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Abstract:

The results of a comparison between chemical water quality determinants and river water fluorescence on the River
Tyne, NE England, demonstrate that tryptophan-like fluorescence intensity shows statistically significant relationships
between nitrate, phosphate, ammonia, biochemical oxygen demand (BOD) and dissolved oxygen. Tryptophan-like
fluorescence intensity at the 280 nm excitation/350 nm emission wavelength fluorescence centre correlates with
both phosphate (r D 0Ð80) and nitrate (r D 0Ð87), whereas tryptophan-like fluorescence intensity at the 220 nm
excitation/350 nm emission wavelength centre correlates with BOD (r D 0Ð85), ammonia (r D 0Ð70) and dissolved
oxygen (r D �0Ð65). The strongest correlations are between tryptophan-like fluorescence intensity and nitrate and
phosphate, which in the Tyne catchment derive predominantly from point and diffuse source sewage inputs. The
correlation between BOD and the tryptophan-like fluorescence intensity suggests that this fluorescence centre is
related to the bioavailable or labile dissolved organic matter pool. The weakest correlations are observed between
tryptophan-like fluorescence intensity and ammonia concentration and dissolved oxygen. The weaker correlation with
ammonia is due to removal of the ammonia signal by wastewater treatment, and that with dissolved oxygen due to the
natural aeration of the river such that this is not a good indicator of water quality. The observed correlations only hold
true when treated sewage, sewerage overflows or cross connections, or agricultural organic pollutants dominate the
water quality—this is not true for two sites where airport deicer (propylene glycol, which is non-fluorescent) or landfill
leachate (which contains high concentrations of humic and fulvic-like fluorescent DOM) dominate the dissolved organic
matter in the river. Mean annual tryptophan-like fluorescence intensity agrees well with the General Water Quality
Assessment as determined by the England and Wales environmental regulators, the Environment Agency. Copyright
 2004 John Wiley & Sons, Ltd.

KEY WORDS chemical water quality; fluorescence; River Tyne; tryptophan; ammonia; biochemical oxygen demand;
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INTRODUCTION

Dissolved organic matter (DOM) has distinctive spectrophotometric properties in terms of both absorption
and fluorescence. As well as strong absorption in the ultraviolet, much DOM fluoresces (FDOM). Recent
advances in fluorescent spectrophotometry permit the rapid (¾1 min) detection of FDOM at a wide range
of both excitation and emission wavelengths to produce an excitation–emission matrix or EEM. An EEM
will typically cover a range of excitation and emission wavelengths from ¾200 nm (short wavelength UV)
through to ¾500 nm (visible blue–green light), and may contain fluorescence centres that are attributed to
both natural DOM such as humic and fulvic-like material, as well as fluorescent protein-like fluorophores (for
a review of possible fluorescence centres see Coble, 1996 and Stedmon et al., 2003 and for typical EEMs
see Baker, 2001). Studies of FDOM EEM properties have principally focused on wastewater characterization
within the treatment process (for example see Reynolds and Ahmad, 1997; Westerhoff et al., 2001; Vasel and
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Praet, 2002) as well as DOM characterization in marine and estuarine waters (for example see Coble et al.,
1990; Mopper and Schultz, 1993; Mayer et al., 1999; Parlanti et al., 2001), but more recently research has
included riverine DOM. For example, Stedmon et al. (2003) use fluorescence to derive five DOM fractions
in a Danish freshwater and estuarine catchment. Fluorescence has been demonstrated to be able to detect the
differences between both anthropogenic and natural DOM sources in rivers impacted by sewerage effluents
(Baker, 2001; Baker et al., 2003). Anthropogenic DOM sources such as farm wastes, sewage treatment outfall
or sewerage overflows are all characterized by high levels of protein-like (tryptophan-like and/or tyrosine-like)
fluorescence (Baker, 2001, 2002b). Baker (2002a) shows how a combination of optical properties (fluorescence
and absorbance) together with conventional total organic carbon measurements can be used to discriminate
both temporal and spatial variations of DOM in a small urban catchment. Fluorescence can also be used to
trace DOM within ‘natural’ catchments: McKnight et al. (2001, 2003) used fulvic-like fluorescence wavelength
variations as a tracer of microbially vs terrestrially derived fulvic material in an alpine/sub-alpine catchment
in the USA; Thoss et al. (2000) used fluorescence to trace DOM fractions in six catchments of contrasting
land use in North Wales; Newson et al. (2001) and Bolton (2004) have also used fluorescence properties of
coloured river water as a natural tracer in a small peaty subcatchment of the River Eden (Coalburn).

Previous research has demonstrated that the measurement of FDOM EEMs in micro (<40 km2) scale
catchments (both urban and rural) can provide useful information on DOM sources (Newson et al., 2001;
Baker, 2002b). Protein-like fluorescence centres observed in EEMs are described as tryptophan-like and
tyrosine-like. Tryptophan-like fluorescence centres occur at two wavelength pairs—220 nm excitation/350 nm
emission and 280 nm excitation/350 nm emission—whereas tyrosine-like fluorescence is predominantly
observed at wavelengths of 220 nm excitation/305 nm emission (a second centre at 280 nm excitation is
obscured by the Raman line of water). These locations in optical space are where tryptophan and tyrosine
laboratory standards fluoresce; however, it is not known whether tryptophan or tyrosine per se are present as
DOM, or rather similarly structured groups within DOM that have similar fluorescence properties (Reynolds,
2003). Although it is not known how these fluorescence centres relate to the structure of riverine DOM,
their presence in rivers with anthropogenic DOM inputs requires further investigation. In particular, to
determine if the relationship between increased protein-like fluorescence (tryptophan-like and tyrosine-like)
intensity and anthropogenic DOM inputs is maintained in a larger scale (>1000 km2) catchment, where
multiple organic point and diffuse source inputs, together with in-stream organic matter processing, will
complicate any distinct fluorescence signature from individual point sources. In addition, it is useful to
determine if fluorescence properties provide a useful alternative chemical water quality indicator to existing
methods (such as biochemical oxygen demand, ammonia, nitrate, phosphate, dissolved oxygen) that are
used to determine river water quality in England and Wales. Although some of these chemical determinants
do provide information as to a possible source of input (for example, phosphates are often predominantly
derived from sewage effluent), many do not (biochemical oxygen demand provides a general index of oxygen
demand that is time-consuming to perform). In contrast, fluorescence can be measured rapidly, portable
spectrophotometers permit field-based EEM analysis (Hart and Jiji, 2002) and the simultaneous determination
of several fluorescence centres using EEMs could in a single analysis provide several correlations between
fluorescence and chemical water quality. Therefore we present the results of a comparison between standard
chemical water quality determinants (as performed by the England and Wales water quality regulator, the
Environment Agency) and fluorescence on water samples from the Tyne catchment in NE England.

METHODOLOGY

The River Tyne has a catchment area of 2935 km2 and comprises two main tributaries, the North and South
Tyne which meet near Hexham (sample site 25, see Figure 1). The North Tyne rises in the Cheviot Hills near
the Scottish Border, the South Tyne in the Cumbrian Pennines. The other main tributaries of the Tyne are
the River Rede and Tarset Burn on the North Tyne, rivers Allen and Nent on the South Tyne, and the River
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Figure 1. The Tyne catchment, NE England, showing location of the sample sites. Sizes of proportional circles reflect tryptophan-like
fluorescence intensity as measured in the January 2003 sample run. Urban areas are shown in light grey, and the city limit for

Newcastle-upon-Tyne by the grey line

Derwent, River Team, Ouseburn and River Don which enter the Tyne in its tidal section (downstream of site
33, Figure 1). Land-use and its relationship with water quality on the Tyne was a focus of a major study
(NELUP: North East Land Use Project); recent catchment land use is therefore well understood (Adams et al.,
1995; Wadsworth and O’Callaghan, 1995; Dunn et al., 1996; Lunn et al., 1996). Outside the predominantly
rural upland North and South Tyne, approximately 750 000 people live within the rest of the Tyne catchment,
and urban and industrial areas have an influence today on the water quality of the river, with 214 consented
discharges from sewage treatment works, 126 consented industrial discharges and 492 storm sewer discharges.
The Environment Agency classification of the water quality of the river is that 375 km of stream length are of
‘very good’ quality, 204 km are ‘good’, 17 km are ‘fairly good’, 23 km are ‘fair’, 4 km are ‘poor’ and 1 km
is ‘bad’. This overall good water quality has led to the river becoming a major salmon and trout fishery. River
lengths with poor quality are predominantly small tributaries in lowland urbanized parts of the catchment
[River Don (sites 34, 35); Ouseburn (sites 1–3); River Team (sites 36–39); and the lower reaches of the
River Derwent (sites 40–42)] with many sewerage and treated sewage inputs and without substantial upland
clean water supplies to dilute them.

Sixty-two sites have been sampled every two months between May 2002 and May 2003 as part of a
larger project to investigate the spectrophotometric variations in river water in the catchment and its relation
to land-use (results are to be published elsewhere). The sites are a mixture of main river locations, as
well as downstream samples of major subcatchments, and mid-catchment samples at points of changing
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land-use or anthropogenic impact. Figure 1 shows the location of the sample sites. We measured a range
of spectrophotometric (both absorbance and fluorescence) parameters in river water at the 64 sample sites
under a range of flow regimes from summer base flow (August 2002; ¾30 m3 s�1 at site 30) through to
winter storm flow (November 2002; ¾200 m3 s�1) and during winter low flows during extensive snow cover
(January 2003; ¾50 m3 s�1). Water samples were collected in 30 ml polypropylene bottles which had been
cleaned in 10% HCl and distilled water. Samples were kept refrigerated, and upon return from the field were
filtered (Whatman GF/C ashed glass microfibre filter papers) before being analysed within 48 h. Such a delay
between sampling, filtering and then analysis was unavoidable given the time taken (two days of fieldwork)
to sample a catchment of this size. Some changes in fluorescence during storage due to this delay must be
anticipated, especially for more labile samples (Baker, 2002b). Fluorescence measurements were undertaken
using a Perkin-Elmer LS-50B luminescence spectrometer as described elsewhere (Baker, 2001). The Raman
intensity (excitation 348 nm, emission ¾396 nm, 5 nm slit width) of distilled water in a sealed water cell was
used as standard. This permitted testing for machine stability, and also provides a means of inter-laboratory
comparison. All data presented here is calibrated to a Raman peak intensity of 20Ð0 units at ¾396 nm emission
wavelength. Absorption at 254 nm, 340 nm and 410 nm was undertaken using a WPA lightwave UV–VIS
spectrometer, both to investigate the relationship between this spectrophotometric technique and land-use
(results not considered further in this paper), as well as to provide a check for inner-filtering effects. The
latter are particularly observed in waters of high concentrations of dissolved natural organic matter that are
often highly absorbent in ultraviolet light. In these conditions, emitted fluorescence is often reabsorbed by
dissolved organic matter within the sample cuvette, resulting in a quenching of emitted fluorescence and
a resultant decrease in intensity (Mobed et al., 1996; Ohno, 2002). We ran serial dilutions on a subset of
samples, and observed that samples from the peat-dominated North Tyne catchment, which were visibly
coloured, often exhibited inner-filtering, with absorbance maxima of >0Ð3 cm�1 at 254 and 340 nm and a
decreased fulvic-like fluorescence intensity of >10%. However, one of the advantages of fluorescence analysis
is the rapid analysis time, an advantage that is negated if samples have to be corrected for inner-filtering.
Hence no inner-filtering correction was applied to the dataset and raw fluorescence values were used as we
wished to test if the raw fluorescence data could be used as a potential water quality determinant.

Our sample sites are also those used by the Environment Agency in their general water quality assessment
scheme. The General Quality Assessment scheme (GQA) is the national method for classifying water quality
in rivers and canals. The scheme provides a way of comparing river quality from one river to another
and for looking at changes through time: this assessment includes chemical and nutrient analyses including
orthophosphate, nitrate, dissolved oxygen, ammonia and biochemical oxygen demand. Ammonia, biochemical
oxygen demand (BOD) and dissolved oxygen are used as measurements of organic pollution. Phosphate and
nitrate are used to indicate possible existing or future problems of eutrophication: additionally nitrate is useful
where river water may be abstracted for drinking water and needs to comply with the EC Drinking Water
and Nitrate Directives. GQA analyses are on samples from routine, pre-planned sampling programmes with
samples analysed by accredited laboratories: to avoid bias all extra data collected for special surveys or in
response to incidents or accidents are ignored. All data and results for all rivers are made available to the
public. Standard analytical methods are used (Standing Committee of Analysts Methods for the Examination
of Waters and Associated Materials, 1980, 1981a,b, 1988).

Monthly samples that were taken for the GQA assessment over the same period as the fluorescence sampling
have been used here. Comparison between GQA and fluorescence results is not on paired samples, chemical
water quality parameters within the Environment Agency sample collection programme are sampled on
different tributaries on different days, and fluorescence sampling occurred over two days that rarely overlapped
with Environment Agency sampling dates. Environment Agency samples (every four weeks) were also taken
more frequently than fluorescence samples (every eight weeks). Such sampling methods permit a statistical
analysis of the relationship between fluorescence intensity and chemical water quality parameters, based on
the mean and standard deviation of each parameter at each sample site. Such an approach is similar to that
used by the Environment Agency to determine river water quality standards and objectives.

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 2927–2945 (2004)
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RESULTS AND DISCUSSION

Table I presents the summary of all results for the 62 sample sites. Environment Agency chemical water
quality data demonstrate that for the majority of sample sites the chemical water quality is very good, with
dissolved oxygen ¾100%, BOD <1 mg l�1 and ammonia <0Ð1 mg l�1. A few sites on urban tributaries have
much poorer water quality. For example, sites 1–3 are on the Ouseburn (and correspond to sites 16, 10 and
3 respectively of Baker, 2002a), which is known to be impacted by sewerage failures: additionally during the
study period sites 1 and 2, downstream of Newcastle International Airport, were affected by a >60 mg l�1

BOD event in January 2003 due to propylene glycol deicer runoff from the airport (Turnball and Bevan, 1995
provide details of airport-derived pollution on the river from urea applications in the 1980s and 1990s). Sites
34 and 35 are on the River Don, which also suffers from sewerage inputs from combined sewer overflows,
and sites 36–39 are on the River Team which comprises treated sewage as a significant proportion of flow
(sites 36–38 are downstream of the East Tanfield wastewater treatment works, whose impact on river water
fluorescence was investigated by Baker, 2001). In addition, site 36 is downstream of a pumped mine water
discharge and a sewage treatment works, the combination of which can provide a substantial proportion of
total river discharge, as well as a tributary that suffers from leachate from an unlined landfill. The combination
of these inputs explains the high ammonia concentration at site 36.

Absorbance data for the sample sites show a strong variation between the North Tyne, which is
predominantly an upland peat catchment, and the South Tyne, whose source is in limestone uplands with
brown earth and thin peats. Samples from the peaty catchments of the rivers North Tyne and Rede have
absorbance high enough to be affected by inner-filtering (Ohno, 2002); hence fluorescence intensities might
be expected to be decreased at these locations. Fluorescence results are reported as both excitation and
emission wavelengths and intensity of the observed peaks. Those often defined as ‘humic-like’ and ‘fulvic-like’
(although their precise nature is poorly understood) are located at 220–250 nm excitation and 400–460 nm
emission (‘humic-like’), and at 300–350 nm excitation and 400–460 nm emission (‘fulvic-like’). Increases in
wavelength of both excitation and emission of the fulvic-like peak can be due to increasing molecular weight,
increasing aromacity or increasing inner-filtering effects (Ohno, 2002; Bolton, 2004). In our case, without
inner-filtering correction applied to our dataset, the latter is the most dominant effect, with highest excitation
and emission wavelengths correlating with high absorbance at sites 12, 13 and 14. For the protein-like
fluorescence centres attributed to tryptophan-like and tyrosine-like fluorescence, only fluorescence intensities
are reported as significant wavelength variations did not occur. Protein-like fluorescence intensities can be
seen to be highest in the urban catchments of the Ouseburn, Team and Don, and this is also shown by
proportional circle size in Figure 1.

Table II presents the correlation [Pearson rank correlation due to the presence of statistically outlying
data at sites 1, 2 (biochemical oxygen demand) and 36 (ammonia)] between the mean annual concentration
or intensity of each of the variables between the 62 sample sites. Within the Environment Agency dataset,
phosphate, ammonia and nitrate have the strongest correlation, suggesting a similar source for all three. Nitrate
is often agriculturally derived: however, although the Tyne contains a large proportion of agricultural land-
use, almost all of this is extensive in nature, with only a small area (predominantly around the Whittle Burn
upstream of site 31) that can be considered intensive. Therefore the correlation between nitrate and ammonia
and phosphate, the latter two being indicators of sewage pollution, confirms a predominant sewage source of
nitrate in the Tyne. Weaker correlations occur with BOD and dissolved oxygen. For the former, it is due at
least in part to the influence of the two deicer pollution events at sites 1 and 2, which had high BOD but no
nitrate, phosphate or ammonia. For dissolved oxygen, it is due to the geomorphology of the Tyne catchment
in general: the river is typically well aerated with a combination of steep gradients on tributaries flowing in
post-glacially incised valleys, as well as regular ripple-pool sequences, chutes and rapids in the main river.
For the catchment as a whole, dissolved oxygen is therefore not a good measure of water quality.

Within the spectrophotometric data, absorbances at 254, 340 and 410 nm correlate strongly with each
other, reflecting the nature of DOM absorbance with little structure and decreasing absorbance at increasing
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wavelength. Absorbance correlates positively with humic and fulvic-like emission wavelengths (Table II) and
negatively with humic and fulvic-like intensities, the latter due to inner-filtering as described earlier. Within
the fluorescence dataset, the protein-like fluorescence intensities (the tyrosine and two tryptophan-like centres)
have a strong correlation between each other, and weak correlations with humic and fulvic-like intensities.

Comparing the correlation between fluorescence and chemical water quality determinants shows that
there are statistically significant relationships between nitrate, phosphate and ammonia and tryptophan-like
fluorescence (at either 220 nm and/or 280 nm excitation centres). This suggests that the relationship between
protein-like fluorescence and potential pollutants such as treated and untreated sewage and farm wastes
is reflected at a catchment-wide scale. However, as described earlier, three sites within the dataset have
statistically outlying data, from non-fluorescent propylene glycol deicer (sites 1 and 2) and a combination of
mine water, treated sewage effluent and landfill leachate pollution (site 36). Therefore all outlying data were
removed from the dataset: the January 2003 BOD from sites 1 and 2 and all ammonia data from site 36, and the
correlations recalculated. In this case, the strength of the correlation between tryptophan-like fluorescence and
the chemical water quality determinants increased significantly, with tryptophan-like fluorescence becoming
the most significant explanatory variable in every case. This is shown in Figure 2 and Table III. Tryptophan-
like fluorescence intensity at the 280 nm excitation/350 nm emission fluorescence centre correlates with both
phosphate (r D 0Ð80) and nitrate (r D 0Ð87), whereas tryptophan-like fluorescence intensity at the 220 nm
excitation/350 nm emission wavelength centre correlates with BOD (r D 0Ð85), ammonia (r D 0Ð70) and
dissolved oxygen (r D �0Ð65). Figure 2 shows that in all cases there are a large number (about 50 of the 62
sample sites) of essentially good water quality sample sites that cluster with low values of both tryptophan-
like fluorescence intensity and the respective chemical water quality parameter. Sites of poorer water quality
(about 12 sites) have higher tryptophan-like fluorescence intensity and concentration of the measured chemical
water quality parameter, which either form a second cluster of data points (for example dissolved oxygen and
ammonia) or a linear trend (for example nitrate). These sites are those on the urban rivers. The Ouseburn
(sites 1–3) has known sewerage water quality issues (Baker et al., 2003), the River Don (site 34 and 35)
also has sewerage water quality issues, the River Team (sites 36–39) is impacted by wastewater treatment
works effluent, sewerage overflows, mine water and landfill leachate, and the lower reaches of the Derwent
(sites 40–41) are downstream of wastewater treatment works effluents. In addition, the Pont Burn (site 42),
although not urban in land-use, is a small tributary that has a wastewater treatment works that provides a
significant proportion of total flow, and one small agricultural watercourse (Wallish Walls Burn, site 46) also
occasionally features in the poor water quality cluster.

That some correlations between chemical water quality parameters are stronger with the tryptophan-like
fluorescence centre at excitation wavelength of 220 nm, and others with the centre at 280 nm, is significant.
The centre at 280 nm excitation will be within the tail of fluorescence from the fulvic-like peak when this
centre has high fluorescence intensity, and would be expected to have a stronger correlation with pollutant
sources that have significant fluorescence intensities in both the tryptophan-like and fulvic-like fluorescence
centres. Baker (2001, 2002b) demonstrates that this can be the case for sewage effluents rather than for
farm wastes, as the latter have predominantly protein-like fluorescence centres. Therefore the correlation
between this tryptophan-like fluorescence centre and nitrate and phosphate confirms that all three are tracing
sewage-derived DOM. Sites with highest nitrate and phosphate concentrations are typically those on rivers
downstream of wastewater treatment works and where these effluents provide a significant proportion of total
flow (sites 36–38 and 40–42). Urban rivers with sewerage issues affecting water quality (sites 1–3, 34–35),
as opposed to those sites with a significant volume of treated effluents, also have high nitrate, phosphate and
tryptophan-like fluorescence, but cluster with slightly higher tryptophan-like fluorescence intensity and lower
nitrate and phosphate concentration. Wallish Walls Burn (site 46), the only site with agricultural-derived water
quality issues, only exhibits elevated nitrate concentration as might be expected.

The correlation between BOD and the tryptophan-like fluorescence intensity at the 220 nm excitation
wavelength centre suggests that BOD has a stronger correlation with tryptophan-like fluorescence alone.
Assuming that the fulvic-like peak is predominantly derived from the relatively stable DOM pool, our
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1     OUSE BURN AT THREE MILE BRIDGE
2     OUSE BURN AT BRUNTON BRIDGE
3     OUSE BURN AT WOOLSINGTON
28   MARCH BURN AT DIPTON HOUSE

35   DON JUST U/S FARM BRIDGE AT MOUNT PLEASANT
36   TEAM AT THIRD AVENUE BRIDGE
37   TEAM U/S SLEDGEHILL WASTE DISPOSAL SITE
38   BEAMISH BURN AT BEAMISH BRIDGE
39   HOUGHWELL BURN AT TANTOBIE ROAD
40   DERWENT AT CLOCKBURN DRIFT
41   DERWENT AT LINTZFORD BRIDGE
42   PONT BURN U/S B6310 ROAD BRIDGE
43   DERWENT AT SHOTLEY BRIDGE

34   DON AT JARROW CEMETERY

Figure 2. Graphs of tryptophan-like fluorescence intensity against chemical water quality determinant. Results are presented in log–log
format due to the skewed data distribution. Error bars are the 1� standard deviation, and sample site numbers are those from Table I
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Table III. Regression equations between fluorescence and chemical water quality parameters. Abbreviations for humic-like,
fulvic-like, tryptophan-like and tyrosine-like fluorescence are as Table II. Correlation coefficients are shown for both simple

linear regression with one correlant, and for the stepwise regression equation shown

Chemical water quality
determinand

Stepwise regression Stepwise
r

Single parameter
r

Phosphate �8Ð55 C 0Ð01808T280 C 0Ð02536Fex � 0Ð002082HI 0Ð894 0Ð799
Nitrate �0Ð006798 C 0Ð112T280 � 0Ð07127Tyro 0Ð935 0Ð874
BOD (all data) �1Ð586 C 0Ð0569Tyro C 0Ð01269Fem 0Ð754 0Ð675
BOD (excluding sites 1, 2) �13Ð467 C 0Ð01578T220 C 0Ð03232Fem 0Ð903 0Ð846
DO (EA data) 102Ð578 � 0Ð07328T220 0Ð646 0Ð646
Ammonia (all data) �0Ð224 C 0Ð002733HI � 0Ð002171FI 0Ð845 0Ð784
Ammonia (excluding site 36) �0Ð04166 C 0Ð0016T220 0Ð703 0Ð703

correlation therefore suggests that the tryptophan-like fluorescence centre is related to the bioavailable or
labile DOM pool. Six sites on the urban rivers Ouseburn, Team and Don form a high BOD cluster in
Figure 2, but in general the range of BOD in the Tyne catchment is not great enough to assess the strength
of the BOD–tryptophan-like fluorescence intensity relationship. The majority of sample sites have a BOD
that is close to the detection limits of the technique and BOD error bars reflect analytical errors as much as
natural sample variability.

The weakest correlations are observed between tryptophan-like fluorescence intensity and ammonia
concentration and dissolved oxygen. For the former, the weaker correlation is due to good ammonia treatment
within the wastewater treatment plants within the catchment, such that ammonia is stripped yet a residual
tryptophan-like fluorescence signature from the wastewater DOM remains: essentially ammonia concentration
is not a water quality issue in the Tyne catchment. Despite this, the highest values of tryptophan-like
fluorescence and ammonia are found at the urban catchment sample sites on the rivers Don, Team and
Ouseburn. Finally, the weak correlation between dissolved oxygen and tryptophan-like fluorescence reflects
the aeration of the river as described earlier, such that natural aeration limits any water quality impacts on
dissolved oxygen. Only one site (site 36) has depressed oxygen levels, due to the impacts of landfill leachate
and treated wastewater that discharge into the River Team just upstream of this sample site.

We also performed stepwise regression to investigate if the analysis of the fluorescence intensities and
wavelengths of all possible fluorescence centres adds further statistical strength to the observed correlations
between tryptophan-like fluorescence intensity and the chemical water quality determinants. This is shown
in Table III, and shows that although the addition of one or two more fluorescence parameters does increase
the correlation, the improvement in explanatory power is negligible compared to the initial tryptophan-like
fluorescence–chemical water quality relationship. We also repeated all the stepwise regressions including
absorbance as a determining variable; absorbance was observed to not be a statistically significant determinant
for any of the chemical water quality parameters.

Finally, we investigated the relationship between the mean and standard deviation of tryptophan-like
fluorescence intensity and the GQA for each site for the year 2002 as performed by the Environment Agency.
The GQA is scored from A to F, where A is the highest water quality and F the lowest, and is based on
the dissolved oxygen, BOD and ammonia results. The results for a site are averaged for a 36-month period
centred on the year of interest, and percentiles are calculated. These are compared with limits set for each of
the six grades. A grade is assigned to the length of river (which the sampling site represents) according to the
lowest grade achieved by any of the three determinants. Results are presented in Figure 3, and demonstrate a
strong relationship between the GQA grade and mean tryptophan-like fluorescence intensity (at the 220 nm
excitation/350 nm emission centre), although the small number of poor water quality sites limits the number
of sites scored at grades D and E. Sites where the fit between GQA and tryptophan-like fluorescence intensity
is weakest include the Wallish Walls Burn (site 46: graded E, mean tryptophan-like fluorescence intensity of
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111 units), which is known to be affected by intermittent agricultural pollution and which was probably under-
sampled during our fluorescence sampling programme of six samples per year. Two other sites of interest
are the Tarset and Chirdon Burns (sites 13 and 14: graded B, mean tryptophan-like fluorescence intensity of
24 and 30 units), where the fluorescence results suggest a grade of A would be more appropriate. The two
sites have the most coloured water and drain peaty uplands and their GQA score of B is based on a failure
to meet BOD requirements. The discrepancy is therefore likely to be due to incorrect GQA grading of the
rivers due to the difficulty in measuring BOD at low concentrations. However, despite these discrepancies,
Figure 3 suggests that with a larger dataset that includes a greater proportion of poor quality waters, water
quality standards could be determined and assessed using tryptophan-like fluorescence as a chemical water
quality determinant.

CONCLUSIONS

Within our study of the Tyne catchment, mean annual tryptophan-like fluorescence intensity at the 280 nm
excitation/350 nm emission centre has a strong correlation with mean annual nitrate and phosphate con-
centrations, and mean annual BOD has a strong correlation with mean annual tryptophan-like fluorescence
intensity at the 220 nm excitation/350 nm emission centre. But this is only true when three outlying sites are
removed. Non-fluorescent DOM such as the >60 mg l�1 deicer pollution event in January 2003 on two sites
on the Ouseburn obscures any correlation—use of tryptophan-like fluorescence intensity as a chemical water
quality determinant would not be possible in catchments where similar pollution issues occur, although we
feel these would not be common. The effect of a combination of treated wastewater and landfill leachate at
one site on the River Team also impacts on the ammonia–tryptophan-like fluorescence relationship due to
the unusually high ammonia concentrations and fluorescence intensities at the site. This is probably due to
the landfill leachate, as high ammonia values are also observed on the upstream tributary impacted by the
leaking landfill. Caution would therefore be needed in catchments where landfill leachate was a significant
pollutant. Weaker but statistically significant correlations are observed between fluorescence and ammonia
and dissolved oxygen, but again tryptophan-like fluorescence intensity is still the most significant correlant.

A B C D E

Figure 3. Comparison of tryptophan-like fluorescence intensity and Environment Agency General Quality assessment for 2002
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In the Tyne catchment, with the exception of the airport deicer and landfill leachate-impacted sample sites,
the chemical water quality determinants are predominantly detecting sewerage-derived DOM from combined
sewer overflows, cross connected sewers and wastewater treatment works discharges into rivers where the
discharge provides a significant proportion of total river flow. Therefore, the strong correlations between
BOD, nitrate and phosphate and tryptophan-like fluorescence intensity in the screened dataset suggest that
tryptophan-like fluorescence can be used as a proxy for these parameters where sewerage sources of DOM
are important. The findings demonstrate that upscaling of the tryptophan-like fluorescence intensity–water
quality relationship observed at the smaller scales of small urban catchments (Ouseburn; Baker, 2002a; Baker
et al., 2003) and downstream of treated wastewater outfalls (Baker, 2001) to that of a large catchment is
possible. The rapid analysis time required to produce a fluorescence EEM (less than 1 min) also permits the
real-time analysis of waters. Technological advances within spectrophotometry will continue to increase the
portability of equipment, already field-based fluorescence analysis is possible (Hart and Jiji, 2002) and the
potential therefore exists for tryptophan-like fluorescence to also be used by both environmental regulators
and operators of consented discharges.
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