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Abstract

A new method (termed Principal Filter Analysis (PFA)) for analysing
large time series of luminescence excitation-emission matrices (EEMs)
is proposed, based on the idea of identifying ‘filters’ that detect time
periods where interesting variations in the EEMs occur. A mathemat-
ical exposition of the technique is supplied, followed by a discusion of
how it may be implemented in practice. The method is applied to
EEMs taken from a stalagmite in Crag Cave, W. Ireland resulting in
three distinct time periods of luminescence properties being identified.

1 Introduction

Using luminescence spectrophotometry, it is now possible to generate large
excitation-emission matrices (EEMs) for hydrological and geological studies
[3]. A single EEM typically consists of a matrix of luminescence intensity
values arranged in a rectangular grid - typically containing 103 to 105 val-
ues. The rows and columns of the matrix represent the excitation and emis-
sion wavelengths. Analysis and visualisation of these matrices can provide
geological and hydrological information essentials for a number of applica-
tions, including speleothem and peat derived records of humifcation and the
identification of organic carbon fractions in marine and terrestrial waters
and groundwaters, including sewage and farm wastes [8, 9, 10, 11, 13, 16,
18, 20, 21, 19]. However, single EEMs are rarely considered in isolation.
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They are most usefully considered as a time series - for example based on
365 daily hydrological samples, or much longer series for geological samples
[6, 15, 4, 5, 17, 1, 2]. To analyze a series as a whole, we must regard the
series of EEMs as a ‘data cube’, with a third time dimension in addition to
those of excitation and emission described above.

A data model of this type presents a number of problems for visualisa-
tion and analysis. Firstly, the data is essentially four dimensional, as any
intensity measure also has associated values of time, excitation and emission
wavelength. Clearly, four-dimensional data may not be visualised directly.
Secondly, there is a large amount of data. Even in the hydrological case,
where the time series are relatively short, there may be 365 EEMs to consider.
Analysis of EEMs generally consists of identifying ‘features’ such as peaks
or ridges of intensity which correspond to the presence of certain substances.
Identifying EEMs in the time series where such features change markedly
helps to identify periods of environmental change. However, with very large
numbers of EEMs the task of finding ‘interesting’ ones is non-trivial. In an
earlier paper [3], we offered an isoline-based method for viewing the data
cube as a four-dimensional entity. Here, we offer an alternative approach,
which more directly tackles the problem of identifying ’interesting’ points in
the EEM time series. This is achieved using the technique we term Principal
Filter Analysis PFA, which we outline in this paper. Following a brief out-
line of PFA we consider the computational issues needed to implement the
technique in practice. We then give an example of the use of PFA.

2 Principal Filters: An Outline

For a single point in time we may consider the luminescence intensity (I) to
be a function of the excitation wavelength νex and the emission wavelength,
νem. Thus we write I = I(νex, νem). An EEM may therefore be considered
as a set of discretely sampled I-values using regularly spaced values of νex and
νem. We may extend this to consider every point in time t in the continuous
period spanning the time series of EEMs, and write I = I(νex, νem, t). The
time series of EEMs (the data cube) may then be considered as as a set of
discretely sampled I-values as above, but with an added dimension of discrete
sampling points in time. A further refinement - which we have found to be
generally helpful - is to standardise I by subtracting the time averaged value
of I at each (νex, νem) and dividing this quantity by the time-based RMS
value. This has the effect of highlighting relative changes in the EEM matrix
over time, rather than absolute changes.

Suppose we know that a certain period in time, say from t1 to t2 is
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interesting. We could define a measurement of overall intensity during this
period for an excitation-emission pair (νex, νem) as

I∗(νex, νem) =
∫
T
I(νex, νem, t)f(t) dt (1)

where

f(t) =

{
1 if t1 ≤ t ≤ t2
0 Otherwise

and T is the entire time span of the EEM time series.
The function f may be thought of as a filter selecting out points in time

that are interesting in some prescribed way. The function I∗(νex, νem) may
then be plotted using contours or three-dimensional surface plots to identify
features of the excitation-emission intensities in the time range. However,
f need not be confined to a binary 0/1 switching function. By allowing f
to vary continuously it is possible to arrive at a function I∗ which applies
relative weights of importance to different points in time. Furthermore, by
allowing f to take negative values for certain time periods, it is possible to
create an I∗ function which gives higher values for certain (νex, νem) pairs
which do not have high luminescence intensities during these time periods.

In practice we do not have prior knowledge of the ‘interesting’ time pe-
riods, and hence ‘interesting’ choices of f . Here we propose a method for
making such choices on the basis of I = I(νex, νem, t), or more precisely, on
the basis of the data cube as a discrete sample of this function. The under-
lying idea is to find f giving the ‘most interesting’ I∗ function. We define
‘most interesting’ to mean the I∗ exhibiting the most variability, V(I∗), over
the sampled ranges of νex and νem, defined by

V(I∗) =
∫ ∫

ν2
(I∗(νex, νem)−M(I∗))2 dνexdνem (2)

where ν2 is used as a shorthand to denote the region spanned by νex and
νem, and M(I∗) is the mean value of the function I∗ over this same region,
defined by

M(I∗) =

∫ ∫
ν2 I∗(νex, νem) dνexdνem∫ ∫

ν2 dνexdνem

Thus, the problem of finding a suitable f may be stated as

Find a function f minimising V(I∗)
where

I∗(νex, νem) =
∫
T
I(νex, νem, t)f(t) dt (3)
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Note that multiplying f by a constant, or adding a constant to f would
allow V(I∗) to increase without bound, so we subject the above problem to
the two constraints:

∫
T f(t) dt = 0 and

∫
T (f(t))2 = 1.

Having found f according to the conditions above, we may then plot
f against t to identify ‘interesting’ time periods, and plot the associated
I∗(νex, νem) to identify excitation-emission wavelength pairs associated with
the time periods. The f found in this way is referred to as a Principal Filter.

Suppose we now refer to this function as f1. It is now possible to consider
other ‘interesting’ filters, f2, f3 and so on. Firstly consider f2. To identify
different features from f1, we solve equation 3, imposing a further constraint
of orthogonality - that is ∫

T
f1(t)f2(t) dt = 0 (4)

This ensures that f2 will identify a different time pattern from f1 - the ‘in-
tegrating to zero’ property ensures that the two filters cannot both have the
same sign for very large time periods in T . We may then go on to find the
associated I∗ function - which we will denote by I∗2 .

This process may be continued indefinitely, initially by finding f3 such
that it solves equation 3, with the additional constraints that it is orthogonal
to both f1 and f2, and more generally by finding fk such that it is orthogonal
to f1, f2, . . . fk−1.

3 Computational Issues

A major difficulty with the previous section is that there are no obvious
ways of solving equation 3. However, in practice we do not work with the
continuous function I, but with the discrete ‘data cube’. Thus, we work with
discrete approximations for all of the functions in the last section. To do this,
we re-arrange the data cube into a matrix X, whose rows are the layers of
the excitation-emission levels, and whose columns correspond to the time
intervals. That is, if the data cube has l excitation levels, m emission levels
and k time intervals, the matrix X will have lm rows and k columns. This
being done, the function f in equation (1), is recast as a row vector with k
elements, say a = (a1, a2, ...ak) and the whole expression is recast as a matrix
multiplication x = Xa. The summations in the matrix multiplication replace
the integration in the original expression, and the result, x, is a column vector
with lm elements, replacing I∗(νex, νem) in equation (1). Note that we may
work with standardised intensities as suggested in the previous section. In
this case, X is transformed by subtracting the mean from each row and then
by dividing each row by its standard deviation.
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Equation (2) is then replaced by the variance of the vector x, that is:

V(x) =
1

ij

∑
(x− x̄)2 (5)

Having translated the expressions in the previous section into discrete
form, the problem stated in (3) can also be stated in discrete form:

Find a vector a minimising V(x)
where

x = Xa (6)

As before we need to add two further constraints, since adding a constant
multiplied by a vector of ones to a, or multiplying a by a constant allows
V(x) to increase without bounds. The discrete form of these constraints
are

∑
ai = 0 and

∑
a2
i = 1. Finally, it is possible to define a series of a-

vectors, say {a1, a2, ...} using the orthogonality constraint. In discrete form,
this constraint is expressed in terms of the vector dot product:

ai · aj = 0 if i 6= j (7)

The utility of re-expressing the problem in discrete form using matrix al-
gebra is that the the solution to problem (6) is well known. This is discussed,
for example, in [12]. A similar approach was used in [7] to investigate evolving
spatial patterns in atmospheric systems. The values of a solving (6) are the
eigenvectors of XT

DXD, where XD denotes the matrix X with the mean value
of each row subtracted from that row. Note that when working with stan-
dardised intensities, X = XD. Thus, we have an explicit form for a1, a2. We
may then treat ai’s as approximate solutions for fi(t). Each ai has an asso-
ciated x-value — call this xi. As noted earlier, this has lm elements, and is a
discrete approximation of I∗(νex, νem). To interpret this correctly, xi should
be re-shaped into a l by m element rectangular array, which may be used by
a contour-drawing or surface-plotting package to visualise I∗(νex, νem).

Finally, the eigenvalues of X also have an interpretation. Call these
(λ1, λ2, ...), sorted in order of magnitude. Then λi is proportional to the
variance of the elements of xi. Since the ai vectors form an orthogonal set,
note that the total variance of all of the elements of X is proportional to∑
λi. Thus, the proportion of the total variance ‘explained’ by xi is equal to

λi/
∑
λi. Also, recalling that we order the index i according to the magnitude

of λi, define φi =
∑
i=1,j λj/

∑
λi. This indicator is useful for determining the

success of the first few (ai,xi) pairs - values of φ1, φ2 and other low-indexed
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φi’s close to 1 suggest that much of the variability in the whole data cube is
explained by the first few xi’s.

4 An Example

In the following example, data was obtained from a stalagmite sample from
Crag Cave, W. Ireland, that has already undergone extensive research in
the form of isotope and crystal structure variations [14] and our previous re-
search into visualising luminescence EEMs [3]. The luminescence excitation-
emission matrix timeseries comprises 440 data points covering the period
10,000 years bp to present (giving an effective mean resolution of 2.5 yrs/
EEM). Baker et al [2000] demonstrate three periods of distinct luminescence
properties: (1) 0-4,000 BP (0-75 mm from top), (2) 4,000-9,600 BP (75-420
mm from top), and (3) Before 9,600 BP (420 mm to base), making this sam-
ple ideal for the testing of the PFA approach. A principal filter analysis was
carried out using standardised intensities. The values of ψi for i = 1...10 are
plotted in figure 1. This shows that much of the variance is explained by
the first three principal filters, so we focus the rest of our attention on these.
PF1 (Figure 2) increases towards the top of the sample, and exhibits a clear
period of change to high values at 80 mm and a possible transition to low
values at the base of the sample. The former clearly identifies the change
in luminescence properties identified in [3] at about 4000 BP in this sample.
There is a notable shift in the relative distribution of intensities in the EEMs.
This corresponds to a luminescence shape that has both high and low wave-
length luminescence peaks; a high score occurs only when both peaks are
present and a low score when one or both are absent. The importance of this
factor as the first PF here is that it was not readily observed visually through
individual analysis of EEMs and thus demonstrates the importance of the
PFA technique as a diagnostic tool. PF2 (figure 3) identifies change in lumi-
nescence EEM properties at higher wavelengths than PF1 and is therefore
indicative of increased humic-like fluorescence. Again, the greatest change
is in the top 80 mm of the stalagmite, and in [3] an increase in the fluores-
cence emission wavelength at this time is similarly observed. Hence we are
confident that PF2 is identifying organic matter preserved in the stalagmite
which is more humic in nature; this includes a weaker transition to such ma-
terial in the base of the sample, and three events between 200 and 300 mm
from top which were also identified by [3]. PF3 (Figure 4) identifies a lu-
minescence property of increasing importance from high to low energy levels
(low to high wavelengths). It is most important in the basal section of the
sample, differentiating the luminescence at this time from all another time
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periods. This may be diagnostic of a unique organic matter being present at
this time; of particular importance is that PF3 separates the luminescence
EEM properties at this time period from those in the top 80 mm samples,
something that was not possible in previous analyses.
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Figure 1: Variance explained by principal filtering

5 Conclusion

Luminescence excitation emission wavelength timeseries can provide high-
resolution palaeoclimate, hydrological and environmental records. However,
due to the vast amount of inter-related data that can be obtained in four di-
mensions (luminescence excitation and emission wavelengths, luminescence
intensity, time), interpretation of these data in terms of climate or environ-
mental change is not always straightforward. PFA on the luminescence EEM
timeseries from the Crag Cave stalagmite has shown the utility of this tech-
nique. In particular, it differentiated three periods of distinct luminescence
properties: (1) 0-4,000 BP (0-75 mm from top), where the luminescence
centre PF1 corresponds to a shape that has both high and low wavelength
luminescence peaks (2) 4,000-9,600 BP (75-420 mm from top), characterised
by a relatively stable size of fluorescence centre but with some shifts to higher
luminescence wavelength between 200 and 300 mm, and (3) Before 9,600 BP
(420 mm to base), which exhibits luminescence covering the greatest area
of optical space, with higher wavelengths of excitation and emission at the
expense of luminescence at low excitation and emission wavelengths.
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An important aspect of this technique is an emphasis on the interaction
between the computational and visual approaches. Clearly producing visual
representations of EEMs is key to interpretation, by a very large number
of images are produced in any given analysis. This technique uses a com-
putational approach to finding ‘interesting’ filters which highlight a small
number of patterns explaining nearly all of the variability in the EEM data
matrix, making interpretation of the key trends in the data easily identifi-
able. Ongoing research by the authors addresses integrating PFA with ex-
isting visualisation software on order to provide a customisable user-friendly
interface, making the technique available to a broader range of users. Also,
research is underway to develop statistical tests of whether shifts or peeks in
the PFA curves are due to genuine processes or artifacts of residual random
noise in the data. Recent developments in fibre-optic probe technology have
decreased spot-size available, and the increasing speed of spectrophotometers
over recent years has greatly increased the rate at which data may be col-
lected. Therefore increasing quantities of optical data at increasing optical
and temporal/spatial resolution will require increasingly sophisticated sta-
tistical and visualisation techniques such as the PFA methodology outlined
here.
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