicle-shape and soda-straw stalactites in these two sites
reflect seepage flow to cave roof from overlying late Quaternary
Aeolian sandstone aquifer. In this case, water movement will
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Fig. 11. Flow patterns at different sites. The center of red dots represents the location of soda-straw stalactites. We emphasize the locations by increasing five
times the size of the dots.

Fig. 12. Aspect ratio versus length of stalactite clusters for all three sites.

be a function of the primary porosity of the karst, with flow
rates proportional to the matrix permeability. In such cases of
dominant flow type 1, rates of change of water movement are
likely to be slow, with slow drip rates of low variability [36].
Based on the size and shape of stalactite clusters, we find site
2 typically controlled by flow type 2 (Fig. 11). Therefore, this
site is dominated by water flowing down through a fracture.
In this site, drip rates are likely to vary over time, depending
upon the mode of water delivery to the preferential flow system.
The latter will reflect the surface water balance, including evap-
otranspiration rates and precipitation, in addition to potential
water storage within the epikarst [43].

C. Aspect Ratio and Stalactite Length

Fig. 12 shows the relationship between the aspect ratio of sta-
lactite clusters and the average length of individual stalactites
in a given cluster for all three sites. The aspect ratio repre-
sents the anisotropy in the shape of stalactite clusters, with
larger values for linear features. We observe that the more com-
pact clusters of stalactites having lower aspect ratios are made
of longer stalactites, indicating more continuous flow in case
of both sites 2 and 3. The average lengths of stalactites are
slightly larger for both these sites compared to site 1 (Table II).
The analysis demonstrates a spatial variability, with more lin-
ear groups of stalactites present in site 2 compared to sites
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1 and 3, which supports the dominant proportions of fracture
flow described in Table II. We hypothesize that there are solu-
tion features above the cave roof, which provide the necessary
dissolution of limestone and then storage of super-saturated
water.

V. CONCLUSION

Caves make it possible to enter an aquifer formation to
directly capture 3-D point-clouds and study a subsurface karst
system that would be otherwise inaccessible. We present the
first quantitative analysis of the morphology and spatial dis-
tribution of stalactites covering a cave ceiling surface. By
performing statistical and morphological analysis of karstic
features based on T-LiDAR data, we have been able to iden-
tify flow processes through saturated conduits, fractures, and
the matrix, and how these are expressed in the geological
structures.

The relationships between stalactite diameter and length are
established that are in agreement with the expected typical sta-
lactite shape. A significant correlation between the length of
the stalactites and the topographic elevation of the cave ceil-
ing indicates that higher hydraulic gradient favors groundwater
movement through karstified limestone.

Three nearby sites in the same cave exhibit very different
behaviors, which give insights into the degree of heterogeneity
of the flow types. This dynamic variation in karst processes has
important implications for speleothem research since it can help
explaining the differences in paleoclimate record from nearby
speleothems [36], [47].

An avenue for future research is to map the extent of cave
damage (e.g., by touristic exploitation or in speleoseismology)
using the deviations from the ideal model shape of [35], with
broken stalactites having a shorter length to diameter ratio.
Assessment and environmental management of tourist caves
might then be possible using recurrent surveys from the same
location. Repetitive T-LiDAR measurements could also be used
to measure speleothem growth rates in environments where this
growth is extremely fast, such as in caves where speleothems
form from lime (reaction CaO + CO2 = CaCO3) and having
growth rates of about 1 cm/year [48], [49]. Another possible
application of T-LiDAR data, in the field of speleoseismology,
is to look at deviations of stalactite shapes from a linear length-
distance trend and any relationship to the extent of fracturing
that assists to work out the earthquake history.

VI. AVENUE FOR FUTURE RESEARCH

In future research, we plan to use stalactite distribution
derived from T-LiDAR data to create training images for the
generation of large synthetic cave systems and conduct virtual
tracing experiments in formations that cannot be explored in
detail.
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