Provided for non-commercial research and educational use only. Not for reproduction or distribution or commercial use.



Editors M. Oehme and K. Kannan



This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues that you know, and providing a copy to your institution's administrator.

All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution's website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at:

http://www.elsevier.com/locate/permissionusematerial



Available online at www.sciencedirect.com



CHEMOSPHERE

Chemosphere 67 (2007) 2035-2043

www.elsevier.com/locate/chemosphere

# Effects of filtration and pH perturbation on freshwater organic matter fluorescence

Andy Baker \*, Sarah Elliott, Jamie R. Lead

School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham, B15 2TT, United Kingdom

Received 28 July 2006; received in revised form 10 November 2006; accepted 13 November 2006 Available online 8 January 2007

### Abstract

Fluorescence of organic matter from six contrasting freshwaters was analysed after filtration (1.2  $\mu$ m and 0.2  $\mu$ m filter sizes) and pH perturbation (±2 pH units from ambient conditions). Two fluorophores were compared in detail: tryptophan-like fluorescence, whose filtration and pH characteristics are relatively poorly understood, and humic-like fluorescence, which is better characterised. Although there was some variability in both fluorophores, the tryptophan-like fluorescence showed the most significant decrease in fluorescence intensity between raw and 1.2  $\mu$ m filter samples, and a much smaller decrease between 1.2 and 0.2  $\mu$ m, demonstrating a significant source associated with particulate material as well as a significant <0.2  $\mu$ m fraction. In contrast, humic-like fluorescence shows little change with filtration, suggesting that the majority of this fluorescence is associated with truly dissolved material. The pH perturbation experiments demonstrate that tryptophan-like fluorescence is less impacted by pH than with filter fraction. For humic-like fluorescence, pH effects are weak and are not as consistent as those reported in the literature for extracted humic substances. pH perturbation of the freshwaters shows a wide range of sample specific pH responses, significantly more variable than that observed in experiments using extracted humic substances and tryptophan standards, demonstrating the natural variability of freshwater dissolved organic matter.

Keywords: Fluorescence; Organic matter; pH; Filtration; Humic substances

# 1. Introduction

Fluorescence provides important information on the characteristics of organic matter (OM) which can be useful in the elucidation of OM structure and in source apportionment and fingerprinting studies. Most recently this has included recognition that tryptophan-like fluorescence is a measure of biological activity, through either bacterial production or algal growth and its grazing (Cammack et al., 2004; Nguyen et al., 2005; Elliott et al., 2006; Urban-Rich et al., 2006). This fluorescence therefore has a wide range of sources, whose physical speciation covers a potentially wide range of sizes including particulate, colloidal and dissolved matter. All these fluorescent materials

\* Corresponding author. Tel.: +44 121 415 8133.

E-mail address: a.baker.2@bham.ac.uk (A. Baker).

may interact in complex ways with other colloidal and particulate forms (Lead and Wilkinson, 2006). In contrast to tryptophan-like fluorescence, humic and fulvic like fluorescence is more widely recognised to be related to both autochthonous (within stream algal and microbial activity) and allochthonous (soil derived organic matter) generation of small colloidal and dissolved organic matter (Senesi et al., 1989; Cammack et al., 2004; Nguyen et al., 2005; Corvasce et al., 2006). The intensity of these fluorophores is more closely correlated to dissolved organic matter concentration (Baker and Spencer, 2004; Cumberland and Baker, in press), suggesting that these make up the greatest mass of the aquatic carbon pool, and fluorescence per gram of carbon and emission wavelength correlate with structural information such as molecular weight and aromacity (Senesi et al., 1991; Kalbitz et al., 1999).

Fluorescence provides useful information on the characteristics and dynamics of OM that can be obtained both

<sup>0045-6535/\$ -</sup> see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.chemosphere.2006.11.024

in situ and non-invasively (Antízar-Ladislao et al., 2006; Saadi et al., 2006). Perturbation experiments utilising fluorescence analysis can therefore provide useful additional information on OM characteristics which are relevant to the natural environment, and can provide a useful and important contrast to experiments undertaken using extracted OM such as humic and fulvic acid (Kalbitz et al., 2000; Sierra et al., 2005). Analysis of different size fractions of OM, while perturbing the pH on each size fraction are simple experiments which will yield a great deal of information about OM. pH is known to affect the intensity of humic and fulvic like fluorescence (Mobed et al., 1996; Patel-Sorrentino et al., 2002), providing information on OM structure, but little is known about the effect of pH on tryptophan-like fluorescence. Filtration provides basic information on the relative size distribution of OM fluorescence, particularly by permitting a separation of nominal particulate, colloidal and dissolved material. The last of these fractions should be free from discrete microbial cells. Here, we present pH and filtration experiments from a range of river water samples representing a wide range of urban to rural waters and stationary to fast flowing. In particular, we focus on the effects of perturbation of tryptophan-like fluorescence, whose source and character within OM is poorly understood, and compare the perturbation response of tryptophan-like fluorescence to that of humic-like fluorescence, which in contrast has been comparatively well characterised.

# 2. Methods and materials

Six freshwater samples sites were chosen, as detailed in Table 1, which also presents for five of the sites water quality data based on the mean of 36 consecutive monthly measurements performed by the Environment Agency within the period 2000–2004. It can be seen that sites were chosen from very good water quality (e.g. the River Tern, which has been rated between grades A and B for chemical water quality by the Environment Agency for England and Wales, where A is highest water quality grade) to bad quality (e.g. the Tame, rated between grades D and E, where E is the lowest grade). Sites also include free flowing rivers (e.g. the Bournbrook) through to slow moving and heavily regulated waters (Birmingham and Worcester Canal) and a lake (Vale Lake).

Approximately 1.5–21 of river water sample was taken from each site, and the ambient pH measured and noted. All samples were taken immediately (within 2 h) back to the laboratory and the pH remeasured. Three aliquots of 500 ml of river were taken and the fluorescence of each measured. From the first 500 ml sample, three sub samples of 150 ml each were dispensed. By the addition of small amounts of HNO<sub>3</sub>, the pH of one sample was adjusted to approximately 1.5–2 pH units below that of the original sample. Small amounts of NaOH were added to another sample to alter the pH to approximately 1.5–2 pH units above that of the original sample. The third sample was

| Water quality data and site descriptions | lescriptions  |                    |                   |                  |                    |                  |                                                                                                                                                                                                 |
|------------------------------------------|---------------|--------------------|-------------------|------------------|--------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample site                              | BOD           | Ammonia            | DO (%             | Nitrate          | Phosphate          | Ambient          | Site description                                                                                                                                                                                |
| and location                             | $(mg l^{-1})$ | $(mg l^{-1})$      | saturation)       | $(mg 1^{-1})$    | $(mg l^{-1})$      | Hd               |                                                                                                                                                                                                 |
| River Tame (UK NGR SP                    | 4.3 (E)       | 0.64 (D)           | 81.1 (D)          | 37.05 (5)        | 1.76 (6)           | 7.5              | Urban land use, close to motorway and industrial areas. Channelised                                                                                                                             |
| 010980)                                  |               |                    |                   |                  |                    |                  | river, part of NERC URGENT catchment. High nitrate, phosphate and                                                                                                                               |
|                                          |               |                    |                   |                  |                    |                  | BOD from sewerage pollution                                                                                                                                                                     |
| River Tern (UK NGR SJ                    | 1.9 (B)       | 0.11 (A)           | 92.8 (A)          | 47.04 (6)        | 0.42(5)            | 7.8              | Rural location, agricultural land cover with riparian wetlands Sample                                                                                                                           |
| 707383)                                  |               |                    |                   |                  |                    |                  | site is part of NERC LOCAR catchment. High nitrate from agriculture,                                                                                                                            |
|                                          |               |                    |                   |                  |                    |                  | good BOD and ammonia                                                                                                                                                                            |
| Bournbrook (UK NGR SP                    | 2.5 (C)       | 0.13 (B)           | 106.8 (A)         | 9.39 (2)         | 0.18(4)            | 7.8              | Heavily channelised small river, urban location. Tributary of the Tame.                                                                                                                         |
| 040828)                                  |               |                    |                   |                  |                    |                  | Relatively poor BOD and phosphate from sewerage                                                                                                                                                 |
| River Rea (UK NGR SP                     | 6.0 (E)       | 0.41 (C)           | 105.4 (A)         | 12.93 (3)        | 0.19(4)            | 8.1              | Urban river, channelised. Tributary of the River Tame. High BOD and                                                                                                                             |
| 080830)                                  |               |                    |                   |                  |                    |                  | ammonia from sewerage                                                                                                                                                                           |
| Birmingham and Worcester                 | 4.2 (D)       | 0.92 (A)           | 95.24 (C)         | 0.15 (2)         | 0.10(3)            | 7.7              | Urban location, heavily regulated flow. Generally good water quality but                                                                                                                        |
| Canal (UK NGR SP                         |               |                    |                   |                  |                    |                  | high BOD due to regulated flow                                                                                                                                                                  |
| 060840)                                  |               |                    |                   |                  |                    |                  |                                                                                                                                                                                                 |
| Vale Lake (UK NGR                        | nd            | nd                 | nd                | nd               | nd                 | 7.6              | Urban location, set in park land and fed by the Chad Brook. Tributary                                                                                                                           |
| SP053847)                                |               |                    |                   |                  |                    |                  | of the Bournbrook. Upstream water quality known to be affected by                                                                                                                               |
|                                          |               |                    |                   |                  |                    |                  | sewerage failures                                                                                                                                                                               |
| BOD refers to biological oxy             | gen demand, I | OO refers to disso | olved oxygen. Gra | ades refer to wa | ater quality scale | s used by the Er | BOD refers to biological oxygen demand, DO refers to dissolved oxygen. Grades refer to water quality scales used by the Environment Agency (EA). Chemical and biological data are measured on a |
| scale A-F, where A is very g             | ood and F is  | very bad. Nutri    | ents are measured | d on a scale 1–  | -6, where 1 is ver | y low and 6 is   | scale A-F, where A is very good and F is very bad. Nutrients are measured on a scale 1-6, where 1 is very low and 6 is very high. Location data are United Kingdom National Grid References     |

UK NGR

**Fable 1** 

maintained at ambient pH. The pH of the altered samples was allowed to equilibrate for approximately 2 h, and the pH measured again and adjusted if necessary. Fluorescence properties of all three samples were analysed, and then all three samples were filtered at 1.2  $\mu$ m with Whatman GF/C glass microfibre filters, and the fluorescence and pH of the filtrate measured. The samples were then filtered a second time at 0.2  $\mu$ m with Millipore polycarbonate filters, the fluorescence of the filtrate measured, and finally the pH recorded.

The second 500 ml aliquot dispensed from the original river water sample was filtered at 1.2  $\mu$ m before being split into smaller aliquots for pH perturbation and filtration as described above. The third 500 ml aliquot of the original river water sample was filtered at 1.2  $\mu$ m, and then at 0.2  $\mu$ m, before being split into smaller aliquots for pH perturbation and filtration as described above. A total of 21 measurements were therefore performed for each site.

For each sample the initial tryptophan- and humic-like fluorescence of each was measured through the analysis of a fluorescence excitation-emission matrix (EEM). Fluorescence spectra of waters were recorded on a Varian Cary Eclipse spectrofluorometer using a 4 ml, 1 cm path length cuvette equipped with a water-cooled Peltier temperature controller. Following published methods (Baker, 2001), fluorescence EEMs were generated by scanning and recording emission spectra from 300 to 500 nm at 0.5-nm steps with 5 nm increments of excitation wavelength between 250 and 400. The slits for excitation and emission were 5nm; the temperature of analysis and PMT voltage were set at  $20 \pm 0.1$  °C and 725 V. The spectrophotometer was calibrated by detecting the Raman intensity at 395 nm excitation using a sealed water cell and emission intensity averaged  $21.6 \pm 0.5$  units with no drift during the analytical period.

# 3. Results

## 3.1. Fluorescence EEMs of raw samples

For ease of comparison, the fluorescence EEMs of all samples (before experimentation began) are shown in Fig. 1 and summarised in Table 2. The general characteristics of the samples include a tryptophan-like fluorophore observed with two excitation peaks of 225-230 and 280-285 nm, and an emission value of 335–350 nm. Two peaks attributed to humic-like substances were noted at 230-245 and 320-340 nm excitation, and 395-430 nm emission. All of the tryptophan-like emission maxima of the samples are within the same range of 340-350 nm for the lower peak and 335-345 nm for the upper peak. The humic-like peak with excitation at 230-245 nm exhibits a relatively wide range of emission values across the sample sites, ranging from emission at 395 nm in the Canal site, to 430 nm in the river Tern. The Bournbrook, in a heavily urbanised area, yielded the second lowest emission wavelength at 405 nm, and the highest emission wavelength of 430 nm was observed in the Tern samples, which was the most rural of all sites. Coble (1996) and Bolton (2004) reported differences in the emission wavelength fluorescence of humic-like material related to the chemical composition of samples as a result of the source of the humic material. This is in line with knowledge about other aspects of humic substances structure, which vary both spatially and temporally.

Given the relative strength of the humic-like peak at excitation at 230–245 nm compared to that at 320–340 nm, only this peak is considered in the perturbation experiments. Similarly, only the more intense of the two tryptophan-like fluorescence intensities (excitation at 225–230 nm) is analysed.

# 3.2. Changes in 225–230 nm tryptophan-like fluorescence with pH and filtration

A total of 21 fluorescence EEMs were obtained for each sample, the results for changes in the 225–230 nm tryptophan-like fluorescence are presented in Table 3a–f. These include:

- The raw sample (n = 1, as described in the previous section).
- Samples where pH was altered before filtration at  $1.2 \ \mu m \ (n=3)$  and  $0.2 \ \mu m \ (n=3)$  (data rows 1–3 in Table 3, 1.2  $\ \mu m$  filtration results in middle column and 0.2  $\ \mu m$  results in last column).
- Samples filtered at 1.2  $\mu$ m (n = 1), and subsequently pH perturbed and re- filtered at 1.2  $\mu$ m (n = 3) and 0.2  $\mu$ m (n = 3) (rows 4–6 in Table 3; 1.2  $\mu$ m filtration results in middle column and 0.2  $\mu$ m results in last column).
- Samples filtered at 1.2  $\mu$ m and again at 0.2  $\mu$ m (n = 1), and subsequently pH perturbed and refiltered at 1.2  $\mu$ m (n = 3) and 0.2  $\mu$ m (n = 3), to investigate if the pH change causes aggregation of organic matter (rows 7–9 in Table 3; 1.2  $\mu$ m filtration results in middle column and 0.2  $\mu$ m results in last column).
- Results of pH perturbation experiments for the different filter stages can be read from the rows of data in Table 3. Acidified (-2 pH units) sample data is presented in data rows 1, 4 and 7; ambient data in rows 2, 5, and 8; and alkaline (+2 pH units) samples in rows 3, 6 and 9.

Table 3a–f shows that all samples exhibited a decrease in tryptophan-like fluorescence intensity after filtration at 1.2 µm (Bournbrook -5% to -84%; Vale Lake -7% to -84%; River Tern -52% to 79%; Canal -47% to -85%; River Rea -72% to 89%; River Tern -35% to -79%). This consistent decrease intensity contrasts with fluorescence intensity changes observed between filtration at 1.2 and 0.2 µm (Bournbrook -1% to -24%; Vale Lake +9% to -58%; River Tame -1% to -9%; Canal 0% to -34%; River Rea -2% to -10%; River Tern +6% to -31%). This result demonstrates that all samples have substantial tryptophan-like fluorescent material in the >1.2 µm fraction;

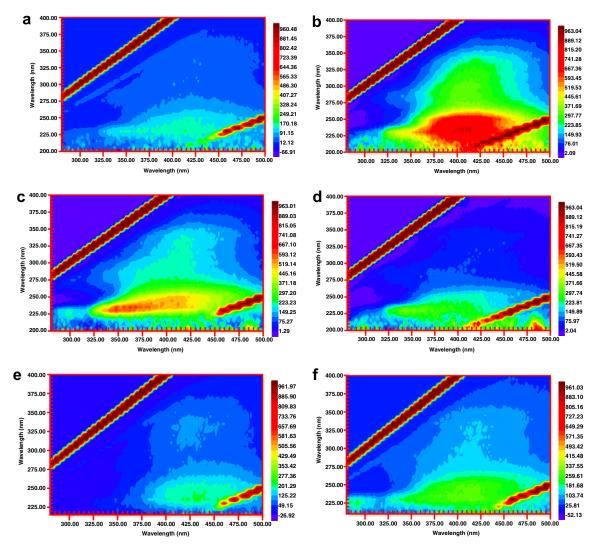



Fig. 1. 3D Excitation–emission matrix plots showing river water sample fluorescence intensity measurements before experimentation: (a) Bournbrook; (b) Vale Lake; (c) R. Tame; (d) Birmingham and Worcester Canal; (e) R. Tern; (f) R. Rea. X-axis is the emission wavelength and y-axis, the excitation wavelength.

| Table 2                                      |                                                                          |
|----------------------------------------------|--------------------------------------------------------------------------|
| Wavelengths of excitation and emission maxim | na of all samples (nm), and fluorescence intensities (a.u.) of each peak |
|                                              |                                                                          |

| Sample site | Tryptophan | -like peak a |           | Tryptophan | -like peak b |           | Humic substance-like peak |            |           |  |
|-------------|------------|--------------|-----------|------------|--------------|-----------|---------------------------|------------|-----------|--|
|             | Emission   | Excitation   | Intensity | Emission   | Excitation   | Intensity | Emission                  | Excitation | Intensity |  |
| Bournbrook  | 345        | 230          | 177       | 345        | 280          | 46        | 405                       | 235        | 196       |  |
| Vale Lake   | 345        | 230          | 491       | 345        | 285          | 152       | 405                       | 240        | 897       |  |
| Tame        | 350        | 230          | 646       | 345        | 285          | 176       | 410                       | 245        | 578       |  |
| Canal       | 340        | 230          | 386       | 335        | 285          | 87        | 395                       | 230        | 303       |  |
| Tern        | 340        | 225          | 69        | 335        | 285          | 31        | 430                       | 240        | 253       |  |
| Rea         | 340        | 230          | 206       | 335        | 280          | 58        | 420                       | 235        | 312       |  |

Both tryptophan-like peaks, and the humic-like peak are included. Intensity shown is the maximum recorded value for each peak. Tryptophan-like peak 'a' refers to 220 nm excitation and 'b' to 280 nm excitation.

most also have an amount of tryptophan-like fluorescent material in the 1.2–0.2  $\mu m$  fraction, while some tryptophan-like fluorescence also remained in the  $<\!0.2\,\mu m$  fraction.

pH has a lesser effect on fluorescence intensity than filtration, with a 4 pH unit range leading to a loss in fluorescence at 1.2  $\mu$ m filtration of <40% and at 0.2  $\mu$ m filtration of <30%, both values significantly less than the fluorescence decrease at 1.2  $\mu$ m filtration. For the Bournbrook samples and Vale Lake samples, greater loss of fluorescence occurred in the acid fraction after 1.2  $\mu$ m filtration (for example, Bournbrook -64% to -82% at acid pH,

| Table 3                                                                                     |
|---------------------------------------------------------------------------------------------|
| 225-230 nm excitation tryptophan-like fluorescence intensity changes with pH and filtration |

| (a) BournbrookRaw sample $\rightarrow$ $\downarrow$ <t< th=""><th>0<br/>-5<br/>-32<br/>0<br/>-32<br/>-68<br/>0</th><th>7.8<br/>7.8<br/>7.5<br/>7.5<br/>7.5<br/>7.5</th><th>5.9<br/>7.8<br/>9.9<br/>5.9<br/>7.8<br/>9.9<br/>5.5<br/>7.5<br/>9.5<br/>5.6<br/>7.5<br/>9.5<br/>5.5<br/>7.5<br/>9.5<br/>5.5<br/>7.5<br/>9.6<br/>5.5<br/>7.5<br/>9.5</th><th><math display="block"> \begin{array}{c} -82 \\ -64 \\ -47 \\ -64 \\ -14 \\ -30 \\ -69 \\ -31 \\ -42 \\ -76 \\ -62 \\ -79 \\ -70 \\ -76 \\ -64 \\ -70 \\ -62 \\ -69 \\ \end{array} </math></th><th>5.9<br/>7.9<br/>10.0<br/>6.0<br/>7.9<br/>9.8<br/>5.5<br/>7.5<br/>9.0<br/>5.6<br/>7.5<br/>9.0<br/>5.5<br/>7.5<br/>9.5<br/>5.5<br/>7.5<br/>9.6<br/>5.5<br/>7.5</th><th><math display="block"> \begin{array}{r} -5 \\ -11 \\ -24 \\ -11 \\ -12 \\ -25 \\ -1 \\ -7 \\ -5 \\ -9 \\ -9 \\ -3 \\ -7 \\ -1 \\ -5 \\ -6 \\ 2 \\ \end{array} </math></th><th>5.9<br/>7.9<br/>9.8<br/>6.4<br/>7.9<br/>9.9<br/>5.5<br/>7.4<br/>9.3<br/>5.5<br/>7.5<br/>9.5<br/>5.5<br/>7.5<br/>9.5<br/>5.5<br/>7.5<br/>9.6<br/>5.5</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>-5<br>-32<br>0<br>-32<br>-68<br>0 | 7.8<br>7.8<br>7.5<br>7.5<br>7.5<br>7.5                                      | 5.9<br>7.8<br>9.9<br>5.9<br>7.8<br>9.9<br>5.5<br>7.5<br>9.5<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5<br>9.5 | $ \begin{array}{c} -82 \\ -64 \\ -47 \\ -64 \\ -14 \\ -30 \\ -69 \\ -31 \\ -42 \\ -76 \\ -62 \\ -79 \\ -70 \\ -76 \\ -64 \\ -70 \\ -62 \\ -69 \\ \end{array} $ | 5.9<br>7.9<br>10.0<br>6.0<br>7.9<br>9.8<br>5.5<br>7.5<br>9.0<br>5.6<br>7.5<br>9.0<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5 | $ \begin{array}{r} -5 \\ -11 \\ -24 \\ -11 \\ -12 \\ -25 \\ -1 \\ -7 \\ -5 \\ -9 \\ -9 \\ -3 \\ -7 \\ -1 \\ -5 \\ -6 \\ 2 \\ \end{array} $ | 5.9<br>7.9<br>9.8<br>6.4<br>7.9<br>9.9<br>5.5<br>7.4<br>9.3<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| $\downarrow \downarrow \\ 1.2 \ \mu m \qquad \rightarrow \\ \downarrow \\ 1.2 \ \mu m \qquad \rightarrow \\ 1.2 \ \mu m \qquad \rightarrow \\ (b) \ River \ Tame \qquad \rightarrow \\ (b) \ River \ Tame \qquad \rightarrow \\ \downarrow \qquad 1.2 \ \mu m \qquad \rightarrow \\ \downarrow \qquad 1.2 \ \mu m \qquad \rightarrow \\ \downarrow \qquad 1.2 \ \mu m \qquad \rightarrow \\ (c) \ River \ Rea \qquad Raw \ sample \qquad \rightarrow \\ \downarrow \qquad 1.2 \ \mu m \qquad \rightarrow \\ (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad 1.2 \ \mu m \qquad \rightarrow \\ (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad 1.2 \ \mu m \qquad \rightarrow \\ (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad 1.2 \ \mu m \qquad \rightarrow \\ (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad 1.2 \ \mu m \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ \downarrow \qquad (c) \ River \ Rea \qquad \rightarrow \\ (c) \ River \ Rea \qquad \qquad$ | -5<br>-32<br>0<br>-32<br>-68           | <ul> <li>7.8</li> <li>7.5</li> <li>7.5</li> <li>7.5</li> <li>7.5</li> </ul> | 7.8<br>9.9<br>5.9<br>7.8<br>9.9<br>5.5<br>7.5<br>9.5<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5<br>9.6                             | $ \begin{array}{r} -64 \\ -47 \\ -64 \\ -14 \\ -30 \\ -69 \\ -31 \\ -42 \\ -76 \\ -62 \\ -79 \\ -70 \\ -76 \\ -64 \\ -70 \\ -62 \end{array} $                  | 7.9<br>10.0<br>6.0<br>7.9<br>9.8<br>5.5<br>7.5<br>9.0<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5<br>9.6<br>5.5               | $ \begin{array}{r} -11 \\ -24 \\ -11 \\ -12 \\ -25 \\ -1 \\ -7 \\ -5 \\ -9 \\ -9 \\ -3 \\ -7 \\ -1 \\ -5 \\ -6 \\ \end{array} $            | 7.9<br>9.8<br>6.4<br>7.9<br>9.9<br>5.5<br>7.4<br>9.3<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5        |
| $\downarrow \downarrow \\ 1.2 \ \mu m \qquad \rightarrow \\ \downarrow \\ 1.2 \ \mu m \qquad \rightarrow \\ 1.2 \ \mu m \qquad And \ 0.2 \ \mu m \qquad \rightarrow \\ (b) \ River \ Tame \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -5<br>-32<br>0<br>-32<br>-68           | <ul> <li>7.8</li> <li>7.5</li> <li>7.5</li> <li>7.5</li> <li>7.5</li> </ul> | 9.9<br>5.9<br>7.8<br>9.9<br>5.5<br>7.5<br>9.5<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5<br>9.6                                    | $ \begin{array}{r} -47 \\ -64 \\ -14 \\ -30 \\ -69 \\ -31 \\ -42 \\ -76 \\ -62 \\ -79 \\ -70 \\ -76 \\ -64 \\ -70 \\ -62 \\ \end{array} $                      | 10.0<br>6.0<br>7.9<br>9.8<br>5.5<br>7.5<br>9.0<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5<br>9.6<br>5.5                      | $ \begin{array}{r} -24 \\ -11 \\ -12 \\ -25 \\ -1 \\ -7 \\ -5 \\ -9 \\ -9 \\ -3 \\ -7 \\ -1 \\ -5 \\ -6 \\ \end{array} $                   | 9.8<br>6.4<br>7.9<br>9.9<br>5.5<br>7.4<br>9.3<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                    |
| $\downarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ (b) \ River \ Tame \\ Raw \ sample \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -32<br>0<br>-32<br>-68                 | <ul><li>7.5</li><li>7.5</li><li>7.5</li><li>7.5</li></ul>                   | 5.9<br>7.8<br>9.9<br>5.5<br>7.5<br>9.5<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5                                                  | $ \begin{array}{r} -64 \\ -14 \\ -30 \\ -69 \\ -31 \\ -42 \\ -76 \\ -62 \\ -79 \\ -70 \\ -76 \\ -64 \\ -70 \\ -62 \\ -70 \\ -62 \\ \end{array} $               | 6.0<br>7.9<br>9.8<br>5.5<br>7.5<br>9.0<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                   | $ \begin{array}{r} -11 \\ -12 \\ -25 \\ -1 \\ -7 \\ -5 \\ -9 \\ -9 \\ -3 \\ -7 \\ -1 \\ -5 \\ -6 \\ \end{array} $                          | 6.4<br>7.9<br>9.9<br>5.5<br>7.4<br>9.3<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                           |
| $\downarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ (b) \ River \ Tame \\ Raw \ sample \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -32<br>0<br>-32<br>-68                 | <ul><li>7.5</li><li>7.5</li><li>7.5</li><li>7.5</li></ul>                   | 7.8<br>9.9<br>5.5<br>7.5<br>9.5<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5                                                         | $ \begin{array}{r} -14 \\ -30 \\ -69 \\ -31 \\ -42 \\ -76 \\ -62 \\ -79 \\ -70 \\ -76 \\ -64 \\ -70 \\ -62 \\ \end{array} $                                    | 7.9<br>9.8<br>5.5<br>7.5<br>9.0<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                          | -12<br>-25<br>-1<br>-7<br>-5<br>-9<br>-9<br>-3<br>-7<br>-1<br>-5<br>-6                                                                     | 7.9<br>9.9<br>5.5<br>7.4<br>9.3<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                  |
| $\downarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ (b) \ River \ Tame \\ Raw \ sample \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -32<br>0<br>-32<br>-68                 | <ul><li>7.5</li><li>7.5</li><li>7.5</li><li>7.5</li></ul>                   | 9.9<br>5.5<br>7.5<br>9.5<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5                                                                | $ \begin{array}{r} -30 \\ -69 \\ -31 \\ -42 \\ -76 \\ -62 \\ -79 \\ -70 \\ -76 \\ -64 \\ -70 \\ -62 \\ \end{array} $                                           | 9.8<br>5.5<br>7.5<br>9.0<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                 | $ \begin{array}{c} -25 \\ -1 \\ -7 \\ -5 \\ -9 \\ -3 \\ -7 \\ -1 \\ -5 \\ -6 \\ \end{array} $                                              | 9.9<br>5.5<br>7.4<br>9.3<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                         |
| i.2 μm<br>And 0.2 μm →<br>(b) River Tame<br>Raw sample →<br>↓<br>↓<br>1.2 μm →<br>↓<br>1.2 μm<br>And 0.2 μm →<br>↓<br>(c) River Rea<br>Raw sample →<br>↓<br>↓<br>1.2 μm →<br>(d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>-32<br>-68                        | 7.5<br>7.5<br>7.5                                                           | 5.5<br>7.5<br>9.5<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5                                                                       | $ \begin{array}{r} -69 \\ -31 \\ -42 \\ -76 \\ -62 \\ -79 \\ -70 \\ -76 \\ -64 \\ -70 \\ -62 \\ \end{array} $                                                  | 5.5<br>7.5<br>9.0<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                        | -1<br>-7<br>-5<br>-9<br>-9<br>-3<br>-7<br>-1<br>-5<br>-6                                                                                   | 5.5<br>7.4<br>9.3<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                |
| i.2 μm<br>And 0.2 μm →<br>(b) River Tame<br>Raw sample →<br>↓<br>↓<br>1.2 μm →<br>↓<br>1.2 μm<br>And 0.2 μm →<br>↓<br>(c) River Rea<br>Raw sample →<br>↓<br>↓<br>1.2 μm →<br>(d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>-32<br>-68                        | 7.5<br>7.5<br>7.5                                                           | 7.5<br>9.5<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5                                                                              | $ \begin{array}{r} -31 \\ -42 \\ \\ -76 \\ -62 \\ -79 \\ \\ -70 \\ -76 \\ -64 \\ \\ -70 \\ -62 \end{array} $                                                   | 7.5<br>9.0<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                               | -7<br>-5<br>-9<br>-9<br>-3<br>-7<br>-1<br>-5<br>-6                                                                                         | 7.4<br>9.3<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                       |
| And $0.2 \ \mu m \rightarrow$<br>(b) River Tame<br>Raw sample $\rightarrow$<br>$\downarrow$<br>$\downarrow$<br>$1.2 \ \mu m \rightarrow$<br>$\downarrow$<br>$1.2 \ \mu m$<br>And $0.2 \ \mu m \rightarrow$<br>(c) River Rea<br>Raw sample $\rightarrow$<br>$\downarrow$<br>$\downarrow$<br>$1.2 \ \mu m$<br>And $0.2 \ \mu m \rightarrow$<br>$\downarrow$<br>$\downarrow$<br>$1.2 \ \mu m$<br>And $0.2 \ \mu m \rightarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$1.2 \ \mu m$<br>And $0.2 \ \mu m \rightarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$1.2 \ \mu m$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$1.2 \ \mu m$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>-32<br>-68                        | 7.5<br>7.5<br>7.5                                                           | 7.5<br>9.5<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5                                                                              | $ \begin{array}{r} -31 \\ -42 \\ \\ -76 \\ -62 \\ -79 \\ \\ -70 \\ -76 \\ -64 \\ \\ -70 \\ -62 \end{array} $                                                   | 7.5<br>9.0<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                               | -7<br>-5<br>-9<br>-9<br>-3<br>-7<br>-1<br>-5<br>-6                                                                                         | 7.4<br>9.3<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                       |
| (b) River Tame<br>Raw sample $\rightarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$1.2 \ \mu m$ $\rightarrow$<br>$\downarrow$<br>$1.2 \ \mu m$ $\rightarrow$<br>$\downarrow$<br>$1.2 \ \mu m$ $\rightarrow$<br>(c) River Rea<br>Raw sample $\rightarrow$<br>$\downarrow$<br>$\downarrow$<br>$1.2 \ \mu m$ $\rightarrow$<br>$\downarrow$<br>$1.2 \ \mu m$ $\rightarrow$<br>(d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>-32<br>-68                        | 7.5<br>7.5<br>7.5                                                           | 9.5<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5                                                                                     | -42<br>-76<br>-62<br>-79<br>-70<br>-76<br>-64<br>-70<br>-62                                                                                                    | 9.0<br>5.6<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                                      | -5<br>-9<br>-9<br>-3<br>-7<br>-1<br>-5<br>-6                                                                                               | 9.3<br>5.5<br>7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                              |
| Raw sample $\rightarrow$<br>$\downarrow$<br>$\downarrow$<br>$1.2 \ \mu m$ $\rightarrow$<br>$\downarrow$<br>$1.2 \ \mu m$<br>And $0.2 \ \mu m$ $\rightarrow$<br>(c) River Rea<br>Raw sample $\rightarrow$<br>$\downarrow$<br>$1.2 \ \mu m$<br>And $0.2 \ \mu m$ $\rightarrow$<br>(d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -32<br>-68                             | 7.5<br>7.5                                                                  | 7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5                                                                                                   | $ \begin{array}{c} -62 \\ -79 \\ -70 \\ -76 \\ -64 \\ -70 \\ -62 \\ \end{array} $                                                                              | 7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                                                    | $     \begin{array}{r}       -9 \\       -3 \\       -7 \\       -1 \\       -5 \\       -6 \\     \end{array} $                           | 7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                                            |
| Raw sample →<br>↓<br>↓<br>1.2 µm →<br>↓<br>1.2 µm →<br>↓<br>1.2 µm And 0.2 µm →<br>(c) River Rea<br>Raw sample →<br>↓<br>↓<br>1.2 µm →<br>(c) River Rea<br>Raw sample →<br>↓<br>↓<br>1.2 µm →<br>(c) River Rea<br>Raw sample →<br>↓<br>↓<br>1.2 µm →<br>(c) River Rea<br>(c) River Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -32<br>-68                             | 7.5<br>7.5                                                                  | 7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5                                                                                                   | $ \begin{array}{c} -62 \\ -79 \\ -70 \\ -76 \\ -64 \\ -70 \\ -62 \\ \end{array} $                                                                              | 7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                                                    | $     \begin{array}{r}       -9 \\       -3 \\       -7 \\       -1 \\       -5 \\       -6 \\     \end{array} $                           | 7.5<br>9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                                            |
| $\downarrow \downarrow \\ 1.2 \ \mu m \rightarrow \downarrow \\ 1.2 \ \mu m \qquad \rightarrow \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -32<br>-68                             | 7.5<br>7.5                                                                  | 9.5<br>5.5<br>7.5<br>9.6<br>5.5<br>7.5                                                                                                          | -79<br>-70<br>-76<br>-64<br>-70<br>-62                                                                                                                         | 9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                                                           | -3<br>-7<br>-1<br>-5<br>-6                                                                                                                 | 9.5<br>5.5<br>7.5<br>9.6<br>5.5                                                                                                   |
| $\downarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ (c) \ River \ Rea \\ Raw \ sample \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ (d) \ Vale \ Lake $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -68                                    | 7.5                                                                         | 5.5<br>7.5<br>9.6<br>5.5<br>7.5                                                                                                                 | -70<br>-76<br>-64<br>-70<br>-62                                                                                                                                | 5.5<br>7.5<br>9.6<br>5.5                                                                                                                  | $     \begin{array}{r}       -7 \\       -1 \\       -5 \\       -6     \end{array} $                                                      | 5.5<br>7.5<br>9.6<br>5.5                                                                                                          |
| $\downarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ (c) \ River \ Rea \\ Raw \ sample \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ (d) \ Vale \ Lake $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -68                                    | 7.5                                                                         | 7.5<br>9.6<br>5.5<br>7.5                                                                                                                        | -76<br>-64<br>-70<br>-62                                                                                                                                       | 7.5<br>9.6<br>5.5                                                                                                                         | -1 -5 -6                                                                                                                                   | 7.5<br>9.6<br>5.5                                                                                                                 |
| $\downarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ (c) \ River \ Rea \\ Raw \ sample \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ (d) \ Vale \ Lake $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -68                                    | 7.5                                                                         | 7.5<br>9.6<br>5.5<br>7.5                                                                                                                        | -76<br>-64<br>-70<br>-62                                                                                                                                       | 7.5<br>9.6<br>5.5                                                                                                                         | -1 -5 -6                                                                                                                                   | 7.5<br>9.6<br>5.5                                                                                                                 |
| $\downarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ (c) \ River \ Rea \\ Raw \ sample \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \rightarrow \\ (d) \ Vale \ Lake $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -68                                    | 7.5                                                                         | 9.6<br>5.5<br>7.5                                                                                                                               | -64<br>-70<br>-62                                                                                                                                              | 9.6<br>5.5                                                                                                                                | -6                                                                                                                                         | 9.6<br>5.5                                                                                                                        |
| 1.2 $\mu$ m<br>And 0.2 $\mu$ m $\rightarrow$<br>(c) River Rea<br>Raw sample $\rightarrow$<br>$\downarrow$<br>$\downarrow$<br>1.2 $\mu$ m $\rightarrow$<br>$\downarrow$<br>1.2 $\mu$ m<br>And 0.2 $\mu$ m $\rightarrow$<br>(d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                                             | 7.5                                                                                                                                             | -62                                                                                                                                                            |                                                                                                                                           |                                                                                                                                            |                                                                                                                                   |
| And 0.2 $\mu$ m $\rightarrow$<br>(c) River Rea<br>Raw sample $\rightarrow$<br>$\downarrow$<br>$\downarrow$<br>1.2 $\mu$ m $\rightarrow$<br>$\downarrow$<br>1.2 $\mu$ m<br>And 0.2 $\mu$ m $\rightarrow$<br>(d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                                                             | 7.5                                                                                                                                             | -62                                                                                                                                                            |                                                                                                                                           |                                                                                                                                            |                                                                                                                                   |
| (c) River Rea<br>Raw sample $\rightarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$1.2 \mu m \rightarrow$<br>$\downarrow$<br>$1.2 \mu m$<br>And $0.2 \mu m \rightarrow$<br>(d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                             |                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                            | 75                                                                                                                                |
| Raw sample →<br>↓<br>↓<br>1.2 $\mu$ m →<br>↓<br>1.2 $\mu$ m<br>And 0.2 $\mu$ m →<br>(d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                      |                                                                             | 7.5                                                                                                                                             | 0,                                                                                                                                                             | 7.5<br>9.5                                                                                                                                | $-3 \\ -9$                                                                                                                                 | 7.5<br>9.5                                                                                                                        |
| Raw sample $\rightarrow$<br>$\downarrow$<br>$\downarrow$<br>$1.2 \ \mu m \rightarrow$<br>$\downarrow$<br>$1.2 \ \mu m \rightarrow$<br>$\downarrow$<br>$1.2 \ \mu m$<br>And $0.2 \ \mu m \rightarrow$<br>(d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                      | 0.1                                                                         |                                                                                                                                                 |                                                                                                                                                                | 2.5                                                                                                                                       |                                                                                                                                            | 2.5                                                                                                                               |
| $\downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                      | 0.1                                                                         | 6.4                                                                                                                                             | -81                                                                                                                                                            | 6.4                                                                                                                                       | -7                                                                                                                                         | 3.4                                                                                                                               |
| $\downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | 8.1                                                                         | 8.1                                                                                                                                             | -72                                                                                                                                                            | 8.1                                                                                                                                       | -7                                                                                                                                         | 6.4                                                                                                                               |
| $\downarrow 1.2 \ \mu m \qquad \rightarrow \\ \downarrow \\ 1.2 \ \mu m \\ And \ 0.2 \ \mu m \qquad \rightarrow \\ (d) \ Vale \ Lake$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                                                                             | 10.0                                                                                                                                            | -73                                                                                                                                                            | 10.0                                                                                                                                      | -5                                                                                                                                         | 7.1                                                                                                                               |
| $\downarrow \\ 1.2 \ \mu m$<br>And 0.2 \ \mu m $\rightarrow$<br>(d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                             |                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                            |                                                                                                                                   |
| $\downarrow \\ 1.2 \ \mu m$<br>And 0.2 \ \mu m $\rightarrow$<br>(d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71                                     | 7.0                                                                         | 4.6                                                                                                                                             | -81                                                                                                                                                            | 4.6                                                                                                                                       | -7                                                                                                                                         | 3.3                                                                                                                               |
| $\downarrow 1.2 \ \mu m$ And 0.2 \ \mu m $\rightarrow$ (d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -71                                    | 7.0                                                                         | 7.0<br>8.6                                                                                                                                      | -76 - 85                                                                                                                                                       | 6.7<br>8.6                                                                                                                                | $-10 \\ -2$                                                                                                                                | 3.5<br>6.5                                                                                                                        |
| And 0.2 $\mu m \rightarrow$<br>(d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                             | 0.0                                                                                                                                             | 05                                                                                                                                                             | 0.0                                                                                                                                       | 2                                                                                                                                          | 0.5                                                                                                                               |
| (d) Vale Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                             | 4.8                                                                                                                                             | -89                                                                                                                                                            | 4.8                                                                                                                                       | -5                                                                                                                                         | 2.8                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -79                                    | 7.0                                                                         | 7.0                                                                                                                                             | -81                                                                                                                                                            | 7.0                                                                                                                                       | -5                                                                                                                                         | 3.8                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                             | 9.0                                                                                                                                             | -86                                                                                                                                                            | 9.0                                                                                                                                       | -7                                                                                                                                         | 6.6                                                                                                                               |
| <b>D</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                                                             |                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                            |                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                      | 7.6                                                                         | 5.7                                                                                                                                             | -57<br>-14                                                                                                                                                     | 5.7                                                                                                                                       | -14                                                                                                                                        | 5.5                                                                                                                               |
| $\begin{array}{ll} Raw \ sample & \rightarrow \\ \downarrow & \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                      | 7.6                                                                         | 7.6<br>9.4                                                                                                                                      | -14<br>-26                                                                                                                                                     | 7.5<br>9.4                                                                                                                                | -38 -58                                                                                                                                    | 7.4<br>9.5                                                                                                                        |
| Ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                             | 2.1                                                                                                                                             | 20                                                                                                                                                             | 2.1                                                                                                                                       | 50                                                                                                                                         | 5.5                                                                                                                               |
| $\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                             | 5.6                                                                                                                                             | -84                                                                                                                                                            | 5.6                                                                                                                                       | -2                                                                                                                                         | 5.5                                                                                                                               |
| $1.2 \ \mu m \longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -7                                     | 7.6                                                                         | 7.6                                                                                                                                             | -24                                                                                                                                                            | 7.6                                                                                                                                       | -14                                                                                                                                        | 7.6                                                                                                                               |
| ↓<br>↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                                                             | 8.7                                                                                                                                             | -71                                                                                                                                                            | 8.8                                                                                                                                       | 9                                                                                                                                          | 8.8                                                                                                                               |
| 1.2 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | ·                                                                           | 5.0                                                                                                                                             | -74                                                                                                                                                            | 5.0                                                                                                                                       | 2                                                                                                                                          | 5.0                                                                                                                               |
| And 0.2 $\mu m \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -32                                    | 6.9                                                                         | 6.9                                                                                                                                             | -66                                                                                                                                                            | 7.0                                                                                                                                       | -2                                                                                                                                         | 7.0                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                             | 8.3                                                                                                                                             | -48                                                                                                                                                            | 8.3                                                                                                                                       | -21                                                                                                                                        | 8.3                                                                                                                               |
| (e) Canal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                                                             |                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                            |                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                             | 5.5                                                                                                                                             | -55                                                                                                                                                            | 5.5                                                                                                                                       | -34                                                                                                                                        | 5.5                                                                                                                               |
| Raw sample $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                      | 7.7                                                                         | 7.7                                                                                                                                             | -47                                                                                                                                                            | 7.5                                                                                                                                       | -12                                                                                                                                        | 7.5                                                                                                                               |
| ↓<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                                                                             | 9.3                                                                                                                                             | -85                                                                                                                                                            | 9.5                                                                                                                                       | -15                                                                                                                                        | 9.3                                                                                                                               |
| *<br>↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                                                             | 6.2                                                                                                                                             | -78                                                                                                                                                            | 6.2                                                                                                                                       | -16                                                                                                                                        | 6.2                                                                                                                               |
| $1.2 \ \mu m \longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -52                                    | 8.1                                                                         | 8.1                                                                                                                                             | -56                                                                                                                                                            | 8.1                                                                                                                                       | -12                                                                                                                                        | 8.1                                                                                                                               |
| $\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                             | 10.0                                                                                                                                            | -65                                                                                                                                                            | 10.0                                                                                                                                      | -15                                                                                                                                        | 10.0                                                                                                                              |
| ↓<br>1.2 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                                                             | 5.0                                                                                                                                             | -84                                                                                                                                                            | 5.0                                                                                                                                       | 0                                                                                                                                          | 5.0                                                                                                                               |
| And 0.2 $\mu m \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | 7.0                                                                         | 5.0<br>7.0                                                                                                                                      | -84<br>-84                                                                                                                                                     | 7.0                                                                                                                                       | -7                                                                                                                                         | 5.0<br>7.0                                                                                                                        |
| ¢.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -86                                    | 7.0                                                                         | 9.3                                                                                                                                             | -83                                                                                                                                                            | 9.3                                                                                                                                       | -7                                                                                                                                         | 9.3                                                                                                                               |

(continued on next page)

A. Baker et al. / Chemosphere 67 (2007) 2035-2043

| Table 1 | 3 (ca | ontinued) |
|---------|-------|-----------|
|---------|-------|-----------|

|                |               | % Decrease from initial fluorescence | pН  | pH after<br>adjustment | % Change between raw and 1.2 μm filter | pH value<br>after filter | % Change between 1.2 and 0.2 μm filter | pH value<br>after filter |
|----------------|---------------|--------------------------------------|-----|------------------------|----------------------------------------|--------------------------|----------------------------------------|--------------------------|
| (f) River Tern |               |                                      |     |                        |                                        |                          |                                        |                          |
|                |               |                                      |     | 5.6                    | -78                                    | 5.6                      | -10                                    | 2.9                      |
| Raw sample     | $\rightarrow$ | 0                                    | 7.8 | 7.8                    | -35                                    | 7.8                      | -31                                    | 6.9                      |
| 1              |               |                                      |     | 9.5                    | -72                                    | 9.5                      | 6                                      | 6.2                      |
| Ļ              |               |                                      |     |                        |                                        |                          |                                        |                          |
| $\downarrow$   |               |                                      |     | 5.3                    | -52                                    | 5.3                      | -12                                    | 5.7                      |
| 1.2 μm         | $\rightarrow$ | -43                                  | 6.9 | 6.9                    | -57                                    | 6.9                      | -17                                    | 6.8                      |
| Ļ              |               |                                      |     | 8.7                    | -45                                    | 8.7                      | -12                                    | 8.4                      |
| $\downarrow$   |               |                                      |     |                        |                                        |                          |                                        |                          |
| 1.2 μm         |               |                                      |     | 5.1                    | -69                                    | 5.1                      | -5                                     | 5.1                      |
| And 0.2 µm     | $\rightarrow$ | -50                                  | 6.9 | 6.8                    | -79                                    | 6.8                      | 0                                      | 6.8                      |
|                |               |                                      |     | 8.8                    | -74                                    | 8.8                      |                                        | 8.8                      |

-30% to -47% at alkaline pH); results from the other sample sites were more variable with respect to fluorescence changes on pH and filtration perturbation.

# 3.3. Changes in 230–245 nm humic-like fluorescence

Table 4a–f shows the changes in humic-like fluorescence intensity for pH and filtration perturbation; table layout is as per Table 3a–f. Decreases in humic-like fluorescence intensity at all sample sites with filtration were much smaller than those observed in 225–230 nm tryptophan-like fluorescence intensity at the same sites. Fluorescence intensity variations at 1.2 µm filtration were -7 to -35 (Bournbrook); -2 to -31 (Vale Lake); +15 to -16 (River Tame); +13 to -15 (Canal); +3 to -18 (River Rea) and -4 to -38 (River Tern). At the 0.2 µm filtration step, fluorescence intensity varied by a further +5 to -17 (Bournbrook); +6 to -16 (Vale Lake); +21 to -32 (River Tame); +11 to -30 (Canal); +5 to -17 (River Rea) and +14 to -17 (River Tern). These results suggest that although some humic-like fluorescence is associated with a colloidal size fraction, the majority is in the <0.2 µm fraction. There is

Table 4

| Changes in 230-245 nm | excitation humic | acid fluorescence | intensity with | pH and filtration |
|-----------------------|------------------|-------------------|----------------|-------------------|
|                       |                  |                   |                |                   |

|                |               | % Decrease from initial fluorescence | рН  | pH after<br>adjustment | % Change between raw and 1.2 μm filter | pH value<br>after filter | % Change between 1.2 and 0.2 μm filter | pH value<br>after filter |
|----------------|---------------|--------------------------------------|-----|------------------------|----------------------------------------|--------------------------|----------------------------------------|--------------------------|
| (a) Bournbrook |               |                                      |     |                        |                                        |                          |                                        |                          |
| Raw sample     | $\rightarrow$ | 0                                    | 7.9 | 5.9                    | -19                                    | 5.9                      | -17                                    | 5.9                      |
| 1              |               |                                      |     | _7.9 (ambient)         | -13                                    | 7.9                      | -2                                     | 7.9                      |
| ↓<br>↓         |               |                                      |     | 9.9                    | -20                                    | 10                       | -7                                     | 9.8                      |
| ↓<br>1.2 μm    | $\rightarrow$ | -2                                   | 7.8 | 5.9                    | -21                                    | 6                        | -16                                    | 6.4                      |
|                |               |                                      |     | 7.8 (ambient)          | -11                                    | 7.9                      | 5                                      | 7.9                      |
| ↓<br>1.2 μm    |               |                                      |     | 9.9                    | —7                                     | 9.8                      | -8                                     | 9.9                      |
| And 0.2 μm     | $\rightarrow$ | -8                                   | 7.5 | 5.5                    | -35                                    | 5.5                      | -2                                     | 5.5                      |
|                |               |                                      |     | 7.5 (ambient)          | -28                                    | 7.5                      | -7                                     | 7.4                      |
|                |               |                                      |     | 9.5                    | -26                                    | 9                        | 1                                      | 9.3                      |
| (b) River Tame |               |                                      |     |                        |                                        |                          |                                        |                          |
| Raw sample     | $\rightarrow$ | 0                                    | 7.5 | 5.6                    | 0                                      | 5.6                      | -32                                    | 5.5                      |
| Ļ              |               |                                      |     | 7.5 (ambient)          | -6                                     | 7.5                      | -5                                     | 7.5                      |
| Ļ              |               | J.                                   |     | 9.5                    | 4                                      | 9.5                      | -12                                    | 9.5                      |
| ↓<br>1.2 μm    | $\rightarrow$ | 2                                    | 7.5 | 5.5                    | 15                                     | 5.5                      | -29                                    | 5.5                      |
| Ļ              |               |                                      |     | 7.5 (ambient)          | 6                                      | 7.5                      | -18                                    | 7.5                      |
| ↓<br>1.2 μm    |               |                                      |     | 9.6                    | -9                                     | 9.6                      | -6                                     | 9.6                      |
| And 0.2 μm     | $\rightarrow$ | _4                                   | 7.5 | 5.5                    | -2                                     | 5.5                      | -12                                    | 5.5                      |
| ring or pin    |               | ·                                    | /10 | 7.5 (ambient)          | -14                                    | 7.5                      | -7                                     | 7.5                      |
|                |               |                                      |     | 9.5                    | -16                                    | 9.5                      | 21                                     | 9.5                      |
| (c) River Tern |               |                                      |     |                        |                                        |                          |                                        |                          |
| Raw sample     | $\rightarrow$ | 0                                    | 7.8 | 5.6                    | -38                                    | 5.6                      | 2                                      | 2.9                      |
| ↓ _            |               |                                      |     | 7.8 (ambient)          | -4                                     | 7.8                      | -7                                     | 6.9                      |
| ↓<br>↓         |               |                                      |     | 9.5                    | -34                                    | 9.5                      | 14                                     | 6.2                      |

#### Table 4 (continued)

|                     |               | % Decrease from initial fluorescence | рН  | pH after<br>adjustment | % Change between raw and 1.2 µm filter | pH value<br>after filter | % Change between<br>1.2 and 0.2 μm filter | pH value<br>after filte |
|---------------------|---------------|--------------------------------------|-----|------------------------|----------------------------------------|--------------------------|-------------------------------------------|-------------------------|
| 1.2 μm              | $\rightarrow$ | -11                                  | 6.9 | 5.3                    | -15                                    | 5.3                      | -17                                       | 5.7                     |
| ↓<br>↓              |               |                                      |     | 6.9 (ambient)          | -11                                    | 6.9                      | -2                                        | 6.8                     |
| ĺ                   |               |                                      |     | 8.7                    | -6                                     | 8.7                      | -4                                        | 8.4                     |
| 1.2 μm              |               |                                      |     |                        |                                        |                          |                                           |                         |
| And 0.2 μm          | $\rightarrow$ | -14                                  | 6.9 | 5.1                    | -13                                    | 5.1                      | -1                                        | 5.1                     |
|                     |               |                                      |     | 6.8 (ambient)          | -11                                    | 6.8                      | -2                                        | 6.8                     |
|                     |               |                                      |     | 8.8                    | -13                                    | 8.8                      | 1                                         | 8.8                     |
| d) Vale Lake        |               |                                      |     |                        |                                        |                          |                                           |                         |
| Raw sample          | $\rightarrow$ | 0                                    | 7.6 | 5.7                    | -2                                     | 5.7                      | -9                                        | 5.5                     |
| →                   |               | -                                    |     | 7.6 (ambient)          | -12                                    | 7.5                      | -11                                       | 7.4                     |
|                     |               |                                      |     | 9.4                    | -25                                    | 9.4                      | -8                                        | 9.5                     |
| k                   |               |                                      |     |                        |                                        |                          |                                           |                         |
| .2 μm               | $\rightarrow$ | -22                                  | 7.6 | 5.6                    | -5                                     | 5.6                      | -7                                        | 5.5                     |
|                     |               |                                      |     | 7.6 (ambient)          | -23                                    | 7.6                      | -5                                        | 7.6                     |
|                     |               |                                      |     | 8.7                    | -31                                    | 8.8                      | -8                                        | 8.8                     |
| l.2 μm              |               |                                      |     |                        |                                        |                          |                                           |                         |
| And 0.2 μm          | $\rightarrow$ | -30                                  | 6.9 | 5                      | -9                                     | 5<br>7                   | -9                                        | 5                       |
|                     |               |                                      |     | 6.9 (ambient)          | -12                                    |                          | -16                                       | 7                       |
|                     |               |                                      |     | 8.3                    | -32                                    | 8.3                      | 6                                         | 8.3                     |
| e) Canal            |               |                                      |     |                        |                                        | 7                        |                                           |                         |
| Raw sample          | $\rightarrow$ | 0                                    | 7.7 | 5.5                    | -15                                    | 5.5                      | -3                                        | 5.5                     |
|                     |               |                                      |     | 7.7 (ambient)          | -10                                    | 7.5                      | -7                                        | 7.5                     |
|                     |               |                                      |     | 9.3                    | -5                                     | 9.5                      | -30                                       | 9.3                     |
| -                   |               |                                      |     |                        |                                        |                          |                                           |                         |
| 1.2 μm              | $\rightarrow$ | -9                                   | 8.1 | 6.2                    | -1                                     | 6.2                      | -2                                        | 6.2                     |
| ·                   |               |                                      |     | 8.1 (ambient)          | -11                                    | 8.1                      | -1                                        | 8.1                     |
|                     |               |                                      |     | 10                     | -11                                    | 10                       | -11                                       | 10                      |
| l.2 μm              |               | 10                                   | -   | -                      | 10                                     | ~                        | 22                                        | -                       |
| And 0.2 μm          | $\rightarrow$ | -13                                  | 7   | 5                      | 13<br>-3                               | 5                        | -23                                       | 5                       |
|                     |               |                                      |     | 7 (ambient)<br>9.3     | -3                                     | 7<br>9.3                 | 11<br>-7                                  | 7<br>9.3                |
|                     |               |                                      |     | 9.3                    | -13                                    | 9.3                      | -/                                        | 9.3                     |
| f) River Rea        |               |                                      |     |                        |                                        |                          |                                           |                         |
| Raw sample          | $\rightarrow$ | 0                                    | 8.1 | 6.4                    | -9                                     | 6.4                      | 0                                         | 3.4                     |
| -                   |               |                                      |     | 8.1 (ambient)          | -10                                    | 8.1                      | -5                                        | 6.4                     |
|                     |               |                                      |     | 10                     | -11                                    | 10                       | -3                                        | 7.1                     |
|                     |               |                                      | _   |                        | 10                                     |                          |                                           |                         |
| .2 μm               | $\rightarrow$ | -12                                  | 7   | 4.6                    | -18                                    | 4.6                      | -2                                        | 3.3                     |
|                     |               |                                      |     | 7 (ambient)            | -12                                    | 6.7                      | 5                                         | 3.5                     |
| 2                   |               |                                      |     | 8.6                    | -13                                    | 8.6                      | -5                                        | 6.5                     |
| .2 μm<br>And 0.2 μm |               | _9                                   | 7   | 4.8                    | 3                                      | 4.8                      | -17                                       | 2.8                     |
| xiiu 0.2 μiii       | $\rightarrow$ | -7                                   | /   | 4.8<br>7 (ambient)     | -10                                    |                          | -17                                       | 2.8<br>3.8              |
|                     |               |                                      |     | 7 (ambient)<br>9       | -10<br>-16                             | 7<br>9                   | -11<br>-4                                 | 5.8<br>6.6              |
|                     |               |                                      |     | 7                      | -10                                    | 7                        | -4                                        | 0.0                     |

a strong possibility that tryptophan-like fluorescent material is associated with larger biological particles, whereas smaller humic-like material (1 nm to several hundred nm in size, Lead et al., 2000; Lead and Wilkinson, 2006) is less likely to be removed by the filtration processes used during our experiments.

It was expected that the largest decreases in humic-like fluorescence intensity would occur at acidic pH due to aggregation which has previously been observed in the literature (Mobed et al., 1996; Avena et al., 1999; Patel-Sorrentino et al., 2002; Chen et al., 2003). However, none of the samples behaved in the predicted manner. For example, the highest decreases in fluorescence intensity in the samples from the Vale Lake site generally occurred at alkaline pH (-25% to -32%) and mostly in the 1.2–0.2 µm fraction. In the River Tame the highest decreases in pH did occur at acid pH (-12% to -32%) but only in the 0.2 µm filter fraction. For the other samples, very little variation occurred in fluorescence intensity with pH.

# 4. Discussion

The differences in tryptophan-like and humic-like fluorescence with filtration observed in our experiments fits our understanding that extracted humic substances are in the size range of 1 nm to several hundred nm (Lead et al., 2000; Lead and Wilkinson, 2006). Thus the reason for smaller decreases in humic-like fluorescence intensity compared to tryptophan-like fluorescence intensity is that generally humic substances pass more easily through the 0.2 µm pore size filter paper. As a small decrease in humiclike fluorescence is also sometimes observed in the filter stages, some humic substances are in these size ranges, most likely not as free humic material but sorbed to the surface of other material (Lead and Wilkinson, 2006). Measurement of the humic-like fluorescence properties of different size fractions should allow us to selectively probe the surface sorbed humic material. Tryptophan-like fluorescent molecules are more likely to be associated with larger biological molecules of a size greater than 0.2 µm (tryptophan residues are often embedded within a protein (Lakowicz, 1999), which may be associated with microbial cells), hence they are unable to pass through the filter, therefore leading to lower tryptophan-like fluorescence intensities in the permeate. However, we observe a bigger decrease in tryptophan-like fluorescence between the raw and  $<1.2 \,\mu\text{m}$  samples, rather than between the <1.2 and <0.2 µm fractions, suggesting that in our samples more tryptophan-like fluorescence derives from particulate and the largest colloidal (cellular) material.

pH perturbation experiments generally showed that the highest loss of tryptophan-like fluorescence occurs in the acidic solutions, but with significant variability between samples. This is probably due to the many potential sources of tryptophan-like fluorescence. For example, if the tryptophan-like fluorescence is associated with colloidal material (as demonstrated by the loss of fluorescence with filtration), then pH-related conformational changes can occur within the colloids associated with the fluorescent moieties (such as aggregation). Additionally, there may be direct changes in the behavior of the fluorophore resulting in, for example, increased exposure to the solution phase. Folding and unfolding reactions of proteins (probably associated with other particles, colloids or dissolved OM in this case) with pH changes may be considered as a further possible explanation for the observed differences in final tryptophan-like fluorescence intensities (Lakowicz, 1999). Finally, the acid-base behavior of an amino acid in solution may also be important in controlling fluorescence characteristics, as the carboxylic and amine functional groups present within the structure can allow the molecule to act either as an acid or as base depending upon the pH of the solution.

It was expected that the highest losses of humic-like fluorescence intensity would likely occur in the most acidic samples due to aggregation losses, although this was not observed in our experiments. Chen et al. (2003) suggested that changes in the protonation states of functional groups such as amines and hydroxyls can increase fluorescence intensities. Based on the work of Mobed et al. (1996), it would be expected that as pH increases, the fluorescence intensity of humic-like substances also increases (also observed by Patel-Sorrentino et al., 2002), and that changes in the acidic functional groups caused by increasing pH will lead to changes in fluorescence of the molecule. It is important to consider that the current work is based on heterogeneous natural samples, unlike the majority of the work quoted here (with the exception of Patel-Sorrentino et al., 2002), which is based on extracted humic substances. Our understanding of the structure of humic substances is still poor, with competing evidence for them as permeable spheres, micelles, polymers and fractal aggregates (see review in Lead and Wilkinson, 2006). Our variable pH responses may reflect the possibility that a range of humic structures is present in unperturbed samples.

# 5. Conclusions

In the majority of samples it has been shown that tryptophan-like fluorescence showed the most significant decrease in fluorescence intensity between raw and 1.2 µm filter samples, with smaller decreases between 1.2 and 0.2 µm, demonstrating a significant source associated with particulate material as well as a significant  $<0.2 \mu m$  fraction. The wide size distribution of tryptophan-like fluorescence agrees with its many potential sources; further research is needed to investigate whether a constant tryptophan-like fluorescence intensity - organic carbon concentration relationship occurs for all size fractions. In contrast, humic-like fluorescence shows little change with filtration, suggesting that the majority of this fluorescence is associated with truly dissolved material. pH perturbation experiments demonstrate that tryptophan-like fluorescence is less impacted by pH than by filter fraction. For the humic-like fluorescence, pH effects do not reflect those reported in the literature. pH perturbation shows a wide range of sample specific pH responses, significantly more variable than that observed in experiments using extracted humic substances and tryptophan standards, demonstrating the natural variability of freshwater dissolved organic matter.

Much of the published literature concerns humic acid and fulvic acid isolates and/or laboratory standard solutions such as those from the International Humic Substances Society, whereas our samples were complete and unperturbed natural river water samples. Compounds would have been present in our samples which are not present in humic substances standards and as such may have led, in part, to the differences in pH and filtration behavior exhibited, as the natural river samples are far more complex. Our work also includes OM from sources including small urban catchments, which are not commonly investigated, thus to some extent we would expect the results to be somewhat different to published literature. Most published work involving freshwaters has been concerned with larger rivers where OM will be more mixed, relatively more processed, and potentially less labile; whereas in smaller catchments such as those studied in the current work OM might be expected to be more variable, less processed and possibly very different in urban rivers compared to clean rivers. What is clear is that work involving extracted OM standards can only go some way towards explaining the behavior of OM in the natural environment because of the inherent complexity and heterogeneity of both the aquatic and terrestrial environments.

#### Acknowledgement

Sarah Elliott was funded by the NERC studentship (NER/S/A/2002/10315).

#### References

- Antízar-Ladislao, B., Lopez-Real, J., Beck, A.J., 2006. Investigation of organic matter dynamics during in-vessel composting of an aged coaltar contaminated soil using fluorescence excitation–emission spectroscopy. Chemosphere 64, 839–847.
- Avena, M.J., Vermeer, A.W.P., Koopal, L.K., 1999. Volume and structure of humic acids studied by viscometry pH and electrolyte concentration effects. Colloid Surf. A 151, 213–224.
- Baker, A., 2001. Fluorescence excitation–emission matrix characterization of some sewage-impacted rivers. Environ. Sci. Technol. 35, 948–953.
- Baker, A., Spencer, R.G.M., 2004. Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci. Total Environ. 333, 217–232.
- Bolton, L., 2004. The application of excitation-emission fluorescence spectrophotometry to the monitoring of dissolved organic matter in upland catchments in the United Kingdom. PhD, University of Newcastle-upon-Tyne.
- Cammack, W.K.L., Kalf, J., Prairie, Y.T., Smith, E.M., 2004. Fluorescent dissolved organic matter in lakes: relationship with heterotrophic metabolism. Limnol. Oceanogr. 49, 2034–2045.
- Chen, W., Westerhoff, P., Leenheer, J.A., Booksh, K., 2003. Fluorescence excitation–emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 37, 5701–5710.
- Coble, P.G., 1996. Characterization of marine and terrestrial DOM in seawater rising excitation–emission matrix spectroscopy. Mar. Chem. 51, 325–346.
- Corvasce, M., Zsolnay, A., D'Orazio, V., Lopez, R., Miano, T.M., 2006. Characterization of water extractable organic matter in a deep soil profile. Chemosphere 62, 1583–1590.
- Cumberland, S.A., Baker, A., in press. The freshwater dissolved organic matter fluorescence – total organic carbon relationship. Hydrol. Process., doi:10.1002/hyp.6371.
- Elliott, S., Lead, J.R., Baker, A., 2006. Thermal quenching of fluorescence of freshwater, planktonic bacteria. Anal. Chim. Acta 564, 219–225.

- Kalbitz, K., Geyer, W., Geyer, S., 1999. Spectroscopic properties of dissolved humic substances – a reflection of land use history in a fen area. Biogeochemistry 47, 219–238.
- Kalbitz, K., Geyer, S., Geyer, W., 2000. A comparative characterization of dissolved organic matter by means of original aqueous samples and isolated humic substances. Chemosphere 40, 1305–1312.
- Lakowicz, J.R., 1999. Principle of Fluorescence Spectroscopy, second ed. Kluwer Academic/Plenum Publishers.
- Lead, J.R., Wilkinson, K.J., Starchev, K., Canonica, S., Buffle, J., 2000. Determination of diffusion coefficients of humic substances by fluorescence correlation spectroscopy: role of solution conditions. Environ. Sci. Technol. 34, 1365–1369.
- Lead, J.R., Wilkinson, K.J., 2006. Natural aquatic colloids: current knowledge and future trends. Environ. Chem. 3, 159–171.
- Mobed, J.J., Hemmingsen, S.L., Autry, J.L., McGown, L.B., 1996. Fluorescence characterization of IHSS humic substances: total luminescence spectra with absorbance correction. Environ. Sci. Technol. 30, 3061–3065.
- Nguyen, M.L., Westerhoff, P., Baker, L., Hu, Q., Esparza-Soto, M., Sommerfeld, M., 2005. Characteristics and reactivity of algae-produced dissolved organic carbon. J. Environ. Eng. – ASCE 131, 1574– 1582.
- Patel-Sorrentino, N., Mounier, S., Benaim, J.Y., 2002. Excitation– emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers. Water Res. 36, 2571–2581.
- Saadi, I., Borisover, M., Armon, R., Laor, Y., 2006. Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements. Chemosphere 63, 530–539.
- Sierra, M.M.D., Giovanela, M., Parlanti, E., Soriano-Sierra, E.J., 2005. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere 58, 715–733.
- Senesi, N., Miano, T.M., Provenzano, M.R., Brunetti, G., 1989. Spectroscopic and compositional comparative characterization of IHSS references and standard fulvic and humic acids of various origin. Sci. Total Environ. 81/82, 143–156.
- Senesi, N., Miano, T.M., Provenzano, M.R., Brunetti, G., 1991. Characterization, differentiation and classification of humic substances by fluorescence spectroscopy. Soil Sci. 152, 259–271.
- Urban-Rich, J., McCarty, J.T., Fernandez, D., Acuna, JL., 2006. Larvaceans and copepods excrete fluorescent dissolved organic matter (FDOM). J. Exp. Mar. Biol. Ecol. 332, 96–105.