Protein-like fluorescence intensity as a possible tool for determining river water quality

Andy Baker¹* and Roger Inverarity²

¹ School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK ² Environment Agency, Tyneside House, Skinnerburn Road, Newcastle NE4 7AR, UK

Abstract:

The results of a comparison between chemical water quality determinants and river water fluorescence on the River Tyne, NE England, demonstrate that tryptophan-like fluorescence intensity shows statistically significant relationships between nitrate, phosphate, ammonia, biochemical oxygen demand (BOD) and dissolved oxygen. Tryptophan-like fluorescence intensity at the 280 nm excitation/350 nm emission wavelength fluorescence centre correlates with both phosphate (r = 0.80) and nitrate (r = 0.87), whereas tryptophan-like fluorescence intensity at the 220 nm excitation/350 nm emission wavelength centre correlates with BOD (r = 0.85), ammonia (r = 0.70) and dissolved oxygen (r = -0.65). The strongest correlations are between tryptophan-like fluorescence intensity and nitrate and phosphate, which in the Tyne catchment derive predominantly from point and diffuse source sewage inputs. The correlation between BOD and the tryptophan-like fluorescence intensity suggests that this fluorescence centre is related to the bioavailable or labile dissolved organic matter pool. The weakest correlations are observed between tryptophan-like fluorescence intensity and ammonia concentration and dissolved oxygen. The weaker correlation with ammonia is due to removal of the ammonia signal by wastewater treatment, and that with dissolved oxygen due to the natural aeration of the river such that this is not a good indicator of water quality. The observed correlations only hold true when treated sewage, sewerage overflows or cross connections, or agricultural organic pollutants dominate the water quality-this is not true for two sites where airport deicer (propylene glycol, which is non-fluorescent) or landfill leachate (which contains high concentrations of humic and fulvic-like fluorescent DOM) dominate the dissolved organic matter in the river. Mean annual tryptophan-like fluorescence intensity agrees well with the General Water Quality Assessment as determined by the England and Wales environmental regulators, the Environment Agency. Copyright © 2004 John Wiley & Sons, Ltd.

KEY WORDS chemical water quality; fluorescence; River Tyne; tryptophan; ammonia; biochemical oxygen demand; dissolved oxygen

INTRODUCTION

Dissolved organic matter (DOM) has distinctive spectrophotometric properties in terms of both absorption and fluorescence. As well as strong absorption in the ultraviolet, much DOM fluoresces (FDOM). Recent advances in fluorescent spectrophotometry permit the rapid (\sim 1 min) detection of FDOM at a wide range of both excitation and emission wavelengths to produce an excitation–emission matrix or EEM. An EEM will typically cover a range of excitation and emission wavelengths from \sim 200 nm (short wavelength UV) through to \sim 500 nm (visible blue–green light), and may contain fluorescence centres that are attributed to both natural DOM such as humic and fulvic-like material, as well as fluorescent protein-like fluorophores (for a review of possible fluorescence centres see Coble, 1996 and Stedmon *et al.*, 2003 and for typical EEMs see Baker, 2001). Studies of FDOM EEM properties have principally focused on wastewater characterization within the treatment process (for example see Reynolds and Ahmad, 1997; Westerhoff *et al.*, 2001; Vasel and

Received 4 September 2003 Accepted 26 January 2004

^{*} Correspondence to: Dr Andy Baker, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Praet, 2002) as well as DOM characterization in marine and estuarine waters (for example see Coble *et al.*, 1990; Mopper and Schultz, 1993; Mayer *et al.*, 1999; Parlanti *et al.*, 2001), but more recently research has included riverine DOM. For example, Stedmon *et al.* (2003) use fluorescence to derive five DOM fractions in a Danish freshwater and estuarine catchment. Fluorescence has been demonstrated to be able to detect the differences between both anthropogenic and natural DOM sources in rivers impacted by sewerage effluents (Baker, 2001; Baker *et al.*, 2003). Anthropogenic DOM sources such as farm wastes, sewage treatment outfall or sewerage overflows are all characterized by high levels of protein-like (tryptophan-like and/or tyrosine-like) fluorescence (Baker, 2001, 2002b). Baker (2002a) shows how a combination of optical properties (fluorescence and absorbance) together with conventional total organic carbon measurements can be used to discriminate both temporal and spatial variations of DOM in a small urban catchment. Fluorescence can also be used to trace DOM within 'natural' catchments: McKnight *et al.* (2001, 2003) used fluorescence wavelength variations as a tracer of microbially vs terrestrially derived fulvic material in an alpine/sub-alpine catchment in the USA; Thoss *et al.* (2000) used fluorescence to trace DOM fractions in six catchments of contrasting land use in North Wales; Newson *et al.* (2001) and Bolton (2004) have also used fluorescence properties of coloured river water as a natural tracer in a small peaty subcatchment of the River Eden (Coalburn).

Previous research has demonstrated that the measurement of FDOM EEMs in micro ($<40 \text{ km}^2$) scale catchments (both urban and rural) can provide useful information on DOM sources (Newson et al., 2001; Baker, 2002b). Protein-like fluorescence centres observed in EEMs are described as tryptophan-like and tyrosine-like. Tryptophan-like fluorescence centres occur at two wavelength pairs-220 nm excitation/350 nm emission and 280 nm excitation/350 nm emission-whereas tyrosine-like fluorescence is predominantly observed at wavelengths of 220 nm excitation/305 nm emission (a second centre at 280 nm excitation is obscured by the Raman line of water). These locations in optical space are where tryptophan and tyrosine laboratory standards fluoresce; however, it is not known whether tryptophan or tyrosine per se are present as DOM, or rather similarly structured groups within DOM that have similar fluorescence properties (Reynolds, 2003). Although it is not known how these fluorescence centres relate to the structure of riverine DOM, their presence in rivers with anthropogenic DOM inputs requires further investigation. In particular, to determine if the relationship between increased protein-like fluorescence (tryptophan-like and tyrosine-like) intensity and anthropogenic DOM inputs is maintained in a larger scale (>1000 km²) catchment, where multiple organic point and diffuse source inputs, together with in-stream organic matter processing, will complicate any distinct fluorescence signature from individual point sources. In addition, it is useful to determine if fluorescence properties provide a useful alternative chemical water quality indicator to existing methods (such as biochemical oxygen demand, ammonia, nitrate, phosphate, dissolved oxygen) that are used to determine river water quality in England and Wales. Although some of these chemical determinants do provide information as to a possible source of input (for example, phosphates are often predominantly derived from sewage effluent), many do not (biochemical oxygen demand provides a general index of oxygen demand that is time-consuming to perform). In contrast, fluorescence can be measured rapidly, portable spectrophotometers permit field-based EEM analysis (Hart and Jiji, 2002) and the simultaneous determination of several fluorescence centres using EEMs could in a single analysis provide several correlations between fluorescence and chemical water quality. Therefore we present the results of a comparison between standard chemical water quality determinants (as performed by the England and Wales water quality regulator, the Environment Agency) and fluorescence on water samples from the Tyne catchment in NE England.

METHODOLOGY

The River Tyne has a catchment area of 2935 km^2 and comprises two main tributaries, the North and South Tyne which meet near Hexham (sample site 25, see Figure 1). The North Tyne rises in the Cheviot Hills near the Scottish Border, the South Tyne in the Cumbrian Pennines. The other main tributaries of the Tyne are the River Rede and Tarset Burn on the North Tyne, rivers Allen and Nent on the South Tyne, and the River

Figure 1. The Tyne catchment, NE England, showing location of the sample sites. Sizes of proportional circles reflect tryptophan-like fluorescence intensity as measured in the January 2003 sample run. Urban areas are shown in light grey, and the city limit for Newcastle-upon-Tyne by the grey line

Derwent, River Team, Ouseburn and River Don which enter the Tyne in its tidal section (downstream of site 33, Figure 1). Land-use and its relationship with water quality on the Tyne was a focus of a major study (NELUP: North East Land Use Project); recent catchment land use is therefore well understood (Adams *et al.*, 1995; Wadsworth and O'Callaghan, 1995; Dunn *et al.*, 1996; Lunn *et al.*, 1996). Outside the predominantly rural upland North and South Tyne, approximately 750 000 people live within the rest of the Tyne catchment, and urban and industrial areas have an influence today on the water quality of the river, with 214 consented discharges from sewage treatment works, 126 consented industrial discharges and 492 storm sewer discharges. The Environment Agency classification of the water quality of the river is that 375 km of stream length are of 'very good' quality, 204 km are 'good', 17 km are 'fairly good', 23 km are 'fairl', 4 km are 'poor' and 1 km is 'bad'. This overall good water quality has led to the river becoming a major salmon and trout fishery. River lengths with poor quality are predominantly small tributaries in lowland urbanized parts of the catchment [River Don (sites 34, 35); Ouseburn (sites 1-3); River Team (sites 36-39); and the lower reaches of the River Derwent (sites 40-42)] with many sewerage and treated sewage inputs and without substantial upland clean water supplies to dilute them.

Sixty-two sites have been sampled every two months between May 2002 and May 2003 as part of a larger project to investigate the spectrophotometric variations in river water in the catchment and its relation to land-use (results are to be published elsewhere). The sites are a mixture of main river locations, as well as downstream samples of major subcatchments, and mid-catchment samples at points of changing

land-use or anthropogenic impact. Figure 1 shows the location of the sample sites. We measured a range of spectrophotometric (both absorbance and fluorescence) parameters in river water at the 64 sample sites under a range of flow regimes from summer base flow (August 2002; \sim 30 m³ s⁻¹ at site 30) through to winter storm flow (November 2002; \sim 200 m³ s⁻¹) and during winter low flows during extensive snow cover (January 2003; \sim 50 m³ s⁻¹). Water samples were collected in 30 ml polypropylene bottles which had been cleaned in 10% HCl and distilled water. Samples were kept refrigerated, and upon return from the field were filtered (Whatman GF/C ashed glass microfibre filter papers) before being analysed within 48 h. Such a delay between sampling, filtering and then analysis was unavoidable given the time taken (two days of fieldwork) to sample a catchment of this size. Some changes in fluorescence during storage due to this delay must be anticipated, especially for more labile samples (Baker, 2002b). Fluorescence measurements were undertaken using a Perkin-Elmer LS-50B luminescence spectrometer as described elsewhere (Baker, 2001). The Raman intensity (excitation 348 nm, emission \sim 396 nm, 5 nm slit width) of distilled water in a sealed water cell was used as standard. This permitted testing for machine stability, and also provides a means of inter-laboratory comparison. All data presented here is calibrated to a Raman peak intensity of 20.0 units at \sim 396 nm emission wavelength. Absorption at 254 nm, 340 nm and 410 nm was undertaken using a WPA lightwave UV-VIS spectrometer, both to investigate the relationship between this spectrophotometric technique and land-use (results not considered further in this paper), as well as to provide a check for inner-filtering effects. The latter are particularly observed in waters of high concentrations of dissolved natural organic matter that are often highly absorbent in ultraviolet light. In these conditions, emitted fluorescence is often reabsorbed by dissolved organic matter within the sample cuvette, resulting in a quenching of emitted fluorescence and a resultant decrease in intensity (Mobed et al., 1996; Ohno, 2002). We ran serial dilutions on a subset of samples, and observed that samples from the peat-dominated North Type catchment, which were visibly coloured, often exhibited inner-filtering, with absorbance maxima of >0.3 cm⁻¹ at 254 and 340 nm and a decreased fulvic-like fluorescence intensity of >10%. However, one of the advantages of fluorescence analysis is the rapid analysis time, an advantage that is negated if samples have to be corrected for inner-filtering. Hence no inner-filtering correction was applied to the dataset and raw fluorescence values were used as we wished to test if the raw fluorescence data could be used as a potential water quality determinant.

Our sample sites are also those used by the Environment Agency in their general water quality assessment scheme. The General Quality Assessment scheme (GQA) is the national method for classifying water quality in rivers and canals. The scheme provides a way of comparing river quality from one river to another and for looking at changes through time: this assessment includes chemical and nutrient analyses including orthophosphate, nitrate, dissolved oxygen, ammonia and biochemical oxygen demand. Ammonia, biochemical oxygen demand (BOD) and dissolved oxygen are used as measurements of organic pollution. Phosphate and nitrate are used to indicate possible existing or future problems of eutrophication: additionally nitrate is useful where river water may be abstracted for drinking water and needs to comply with the EC Drinking Water and Nitrate Directives. GQA analyses are on samples from routine, pre-planned sampling programmes with samples analysed by accredited laboratories: to avoid bias all extra data collected for special surveys or in response to incidents or accidents are ignored. All data and results for all rivers are made available to the public. Standard analytical methods are used (Standing Committee of Analysts Methods for the Examination of Waters and Associated Materials, 1980, 1981a,b, 1988).

Monthly samples that were taken for the GQA assessment over the same period as the fluorescence sampling have been used here. Comparison between GQA and fluorescence results is not on paired samples, chemical water quality parameters within the Environment Agency sample collection programme are sampled on different tributaries on different days, and fluorescence sampling occurred over two days that rarely overlapped with Environment Agency samples. Environment Agency samples (every four weeks) were also taken more frequently than fluorescence samples (every eight weeks). Such sampling methods permit a statistical analysis of the relationship between fluorescence intensity and chemical water quality parameters, based on the mean and standard deviation of each parameter at each sample site. Such an approach is similar to that used by the Environment Agency to determine river water quality standards and objectives.

RESULTS AND DISCUSSION

Table I presents the summary of all results for the 62 sample sites. Environment Agency chemical water quality data demonstrate that for the majority of sample sites the chemical water quality is very good, with dissolved oxygen ~100%, BOD <1 mg l⁻¹ and ammonia <0.1 mg l⁻¹. A few sites on urban tributaries have much poorer water quality. For example, sites 1–3 are on the Ouseburn (and correspond to sites 16, 10 and 3 respectively of Baker, 2002a), which is known to be impacted by sewerage failures: additionally during the study period sites 1 and 2, downstream of Newcastle International Airport, were affected by a >60 mg l⁻¹ BOD event in January 2003 due to propylene glycol deicer runoff from the airport (Turnball and Bevan, 1995 provide details of airport-derived pollution on the river from urea applications in the 1980s and 1990s). Sites 34 and 35 are on the River Don, which also suffers from sewerage inputs from combined sewer overflows, and sites 36–39 are on the River Team which comprises treated sewage as a significant proportion of flow (sites 36–38 are downstream of the East Tanfield wastewater treatment works, whose impact on river water fluorescence was investigated by Baker, 2001). In addition, site 36 is downstream of a pumped mine water discharge and a sewage treatment works, the combination of which can provide a substantial proportion of total river discharge, as well as a tributary that suffers from leachate from an unlined landfill. The combination of these inputs explains the high ammonia concentration at site 36.

Absorbance data for the sample sites show a strong variation between the North Tyne, which is predominantly an upland peat catchment, and the South Tyne, whose source is in limestone uplands with brown earth and thin peats. Samples from the peaty catchments of the rivers North Tyne and Rede have absorbance high enough to be affected by inner-filtering (Ohno, 2002); hence fluorescence intensities might be expected to be decreased at these locations. Fluorescence results are reported as both excitation and emission wavelengths and intensity of the observed peaks. Those often defined as 'humic-like' and 'fulvic-like' (although their precise nature is poorly understood) are located at 220-250 nm excitation and 400-460 nm emission ('humic-like'), and at 300-350 nm excitation and 400-460 nm emission ('fulvic-like'). Increases in wavelength of both excitation and emission of the fulvic-like peak can be due to increasing molecular weight, increasing aromacity or increasing inner-filtering effects (Ohno, 2002; Bolton, 2004). In our case, without inner-filtering correction applied to our dataset, the latter is the most dominant effect, with highest excitation and emission wavelengths correlating with high absorbance at sites 12, 13 and 14. For the protein-like fluorescence centres attributed to tryptophan-like and tyrosine-like fluorescence, only fluorescence intensities are reported as significant wavelength variations did not occur. Protein-like fluorescence intensities can be seen to be highest in the urban catchments of the Ouseburn, Team and Don, and this is also shown by proportional circle size in Figure 1.

Table II presents the correlation [Pearson rank correlation due to the presence of statistically outlying data at sites 1, 2 (biochemical oxygen demand) and 36 (ammonia)] between the mean annual concentration or intensity of each of the variables between the 62 sample sites. Within the Environment Agency dataset, phosphate, ammonia and nitrate have the strongest correlation, suggesting a similar source for all three. Nitrate is often agriculturally derived: however, although the Tyne contains a large proportion of agricultural land-use, almost all of this is extensive in nature, with only a small area (predominantly around the Whittle Burn upstream of site 31) that can be considered intensive. Therefore the correlation between nitrate and ammonia and phosphate, the latter two being indicators of sewage pollution, confirms a predominant sewage source of nitrate in the Tyne. Weaker correlations occur with BOD and dissolved oxygen. For the former, it is due at least in part to the influence of the two deicer pollution events at sites 1 and 2, which had high BOD but no nitrate, phosphate or ammonia. For dissolved oxygen, it is due to the geomorphology of the Tyne catchment in general: the river is typically well aerated with a combination of steep gradients on tributaries flowing in post-glacially incised valleys, as well as regular ripple-pool sequences, chutes and rapids in the main river. For the catchment as a whole, dissolved oxygen is therefore not a good measure of water quality.

Within the spectrophotometric data, absorbances at 254, 340 and 410 nm correlate strongly with each other, reflecting the nature of DOM absorbance with little structure and decreasing absorbance at increasing

Πe	ole I. Summary spectan and 1 standard d	trophot leviatio	ometric (and are for a	absorbanc ~12 samp	te; humic bles for the	-like, i Envii	fulvic-like ronment A	, tryptu Agency data	ophan (EA)	-like a chemic	nd tyr cal wa	osine-li er qual	ike flu lity dat	oresce) a, and	nce) ar six san	nd chei nples f	mical wa or the spo	tter quali ectrophot	ty data. cometric
D	Site name		Ch	emical-wat	er-quality p	arameté	SIS			Spe	ctropho	tometric	parame	ters					
			O-Phos- phate	Nitrate (EA	BCD (EA	DO (EA	Ammonia (EA	Abs	orbance	e at	Η Ur	umic-lik	9 9 9	Вt. Вt.	ulvic-lik lorescen	ee	Trypto- phan	Tyro- sine	Trypto- phan
			(EA data) (mg 1 ⁻¹)	$data)$ (mg 1^{-1})	$data)$ (mg 1^{-1})	data) (%)	data) (mg 1 ⁻¹)	254 nm	340 nm	410 nm	Exci- tation (nm)	Emis- sion (nm)	Inten- sity	Exci- tation (nm)	Emis- sion (nm)	Inten- sity	at 250 mm intensity	intensity	at 220 mm intensity
-	OUSE BURN AT	mean	0.210	2.087	6.891	100	0.300	0.190	0.056	0.020	238	413	315	327	417	180	78	76	170
6	GOSFORTH OUSE BURN AT	stdev mean	0.088 0.144	1-358 2-546	16·106 9.435	35 86	0-300 0-096	$0.108 \\ 0.187$	0.041 0.053	0.014 0.019	4 236	6 418	71 338	11 329	419	44 187	14 79	44 7	177
I	BRUNTON	stdev	0.060	1.178	28.155	19	0.126	0.108	0.041	0.015		6	88	~	8	52	26	51	89
ŝ	OUSE BURN AT	mean	0.193	2.875	1.921	78	0.195	0.160	0.046	0.019	237	412	265	331	418	140	57	45	119
	MOLDNISTOOM	stdev	0.081	1.747	0.778	16	0.298	0.130	0.049	0.022	4 6	» ç	4 5	10	ε	49 5	∞ ;	41	45
4	ELSDON BUKN AI FI SDON	stdev	0.030	0.747	8/C·1 0.438	8 9	0.008 0.008	0.34/	0.108	0.036	10	432 11	747 747	800 8	430 15	143 60	55 17	4 %	C 5
S	ELSDON BURN AT	mean	0.024	0.495	1-694	96	0.032	0.338	0.116	0.041	235	426	250	339	438	147	32	33	73
	A696	stdev	0.010	0.294	0.652	4	0.005	0.286	0.104	0.036	-	10	38	ŝ	×	58	10	11	30
9	REDE AT	mean	0.045	0.488	1.512	93	0.097	0.711	0.260	0.092	236	435	204	339	446	151	21	21	45
	OTTERBURN	stdev	0.049	0.501	0.473	10	0.230	0.506	0.198	0.074	1	7	50	0	6	45	7	11	23
2	OTTER BURN AT	mean	0.058	0.495	1.848	94 o	0.064	0.575	0.205	0.069	239	441 °	256 50	341	447	180 55	32	23 73	64 20
×	SILLS BURN AT ASS	mean	0-040	0.192	1.748	° 20	0-043	0.740	0.272	0.096	243	° 44	0C	347	- 44	169	- 1- - 1- - 1-	2 <u>7</u>	06 04
þ	ROAD	stdev	0.022	0.003	0.555	9	800.0	0.478	0.188	0.071	5 5	%	82	19	10	20	3 80	<u>,</u> ∞	5 2
6	REDE AT COTTON	mean	0.027	0.348	1.769	98	0.035	0.412	0.149	0.055	234	439	196	339	446	128	21	22	50
	SHOPEFOOT	stdev	0.010	0.235	0.744	٢	0.013	0.201	0.075	0.029	0	8	27	0	9	35	4	8	14
10	NORTH TYNE US	mean	0.029	0.238	1.543	, 100	0.031	0.564	0.223	0.084	238 2	443	142	349	449	103	4 4	24	ж 4
1	KIELDEK I FWISRITRN ITS	stdev	0.028	0.148	0.303 1.529	101 £	0.034	0.483	0.189	0.007	د 130	9 440	161	341	11	30 136	4 2	4 1	35
	KIELDER	stdev	0.009	0.037	0.329	4	600.0	0.064	0.022	0.011	10	Ξ	23	0	5	15	ç m	~ ~~	s, is
12	NORTH TYNE AT	mean	0.025	0.329	1.581	100	0.031	0.760	0.280	0.100	236	438	170	338	449	141	17	17	35
	TARSET	stdev	0.00	0.083	0.650	9	0.003	0.151	0.059	0.022	0	×	24	ŝ	4	27	7	11	×
13	CHIRDON BURN AT	mean	0.031	0.222	1.804	98	0.034	1.079	0.397	0.141	240	443	157	342	451	146	13	Ξ°	24 1
-	TARSEI TADEET DIDN AT	stdev	010.0	0.716	66C-U	4 5	900-0	c1c-0	0.18/	790-0	× 17	0	651	4 6	0 [50	0 <u>4</u>	× <u>-</u>	1/ 20
<u>†</u>	TARSET	stdev	060-0	0.210 0.048	0.905	ő 4	0.016	210-1	0.232	0.080.0	6	f 6	52	0 1 (1	<u></u>	61 42	5 10	± =	0C
15	HARESHAW BURN	mean	0.026	0.234	1.588	95	0.032	0.667	0.248	0.089	242	442	216	348	451	162	21	25	45
	AT BELLINGHAM	stdev	0.008	0.069	0.473	9	600.0	0.479	0.183	0.066	10	11	57	19	10	48	٢	14	21
16	REDE AT	mean	0.036	0.311	1.973	66	0.033	0.541	0.196	0.073	236	432	246	339	447	164	27	29	59
ļ	REDESMOUTH	stdev	0.016	0.135	0.631		0.005	0.245	0.093	0.039	7	9	42	ε	0	48	9	15	17
17	WARKS BURN AI' Wady	mean	0.160	0.302	1.850	66 2	0.002	0.968	0.357	0.128	236	439	186 66	348 1 e	451	166 5	8 °	4 -	32 53
18	NORTH TYNE AT	mean	0.029	0.291	1.756	+ 66	0.031	0.783	0.284	0.102	240	440	179	340	149	148	o 81	15	37
	WARK	stdev	0.008	0.091	0.507	б	0.002	0.340	0.115	0.041	8	9	51	4	×	35	5	5	10

Copyright © 2004 John Wiley & Sons, Ltd.

142 37 29 67	71 7 10 17	144 40 29 76	27 11 8 23	151 20 21 37	37 3 15 5	121 34 28 60	23 6 10 15	150 19 18 37	40 5 8 17	96 27 29 54	52 6 11 15	133 30 35 57	42 5 15 12	143 23 22 46	34 6 10 15	121 30 35 76	38 7 17 26	133 36 31 67	45 6 13 21	119 37 33 70	44 5 13 17		148 22 23 45	40 6 11 14	128 42 34 77	43 8 27 27	149 23 20 48	43 7 11 17	167 23 21 45	33 6 12 16	151 90 83 196	54 16 45 81	109 52 55 114	53 3 23 28	138 108 72 285	43 19 15 32	179 96 51 197	38 29 10 60	199 135 64 228	50 52 15 71	116 52 63 120	27 6 13 25	
427	8	430	8	449	8	428	5	449	9	431	8	445	8	443	б	437	7	429	9	427	6		446	7	428	8	443	9	445	7	420	9	421	×	416	-	419	2	421	б	421	4	
337	4	329	10	339	ŝ	331	10	338	ς	337	4	339	ю	338	0	336	9	336	7	335	4		339	4	335	9	339	7	340	1	328	13	337	S	331	6	334	5	337	4	333	9	
240	62	270	4	192	31	229	27	183	45	191	59	211	41	196	33	220	20	231	34	220	35		197	32	233	48	198	31	225	41	308	LL	220	99	605	763	316	54	302	48	252	47	
429	Π	426	٢	435	7	431	9	442	6	427	٢	436	6	442	10	425	6	430	8	426	8		439	10	422	ŝ	435	14	443	10	412	×	414	S	413	5	415	4	419	9	415	8	
238	7	235	1	233	9	235	-	240	8	234	б	235	1	237	9	229	7	235	0	234	0		238	7	235	0	236	10	238	7	238	4	235	-	238	4	241	5	242	5	235	1	
0.027	0.023	0.025	0.008	0.092	0.026	0.023	0.006	0.106	0.053	0.017	0.019	0.058	0.034	0.086	0.039	0.037	0.033	0.028	0.017	0.019	0.016		0.084	0.041	0.026	0.023	0.085	0.038	0.084	0.038	0.021	0.015	0.017	0.017	0.017	0.009	0.017	0.006	0.023	0.005	0.014	0.006	
0.068	0.054	0.065	0.012	0.249	0.073	0.059	0.012	0.290	0.148	0.047	0.062	0.158	0.089	0.231	0.108	0.100	0.105	0.070	0.055	0.051	0.052		0.231	0.108	0.071	0.060	0.234	0.106	0.198	0.133	0.048	0.032	0.035	0.037	0.032	0.018	0.036	0.007	0.064	0.045	0.028	0.011	
0.215	0.180	0.236	0.080	0.682	0.200	0.207	0.053	0.789	0.392	0.161	0.169	0.404	0.222	0.624	0.279	0.304	0.295	0.223	0.155	0.173	0.145		0.638	0.277	0.223	0.143	0.649	0.279	0.638	0.252	0.173	0.093	0.131	0.101	0.115	0.056	0.162	0.033	0.167	0.026	0.117	0.039	
0.039	0.019	9.038	0.030	0.036	0.014	0.031	0.004	0.041	0.020	0.040	0.028	0.058	0.067	0.032	0.005	0.034	0.011	0.044	0.016	0.036	0.008		0.041	0.012	0.037	0.013	0.045	0.018	0.115	0.093	0.567	0.896	0.397	0.547	1-405	1.087	0.310	0.424	0.068	0.573	0.139	0.333	
66	ε	101	б	100	m	76	9	92	9	76	4	100	٢	95	9	102	4	76	٢	76	8		76	б	66	4	96	٢	96	9	80	15	90	22	72	15	76	×	89	6	95	9	
1.400	0.394	1.611	1.114	1.568	0.425	1.635	0.421	1.777	0.678	1.723	0.370	1.855	0.423	1.564	0.427	1.479	0.329	1.582	0.375	1.511	0.361		1.514	0.445	1-442	0.406	1.496	0.377	1.708	0.425	3.036	1.966	2.536	2.294	5.230	3.220	2.700	2.003	4.092	2.789	1.750	0.657	
1.836	0.525	2.126	0.924	0.529	0.254	2.612	1.206	0.543	0.270	1.320	0.503	0.646	0.328	0.629	0.328	0.996	0.601	2.889	0.589	2.418	1.269		0.876	0.307	3.913	2.823	0.758	0.295	0.964	0.307	2.794	1.439	2.806	1.408	5.202	1.818	8.528	2.802	10.374	3.529	1.253	0.558	
0.070	0.027	0.029	0.008	0.029	0.008	0.030	0.008	0.026	0.009	0.035	0.022	0.054	0.067	0.028	0.008	0.024	0.006	0.187	0.115	0.041	0.017		0.039	0.014	0.053	0.040	0.038	0.014	0.046	0.020	0.332	0.186	0.159	0.117	0.725	0.442	1.351	0.642	1.844	0.954	0.052	0.035	
mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev		mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev	
GUNNERTON BURN	AT BURNMOUTH	SWINBURN AT	BARRASFORD	NORTH TYNE AT	BARRASFORD	ERRING BURN AT	CHOLLERTON	NORTH TYNE AT	CHOLLERFORD	NEWBROUGH BURN	AT NEWBROUGH	SOUTH TYNE AT	WARDEN BRIDGE	TYNE AT HEXHAM		DEVILS WATER AT	DILSTON HALL	MARCH BURN AT	DIPTON HOUSE	STOCKSFIELD	BURN AT	STOCKSFIELD	TYNE AT BYWELL		WHITTLE BURN AT	OVINGHAM	TYNE AT	OVINGHAM	TYNE AT WYLAM	BRIDGE	DON AT JARROW	CEMETERY	DON AT MOUNT	PLEASANT	TEAM AT THIRD	AVENUE BRIDGE	TEAM US	SEDGEHILL	TEAM AT BEAMISH	BRIDGE	TEAM AT TANTOBIE	ROAD	
19		20		21		22		23		24		25		26		27		28		29			30		31		32		33		34		35		36		37		38		39		

USING FLUORESCENCE INTENSITY TO DETERMINE RIVER WATER QUALITY

Copyright © 2004 John Wiley & Sons, Ltd.

Hydrol. Process. 18, 2927-2945 (2004)

2933

(continued overleaf)

						ļ	lable	1. (CO	vənunu	(1)									
D	Site name		ų	nemical-wate	er-quality p	aramete	STS			Spec	ctrophote	ometric 1	Jaramete	3TS					
			O-Phos- phate	Nitrate (EA	BCD (EA	DO (EA	Ammonia (EA	Abs	sorbance	e at	Hu fluc	umic-like vrescence		Ful fluoi	lvic-like rescence	0	Trypto- phan	Tyro- sine	Trypto- phan
			(EA data) (mg 1 ⁻¹)	$data)$ (mg 1^{-1})	data) (mg 1^{-1})	data) (%)	$data)$ (mg 1^{-1})	254 nm	340 nm	410 nm	Exci- tation (nm)	Emis- I sion (nm)	nten- I sity t	Exci- E ation :	Emis- I sion (nm)	Inten- sity i	at 250 ii mm intensity	ntensity	at 220 mm intensity
41	DERWENT AT LINTZFORD	mean stdev	0.361 0.163	2.842 0.509	$1.817 \\ 0.930$	96 9	0.098 0.047	$0.162 \\ 0.050$	0-062 0-016	0.022 0.009	235 0	426 10	204 26	335 4	431 7	105 22	47 5	43 13	97 22
42	PONT BURN AT	mean	1.309	6.496	1.723	95	0.277	0.112	0.029	0.015	241	422	206	334	421	125	68	46	129
43	85318 DERWENT AT	stdev mean	0.639 0.031	2.323 1.131	0.578 1.575	100	0.822 0.035	0.036 0.226	0.007 0.069	0.007 0.028	7 236	8 436	46 206	7 334	3 437	36 107	33 33	10 31	39 72
Ţ	SHOTLEY BRIDGE	stdev	0.009	0.579	0.526	5	0.013	0.039	0.010	0.007	0 900	10	25 205	6		18	2 2	8 6	15
4	DEKWENT AL ALLENSFORD	stdev	900-0	0-829 0-458	0.528	701	0.001	0.036	0.009	0.006	0	43/ 6	cu2 19	334 6	43/ 8	103	3 F	06 L	19
45	WHARNLEY BURN AT DIVED	mean	0.033	2.205 0.863	1.533	96	0-035	0.086	0.029	0.013	235 1	424 8	156 26	336 3	432 7	73 73	27	29 0	52 6
	DERWENT	SIUCY	010-0	cno.n	0++-0	0	/ 10-0	000.0	710.0	000-0	-	0	07	n	-	3	n	n	D
46	WALLISH WALLS	mean	0.170	8.986	1.600	100	0.061	0.245	0.063	0.024	239	420	362	331	423	223	68	25	111
	BURN AT ALLENSFORD	stdev	0.117	3.232	0.628	×	0.048	0.056	0.022	0.012	S	S	30	11	8	31	12	13	19
47	HORSLEYHOPE	mean	0.024	0.433	1.550	66	0.033	0.171	0.057	0.024	235	431	187	336	436	92	26	41	71
	BURN AT ROAD BRIDGE	stdev	0.005	0.152	0.493	9	0.036	0.088	0.031	0.013	0	S	37	9	10	28	9	10	20
48	DERWENT AT	mean	0.023	0.761	1.625	66	0.031	0.274	0.095	0.039	233	435	203	333	438	107	26	33	56
	EDDYS BRIDGE	stdev	0.006	0.247	0.466	8	0.002	0.031	0.010	0.005	4	7	22	6	8	6	4	12	10
49	DERWENT AT	mean	0.024	0.427	1.625	102	0.031	0.185	0.066	0.029	235	432	165	339	442	86	20	31	57
	CARRICKS PICNIC SITE	stdev	0.005	0.288	0.483	6	0.002	0.110	0.043	0.018	m	S	22	0	×	19	ŝ	10	26
51	BOLTS BURN AT	mean	0.021	0.475	1.575	76	0.030	0.100	0.029	0.014	232	428	126	335	436	57	20	41	55
	CONFLUENCE	stdev	0.006	0.307	0.648	9	0.000	0.055	0.021	0.012	9	6	22	8	8	18	5	17	Π
52	EAST ALLEN AT	mean	0.032	0.212	1.496	101	0.030	0.217	0.071	0.028	234	436	207	337	446	104	24	40	99
	HUNTWELL	stdev	0.013	0.037	0.318	4	0.000	0.130	0.048	0.021	0	б	35	4	8	24	S	15	15

Table I. (Continued)

Copyright © 2004 John Wiley & Sons, Ltd.

 $\begin{array}{c} 142 \\ 111 \\ 122 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\ 132 \\$ 60 229 86 65 17 $338 \\ 338 \\ 338 \\ 338 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 333 \\ 334 \\ 511 \\ 333 \\ 333 \\ 333 \\ 334 \\ 511 \\ 326 \\ 326 \\ 334 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336 \\ 336$ 26 113 115 115 115 24 9 8 5 5 5 [435353535353535353535354545454555454545554545555555556575757585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858585858 7 438 8 443 9 6 10 110 141 ∞ 443 443 9 445 443 446 446 446 446 446 446 ∞ $\begin{array}{c} 337\\7\\341\\2\\340\\0\\\end{array}$ 338 334 7 335 ∞ 339 339 338 4 335 9 341 210 33 33 41 41 213 24 436 15 435 6 8 8 234 235 1 1 1 235 235 234 234 234 238 238 7 7 239 7 235 235 238 $\begin{array}{c} 0.026\\ 0.018\\ 0.035\\ 0.022\\ 0.021\\ 0.025\\ 0.036\\ 0.037\\ 0.016\\ 0.037\\ 0.031\\ 0.031\\ 0.083\\ 0.062\\ 0.031\\ 0.083\\ 0.062\\ 0.083\\ 0.062\\ 0.083\\ 0.062\\ 0.083\\ 0.083\\ 0.059\\ 0.083\\ 0.059\\ 0.059\\ 0.059\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.058\\ 0.$ 0.0620.0330.0460.0420.0390.020 $\begin{array}{c} 0.068\\ 0.037\\ 0.090\\ 0.054\\ 0.105\\ 0.059\\ 0.081\\ 0.050\\ 0.037\\ 0.037\\ 0.037\\ 0.037\\ 0.037\\ 0.051\\ 0.037\\ 0.031\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.051\\ 0.$ $\begin{array}{c} 0.169\\ 0.095\\ 0.119\\ 0.107\\ 0.107\\ 0.058\end{array}$ $\begin{array}{c} 0.224\\ 0.118\\ 0.257\\ 0.147\\ 0.145\\ 0.288\\ 0.145\\ 0.131\\ 0.131\\ 0.128\\ 0.083\\ 0.083\\ 0.083\\ 0.0731\\ 0.475\\ 0.0631\\ 0.437\\ 0.0631\\ 0.437\\ 0.0631\\ 0.0437\\ 0.0631\\ 0.0437\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0631\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.0632\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\ 0.062\\$ 0.4290.2180.3480.3480.2760.3180.127 $\begin{array}{c} 0.030\\ 0.000\\ 0.001\\ 0.003\\ 0.003\\ 0.002\\ 0.034\\ 0.016\\ 0.032\\ 0.032\\ 0.006\\ 0.033\\ 0.006\\ 0.033\\ 0.007\\ 0.046\\ 0.033\\ 0.007\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.014\\ 0.007\\ 0.014\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.$ $\begin{array}{c} 0.031\\ 0.005\\ 0.032\\ 0.006\\ 0.036\\ 0.010\end{array}$ 98 66 99 99 99 99 99 99 99 80 3 5 60 100 83 3 83 83 83 83 $\begin{array}{c} 1.493\\ 0.561\\ 1.471\\ 0.439\\ 1.750\\ 1.750\\ 1.750\\ 1.270\\ 1.550\\ 0.332\\ 1.486\\ 0.337\\ 1.486\\ 0.337\\ 1.486\\ 0.357\\ 1.486\\ 0.357\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.497\\ 0.492\\ 0.497\\ 0.492\\ 0.497\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.492\\ 0.$ $\begin{array}{c} 1.715\\ 0.478\\ 1.767\\ 0.385\\ 1.977\\ 0.626\end{array}$ $\begin{array}{c} 0.196\\ 0.001\\ 0.206\\ 0.032\\ 0.032\\ 0.032\\ 0.043\\ 0.043\\ 0.043\\ 0.0236\\ 0.128\\ 0.0239\\ 0.048\\ 0.0239\\ 0.048\\ 0.0259\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0368\\ 0.0$ $\begin{array}{c} 0.310\\ 0.141\\ 0.337\\ 0.184\\ 0.803\\ 0.844\end{array}$ $\begin{array}{c} 0.027\\ 0.017\\ 0.021\\ 0.029\\ 0.012\\ 0.012\\ 0.017\\ 0.042\\ 0.017\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.$ 0.0340.0330.0330.0380.0290.0420.0280.024 0.006 0.026 0.011 mean stdev mean mean stdev mean stdev mean stdev mean stdev stdev mean stdev mean stdev mean stdev SOUTH TYNE AT GARRIGILL FORD SOUTH TYNE AT EALS PARK BURN AT PARK VILLAGE BLACK BURN AT INTACK SOUTH TYNE AT ALSTON ALLENBANKS TYNE AT CREW HALL TIPALT BURN AT A69 ROAD BRIDGE HAL TWHISTLE NENT AT ALSTON SOUTH TYNE AT WEST ALLEN AT SCRAITHOLE ALLEN AT 55 56 57 58 90 62 63 4 53 54 61

Copyright © 2004 John Wiley & Sons, Ltd.

Fem and F-I ar	the excitation	on and emission waveler the t	ngths and in tryptophan-li	tensity of t ike and tyre	he fulvic-lil ssine-like fl	ke fluoresce uorescence	nce centre; [centres	r-280, T-22	20 and Tyro	sine are inte	insities of
			Phosphate	Nitrate	BOD	DO	Ammonia	A-254 nm	A-340 nm	A-410 nm	H-ex
Spearman's rho	Phosphate	Correlation coefficient Sig. (2-tailed)	1.000	0.652** 0.000 61	0.550** 0.000 61	-0.415^{**} 0.001 61	0.792** 0.000 61	-0.274^{*} 0.033	-0.295^{*} 0.021	-0.315^{*} 0.013	0.415** 0.001
	Nitrate	Correlation coefficient Sig. (2-tailed)	0.652^{**} 0.000 0.000	1.000	0.259* 0.042 62	-0.423^{**} 0.001	0.706** 0.000 6.000	-0.588^{**} 0.000	-0.612^{**} 0.000	-0.629^{**} 0.000	0.027 0.834 0.834
	BOD	Correlation coefficient Sig. (2-tailed)	0.550**	0.259* 0.042	1.000	-0.335^{**} 0.008	0.000 0.000	-0.062 0.653	-0.083 -0.083 0.522	-0.085 -0.085 0.510	0.392** 0.002
	DO	N Correlation coefficient Sig. (2-tailed) N	$01 - 0.415^{**} - 0.001 0.001$	$ \begin{array}{c} 0.2 \\ -0.423^{**} \\ 0.001 \\ 6.7 \\ $	$ \begin{array}{c} 0.02 \\ -0.335^{**} \\ 0.008 \\ 6.7 \end{array} $	00 1.000 62	$^{0.2}_{-0.580**}$	02 0.140 0.279 62	02 0.146 0.257	02 0.164 0.202 62	02 0.335** 0.006
	Ammonia	Correlation coefficient Sig. (2-tailed)	0.792** 0.000 61	0.706** 0.000	0.000 0.000	-0.560** 0.000	1.000	-0.271^{*} 0.033	-0.313° 0.013 62	-0.327^{**} 0.009	0.347** 0.006 62
	A-254 nm	Correlation coefficient Sig. (2-tailed)	-0.274^{*} 0.033 61	-0.588^{**} 0.000	0.633 0.633 0.633	0.140 0.279 62	-0.271^{*} 0.033 62	1.000 63	0.968** 0.000 63	0.984^{**} 0.000 63	0.371** 0.003 63
	A-340 nm	Correlation coefficient Sig. (2-tailed)	-0.295^{*} 0.021 61	-0.612^{**} 0.000 62	-0.083 0.522 62	$0.146 \\ 0.257 \\ 62$	$-\frac{0}{0.313}$ * 0.013 62	0.988** 0.000 63	1.000	0.994^{**} 0.000 63	0.359** 0.004 63
	A-410 nm	Correlation coefficient Sig. (2-tailed) N	-0.315^{*} 0.013 61	-0.629^{**} 0.000 62	-0.085 0.510 62	$0.184 \\ 0.202 \\ 62$	-0.327^{**} 0.000 62	0.964** 0.000 63	0.994^{**} 0.000 63	1.000	0.355** 0.004 63
	H-ex	Correlation coefficient Sig. (2-tailed) N	0.415^{**} 0.001 61	0.027 0.834 62	0.392** 0.002 62	-0.335^{**} 0.008 62	0.347^{**} 0.006 62	0.371** 0.003 63	0.359^{**} 0.004 63	0.355** 0.004 63	1.000 63
	H-em	Correlation coefficient Sig. (2-tailed) N	-0.431^{**} 0.001 61	-0.733^{**} 0.000 62	-0.196 0.123 62	0.227 0.077 62	-0.468^{**} 0.000 62	0.810** 0.000 63	$\begin{array}{c} 0.834^{**} \\ 0.000 \\ 63 \end{array}$	0.844** 0.000 63	0.257* 0.042 63

Table II. Correlation coefficients between fluorescence, absorbance and chemical water quality parameters. A-254, A-340 and A-410 are absorbances at 254, 340 and 410 nm, respectively. H-ex, H-em and H-I are the excitation and emission wavelengths and intensity of the humic-like fluorescence centre; F-ex, F-em and F-I are the excitation and emission wavelengths and intensity of the fluorescence centre; T-280, T-220 and Tyrosine are intensities of

Correlation coefficient 0.619** Sig. (2-tailed) 0.000	0.619**	`	0.633** 0.000	0.407** 0.001	-0.330** 0.009	0.583**	-0.250^{*} 0.048	-0.296^{*} 0.019	-0.322^{*} 0.010	0.257* 0.042
	N Correlation coefficient	$61 - 0.282^*$	62 —0.705**	62 - 0.114	62 0.106	62 —0.368**	$63 \\ 0.736^{**}$	$63 0.770^{**}$	$63 \\ 0.773^{**}$	63 0.338**
	Sig. (2-tailed) <i>N</i>	0.028 61	0.000 62	0.379 62	0.414 62	0.003 62	0.000 63	0.000 63	0.000 63	0-007 63
	Correlation coefficient	-0.498** 0.000	-0.788**	-0.205	0.278*	-0.518^{**}	0.840**	0.860**	0.869** 0.000	0.157
	N N	61	62	62	62	62	63	63	63	63
	Correlation coefficient	0.434^{**}	0.166	0.435**	-0.371^{**}	0.432^{**}	0.483^{**}	0.434^{**}	0.404^{**}	0.693^{**}
	Sig. (2-tailed)	0.000	0.196	0.000	0.003	0.000	0.000	0.000	0.001	0.000
	Ν	61	62	62	62	62	63	63	63	63
	Correlation coefficient	0.670^{**}	0.854^{**}	0.348^{**}	-0.333^{**}	0.662^{**}	0.863^{**}	-0.684^{**}	-0.699**	0.043
	Sig. (2-tailed)	0.000	0.000	0.006	0.008	0.000	0.000	0.000	0.000	0.739
	N	61	62	62	62	62	63	63	63	63
e	Correlation coefficient	0.335^{**}	0.504^{**}	0.252^{*}	-0.109	0.334^{**}	-0.820^{**}	-0.810^{**}	-0.806^{**}	-0.264^{*}
	Sig. (2-tailed)	0.008	0.000	0.048	0.400	0.008	0.000	0.000	0.000	0.037
	N	61	62	62	62	62	63	63	63	63
	Correlation coefficient	0.533^{**}	0.741^{**}	0.300^{*}	-0.196	0.528^{**}	-0.736^{**}	-0.753^{**}	-0.760^{**}	-0.058
	Sig. (2-tailed)	0.000	0.000	0.018	0.128	0.000	0.000	0.000	0.000	0.653
	Ν	61	62	62	62	62	63	63	63	63

			T	able II. (<i>Con</i>	tinued)					
			H-em	I-H	F-ex	F-em	F-I	T-280	Tyrosine	T-220
Spearman's rho	Phosphate	Correlation coefficient Sig. (2-tailed)	-0.431^{**} 0.001 61	0.619^{**} 0.000 ϵ_1	0.282* 0.028 61	-0.496^{**} 0.000 61	0.434^{**} 0.000 61	0.670** 0.000 6.1	0.335** 0.008 61	0.533^{*} 0.000
	Nitrate	Correlation coefficient	-0.733^{**}	0.633^{**}	-0.705^{**}	-0.788**	0.156 0.106	0.854**	0.604**	0.741**
		N N	0.000 62	0.000	62	0-000 62	0.130	62	62	62
	BOD	Correlation coefficient Sig. (2-tailed)	0.198 0.123	0.407^{**} 0.001	-0.114 0.379	-0.205 0.110	0.435^{**} 0.000	0.348^{**} 0.006	0.252^{*} 0.048	0.300^{*} 0.018
		N	62 2 222	62	62 0 107	62 2 220±	62	62 2 222#	62 2 100	62 2 102
	DO	Correlation coefficient Sig. (2-tailed)	0.227 0.077	-0.330^{**} 0.009	$0.106 \\ 0.414$	0.278^{*} 0.029	-0.371^{**} 0.003	-0.333^{**} 0.008	-0.109 0.400	-0.196 0.126
		N	62	62	62	62	62	62	62	62
	Ammonia	Correlation coefficient	-0.468^{**}	0.583**	-0.368^{**}	-0.518^{**}	0.432^{**}	0.652^{**}	0.334^{**}	0.528^{**}
		Sig. (2-tailed)	0.000	0.000	0.003	0.000	0.000	0.000	0.006	0.000
		Ν	62	62	62	62	62	62	62	62
	A-254 nm	Correlation coefficient	0.810^{**}	-0.250^{*}	0.738^{**}	0.840^{**}	0.483^{**}	-0.653^{**}	-0.620^{**}	-0.736^{**}
		Sig. (2-tailed)	0.000	0.048	0.000	0.000	0.000	0.000	0.000	0.000
		Ν	63	63	63	63	63	63	63	63
	A-340 nm	Correlation coefficient	0.834^{**}	-0.296^{*}	0.770^{**}	0.860^{**}	0.434^{**}	-0.684^{**}	-0.810^{**}	-0.753^{**}
		Sig. (2-tailed)	0.000	0.019	0.000	0.000	0.000	0.000	0.000	0.000
		Ν	63	63	63	63	63	63	63	63
	A-410 nm	Correlation coefficient	0.844^{**}	-0.322^{*}	0.773^{**}	0.869^{**}	0.404^{**}	-0.699^{**}	-0.508^{**}	-0.760^{**}
		Sig. (2-tailed)	0.000	0.010	0.000	0.000	0.001	0.000	0.000	0.000
		N	63	63	63	63	63	63	63	63
	H-ex	Correlation coefficient	0.257^{*}	0.257^{*}	0.338^{**}	0.157	0.693^{**}	0.043	-0.264^{*}	-0.058
		Sig. (2-tailed)	0.042	0.042	0.007	0.219	0.000	0.739	0.037	0.653
		Ν	63	63	63	63	63	63	63	63
	H-em	Correlation coefficient	1.000	-0.536^{**}	0.792^{**}	0.877^{**}	0.104	-0.808^{**}	-0.778^{**}	-0.843^{**}
		Sig. (2-tailed)		0.000	0.000	0.000	0.417	0.000	0.000	0.000
		N	63	63	63	63	63	63	63	63

Table

Copyright © 2004 John Wiley & Sons, Ltd.

0.757^{**} 0.000 63	-0.725^{**} 0.000 63	-0.867^{**} 0.000 63	0.054 0.674 63	0.945^{**} 0.000 63	0.841^{**} 0.000 63	1.000 63
0.434^{**} 0.000 63	-0.685^{**} 0.000 63	-0.767^{**} 0.000 63	-0.278^{*} 0.027 63	0.726** 0.000 63	1.000 63	$\begin{array}{c} 0.841^{**} \\ 0.000 \\ 63 \end{array}$
0.833** 0.000 63	-0.705^{**} 0.000 63	-0.855^{**} 0.000 63	0.207 0.104 63	1.000 63	0.726** 0.000 63	0.945** 0.000 63
0.586** 0.000 63	0.200 0.116 63	0.108 0.400 63	1.000 63	0·207 0·104 63	-0.278* 0.027 63	0.054 0.674 63
-0.576^{**} 0.000 63	0.833** 0.000 63	1.000 63	0.106 0.400 63	-0.855^{**} 0.000 63	-0.767^{**} 0.000 63	-0.867** 0.000 63
-0.428^{**} 0.000 63	1.000 63	0.833** 0.000 63	0.200 0.116 63	-0.705^{**} 0.000 63	-0.685^{**} 0.000 63	-0.725^{**} 0.000 63
1.000 63	-0.428^{**} 0.000 63	-0.576^{**} 0.000 63	0.586** 0.000 63	0.833** 0.000 63	0.434^{**} 0.000 63	0.757** 0.000 63
-0.536^{**} 0.000 63	0.792^{**} 0.000 63	0.877** 0.000 63	0.104 0.417 63	-0.808** 0.000 63	-0.778^{**} 0.000 63	-0.843^{**} 0.000 63
Correlation coefficient Sig. (2-tailed) N	Correlation coefficient Sig. (2-tailed) <i>N</i>					
H-1	F-ex	F-em	F-I	T-280	Tyrosine	T-220

* Correlation significant at the 0.05 level (2-tailed).

Copyright © 2004 John Wiley & Sons, Ltd.

wavelength. Absorbance correlates positively with humic and fulvic-like emission wavelengths (Table II) and negatively with humic and fulvic-like intensities, the latter due to inner-filtering as described earlier. Within the fluorescence dataset, the protein-like fluorescence intensities (the tyrosine and two tryptophan-like centres) have a strong correlation between each other, and weak correlations with humic and fulvic-like intensities.

Comparing the correlation between fluorescence and chemical water quality determinants shows that there are statistically significant relationships between nitrate, phosphate and ammonia and tryptophan-like fluorescence (at either 220 nm and/or 280 nm excitation centres). This suggests that the relationship between protein-like fluorescence and potential pollutants such as treated and untreated sewage and farm wastes is reflected at a catchment-wide scale. However, as described earlier, three sites within the dataset have statistically outlying data, from non-fluorescent propylene glycol deicer (sites 1 and 2) and a combination of mine water, treated sewage effluent and landfill leachate pollution (site 36). Therefore all outlying data were removed from the dataset: the January 2003 BOD from sites 1 and 2 and all ammonia data from site 36, and the correlations recalculated. In this case, the strength of the correlation between tryptophan-like fluorescence and the chemical water quality determinants increased significantly, with tryptophan-like fluorescence becoming the most significant explanatory variable in every case. This is shown in Figure 2 and Table III. Tryptophanlike fluorescence intensity at the 280 nm excitation/350 nm emission fluorescence centre correlates with both phosphate (r = 0.80) and nitrate (r = 0.87), whereas tryptophan-like fluorescence intensity at the 220 nm excitation/350 nm emission wavelength centre correlates with BOD (r = 0.85), ammonia (r = 0.70) and dissolved oxygen (r = -0.65). Figure 2 shows that in all cases there are a large number (about 50 of the 62 sample sites) of essentially good water quality sample sites that cluster with low values of both tryptophanlike fluorescence intensity and the respective chemical water quality parameter. Sites of poorer water quality (about 12 sites) have higher tryptophan-like fluorescence intensity and concentration of the measured chemical water quality parameter, which either form a second cluster of data points (for example dissolved oxygen and ammonia) or a linear trend (for example nitrate). These sites are those on the urban rivers. The Ouseburn (sites 1-3) has known sewerage water quality issues (Baker *et al.*, 2003), the River Don (site 34 and 35) also has sewerage water quality issues, the River Team (sites 36-39) is impacted by wastewater treatment works effluent, sewerage overflows, mine water and landfill leachate, and the lower reaches of the Derwent (sites 40-41) are downstream of wastewater treatment works effluents. In addition, the Pont Burn (site 42), although not urban in land-use, is a small tributary that has a wastewater treatment works that provides a significant proportion of total flow, and one small agricultural watercourse (Wallish Walls Burn, site 46) also occasionally features in the poor water quality cluster.

That some correlations between chemical water quality parameters are stronger with the tryptophan-like fluorescence centre at excitation wavelength of 220 nm, and others with the centre at 280 nm, is significant. The centre at 280 nm excitation will be within the tail of fluorescence from the fulvic-like peak when this centre has high fluorescence intensity, and would be expected to have a stronger correlation with pollutant sources that have significant fluorescence intensities in both the tryptophan-like and fulvic-like fluorescence centres. Baker (2001, 2002b) demonstrates that this can be the case for sewage effluents rather than for farm wastes, as the latter have predominantly protein-like fluorescence centres. Therefore the correlation between this tryptophan-like fluorescence centre and nitrate and phosphate confirms that all three are tracing sewage-derived DOM. Sites with highest nitrate and phosphate concentrations are typically those on rivers downstream of wastewater treatment works and where these effluents, also have high nitrate, phosphate and tryptophan-like fluorescence, but cluster with slightly higher tryptophan-like fluorescence intensity and lower nitrate and phosphate concentration. Wallish Walls Burn (site 46), the only site with agricultural-derived water quality issues, only exhibits elevated nitrate concentration as might be expected.

The correlation between BOD and the tryptophan-like fluorescence intensity at the 220 nm excitation wavelength centre suggests that BOD has a stronger correlation with tryptophan-like fluorescence alone. Assuming that the fulvic-like peak is predominantly derived from the relatively stable DOM pool, our

Figure 2. Graphs of tryptophan-like fluorescence intensity against chemical water quality determinant. Results are presented in log-log format due to the skewed data distribution. Error bars are the 1σ standard deviation, and sample site numbers are those from Table I

Copyright © 2004 John Wiley & Sons, Ltd.

Hydrol. Process. 18, 2927-2945 (2004)

Table III. Regression equations between fluorescence and chemical water quality parameters. Abbreviations for humic-like, fulvic-like, tryptophan-like and tyrosine-like fluorescence are as Table II. Correlation coefficients are shown for both simple linear regression with one correlant, and for the stepwise regression equation shown

Chemical water quality determinand	Stepwise regression	Stepwise r	Single parameter <i>r</i>
Phosphate	$-8.55 + 0.01808T_{280} + 0.02536F_{ex} - 0.002082H_{I}$	0.894	0.799
Nitrate	$-0.006798 + 0.112T_{280} - 0.07127Tyro$	0.935	0.874
BOD (all data)	-1.586 + 0.0569Tyro $+ 0.01269$ F _{em}	0.754	0.675
BOD (excluding sites 1, 2)	$-13.467 + 0.01578T_{220} + 0.03232F_{em}$	0.903	0.846
DO (EA data)	$102.578 - 0.07328T_{220}$	0.646	0.646
Ammonia (all data)	$-0.224 + 0.002733 H_{I} - 0.002171 F_{I}$	0.845	0.784
Ammonia (excluding site 36)	$-0.04166 + 0.0016T_{220}$	0.703	0.703

correlation therefore suggests that the tryptophan-like fluorescence centre is related to the bioavailable or labile DOM pool. Six sites on the urban rivers Ouseburn, Team and Don form a high BOD cluster in Figure 2, but in general the range of BOD in the Tyne catchment is not great enough to assess the strength of the BOD–tryptophan-like fluorescence intensity relationship. The majority of sample sites have a BOD that is close to the detection limits of the technique and BOD error bars reflect analytical errors as much as natural sample variability.

The weakest correlations are observed between tryptophan-like fluorescence intensity and ammonia concentration and dissolved oxygen. For the former, the weaker correlation is due to good ammonia treatment within the wastewater treatment plants within the catchment, such that ammonia is stripped yet a residual tryptophan-like fluorescence signature from the wastewater DOM remains: essentially ammonia concentration is not a water quality issue in the Tyne catchment. Despite this, the highest values of tryptophan-like fluorescence and ammonia are found at the urban catchment sample sites on the rivers Don, Team and Ouseburn. Finally, the weak correlation between dissolved oxygen and tryptophan-like fluorescence reflects the aeration of the river as described earlier, such that natural aeration limits any water quality impacts on dissolved oxygen. Only one site (site 36) has depressed oxygen levels, due to the impacts of landfill leachate and treated wastewater that discharge into the River Team just upstream of this sample site.

We also performed stepwise regression to investigate if the analysis of the fluorescence intensities and wavelengths of all possible fluorescence centres adds further statistical strength to the observed correlations between tryptophan-like fluorescence intensity and the chemical water quality determinants. This is shown in Table III, and shows that although the addition of one or two more fluorescence parameters does increase the correlation, the improvement in explanatory power is negligible compared to the initial tryptophan-like fluorescence–chemical water quality relationship. We also repeated all the stepwise regressions including absorbance as a determining variable; absorbance was observed to not be a statistically significant determinant for any of the chemical water quality parameters.

Finally, we investigated the relationship between the mean and standard deviation of tryptophan-like fluorescence intensity and the GQA for each site for the year 2002 as performed by the Environment Agency. The GQA is scored from A to F, where A is the highest water quality and F the lowest, and is based on the dissolved oxygen, BOD and ammonia results. The results for a site are averaged for a 36-month period centred on the year of interest, and percentiles are calculated. These are compared with limits set for each of the six grades. A grade is assigned to the length of river (which the sampling site represents) according to the lowest grade achieved by any of the three determinants. Results are presented in Figure 3, and demonstrate a strong relationship between the GQA grade and mean tryptophan-like fluorescence intensity (at the 220 nm excitation/350 nm emission centre), although the small number of poor water quality sites limits the number of sites scored at grades D and E. Sites where the fit between GQA and tryptophan-like fluorescence intensity is weakest include the Wallish Walls Burn (site 46: graded E, mean tryptophan-like fluorescence intensity of

111 units), which is known to be affected by intermittent agricultural pollution and which was probably undersampled during our fluorescence sampling programme of six samples per year. Two other sites of interest are the Tarset and Chirdon Burns (sites 13 and 14: graded B, mean tryptophan-like fluorescence intensity of 24 and 30 units), where the fluorescence results suggest a grade of A would be more appropriate. The two sites have the most coloured water and drain peaty uplands and their GQA score of B is based on a failure to meet BOD requirements. The discrepancy is therefore likely to be due to incorrect GQA grading of the rivers due to the difficulty in measuring BOD at low concentrations. However, despite these discrepancies, Figure 3 suggests that with a larger dataset that includes a greater proportion of poor quality waters, water quality standards could be determined and assessed using tryptophan-like fluorescence as a chemical water quality determinant.

CONCLUSIONS

Within our study of the Tyne catchment, mean annual tryptophan-like fluorescence intensity at the 280 nm excitation/350 nm emission centre has a strong correlation with mean annual nitrate and phosphate concentrations, and mean annual BOD has a strong correlation with mean annual tryptophan-like fluorescence intensity at the 220 nm excitation/350 nm emission centre. But this is only true when three outlying sites are removed. Non-fluorescent DOM such as the >60 mg 1^{-1} deicer pollution event in January 2003 on two sites on the Ouseburn obscures any correlation—use of tryptophan-like fluorescence intensity as a chemical water quality determinant would not be possible in catchments where similar pollution issues occur, although we feel these would not be common. The effect of a combination of treated wastewater and landfill leachate at one site on the River Team also impacts on the ammonia–tryptophan-like fluorescence relationship due to the landfill leachate, as high ammonia values are also observed on the upstream tributary impacted by the leaking landfill. Caution would therefore be needed in catchments where landfill leachate was a significant pollutant. Weaker but statistically significant correlations are observed between fluorescence and ammonia and dissolved oxygen, but again tryptophan-like fluorescence intensity is still the most significant correlation.

Figure 3. Comparison of tryptophan-like fluorescence intensity and Environment Agency General Quality assessment for 2002

Copyright © 2004 John Wiley & Sons, Ltd.

2944

A. BAKER AND R. INVERARITY

In the Tyne catchment, with the exception of the airport deicer and landfill leachate-impacted sample sites, the chemical water quality determinants are predominantly detecting sewerage-derived DOM from combined sewer overflows, cross connected sewers and wastewater treatment works discharges into rivers where the discharge provides a significant proportion of total river flow. Therefore, the strong correlations between BOD, nitrate and phosphate and tryptophan-like fluorescence intensity in the screened dataset suggest that tryptophan-like fluorescence can be used as a proxy for these parameters where sewerage sources of DOM are important. The findings demonstrate that upscaling of the tryptophan-like fluorescence intensity–water quality relationship observed at the smaller scales of small urban catchments (Ouseburn; Baker, 2002a; Baker *et al.*, 2003) and downstream of treated wastewater outfalls (Baker, 2001) to that of a large catchment is possible. The rapid analysis time required to produce a fluorescence EEM (less than 1 min) also permits the real-time analysis of waters. Technological advances within spectrophotometry will continue to increase the portability of equipment, already field-based fluorescence analysis is possible (Hart and Jiji, 2002) and the potential therefore exists for tryptophan-like fluorescence to also be used by both environmental regulators and operators of consented discharges.

ACKNOWLEDGEMENTS

We thank Professor Malcolm Newson, Helen Huxtable, Chris Elvin and Jo Baker for fieldwork assistance, and Nick Diggle at the Environment Agency, Northumbria Region for comments and advice. Martin Charlton provided the base map for Figure 1.

REFERENCES

- Adams R, Dunn SM, Lunn R, Mackay R, O'Callaghan JR. 1995. Assessing the performance of the NELUP hydrological models for river basin planning. *Journal of Environmental Planning and Management* **38**: 53–76.
- Ahmad SR, Reynolds DM. 1999. Monitoring of water quality using fluorescence technique: prospect of on-line process control. *Water Research* 33: 2069-2074.
- Baker A. 2001. Fluorescence excitation-emission matrix characterisation of some sewage impacted rivers. *Environmental Science and Technology* **35**: 948–953.

Baker A. 2002a. Spectrophotometric discrimination of river dissolved organic matter. Hydrological Processes 16: 3203-3213.

- Baker A. 2002b. Fluorescence properties of some farm wastes: implications for water quality monitoring. Water Research 36: 189-194.
- Baker A, Inverarity R, Charlton ME, Richmond S. 2003. Detecting river pollution using fluorescence spectrophotometry: case studies from the Ouseburn, NE England. *Environmental Pollution* **124**: 57–70.
- Bolton L. 2004. The application of excitation-emission fluorescence spectrophotometry to the monitoring of dissolved organic matter in upland catchments in the United Kingdom. Unpublished PhD thesis, University of Newcastle.
- Coble PG. 1996. Characterisation of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. *Marine Chemistry* **51**: 325-346.
- Coble PG, Green SA, Blough NV, Gagosian RB. 1990. Characterisation of dissolved organic matter in the Black Sea by fluorescence spectroscopy. *Nature* **348**: 432–435.
- Dunn SM, Mackay R, Adams R, Oglethorpe DR. 1996. The hydrological component of the NELUP decision-support system: an appraisal. *Journal of Hydrology* **177**: 213–235.

Hart SJ, Jiji RD. 2002. Light emitting diode excitation emission matrix fluorescence spectroscopy. Analyst 127: 1693–1699.

Lunn RJ, Adams R, Mackay R, Dunn SM. 1996. Development and application of a nitrogen modelling system for large catchments. *Journal* of Hydrology **174**: 285–304.

Mayer LM, Schick LL, Loder TC. 1999. Dissolved protein-like fluorescence in two Maine estuaries. Marine Chemistry 64: 171–179.

McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT. 2001. Spectrofluorometric characterization of aquatic fulvic acid for determination of precursor organic material and general structural properties. *Limnology and Oceanography* **46**: 38–48.

McKnight DM, Hood E, Klapper L. 2003. Trace organic moieties of dissolved organic material in natural waters. In *Aquatic Ecosystems:* Interactivity of Dissolved Organic Matter, Findlay SEG, Sinsaburgh RL (eds). Academic Press: Oxford, UK; 71–93.

Mobed JJ, Hemmingsen SL, Autry JL, McGown LB. 1996. Fluorescence characterisation of IHSS humic substances: total luminescence spectra with absorbence correction. *Environmental Science and Technology* **30**: 3061–3066.

- Mopper K, Schultz CA. 1993. Fluorescence as a possible tool for studying the nature and water column distribution of DOC components. *Marine Chemistry* **41**: 229–238.
- Newson M, Baker A, Mounsey S. 2001. The potential role of freshwater luminescence measurements in exploring runoff pathways in upland catchments. *Hydrological Processes* **15**: 989–1002.

Copyright © 2004 John Wiley & Sons, Ltd.

- Ohno T. 2002. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. *Environmental Science and Technology* **36**: 742–746.
- Parlanti E, Wörz K, Geoffroy L, Lamotte M. 2001. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. *Organic Geochemistry* **31**: 1765–1781.
- Reynolds DM. 2003. Rapid and direct determination of tryptophan in water using synchronous fluorescence spectroscopy. *Water Research* **37**: 3055–3060.
- Reynolds DM, Ahmad SR. 1997. Rapid and direct determination of wastewater BOD values using a fluorescence technique. *Water Research* **31**: 2012–2018.
- Standing Committee of Analysts Methods for the Examination of Waters and Associated Materials. 1980. Phosphorus in Waters, Effluents And Sewages. HSMO (ISBN 0117515825).
- Standing Committee of Analysts Methods for the Examination of Waters and Associated Materials. 1981a. Ammonia In Waters. HMSO (ISBN 981 0117516139).
- Standing Committee of Analysts Methods for the Examination of Waters and Associated Materials. 1981b. Oxidized Nitrogen In Waters. HMSO (ISBN 0117515930).
- Standing Committee of Analysts Methods for the Examination of Waters and Associated Materials. 1988. 5 Day Biochemical Oxygen Demand (BOD5) (With Amendments to Dissolved Oxygen In Waters), 2nd edn. HMSO (ISBN 0117522120).
- Stedmon CA, Markager S, Bro R. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. *Marine Chemistry*, 82: 239-254.
- Thoss V, Baird MS, Lock MA. 2000. The development of a chemical 'fingerprint' to characterise dissolved organic matter in natural waters. *Journal of Environmental Monitoring* 2: 398–403.
- Turnball DA, Bevan JR. 1995. The impact of airport deicing on a river—the case of the Ouseburn, Newcastle-Upon-Tyne. *Environmental Pollution* **88**: 321–332.
- Vasel J-L, Praet E. 2002. On the use of fluorescence measurements to characterise wastewater. Water Science and Technology 45: 109–116.
 Wadsworth RA, O'Callaghan JR. 1995. Empirical searches of the NELUP land use database. Journal of Environmental Planning and Management 38: 107–116.
- Westerhoff P, Chen W, Esparza M. 2001. Fluorescence analysis of a standard fulvic acid and tertiary treated wastewater. *Journal of Environmental Quality* **30**: 2037–2046.