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Abstract Hydraulic conductivity is one of the most critical and at the same time one of the most uncer-
tain parameters in many groundwater models. One problem commonly faced is that the data are usually
not collected at the same scale as the discretized elements used in a numerical model. Moreover, it is com-
mon that different types of hydraulic conductivity measurements, corresponding to different spatial scales,
coexist in a studied domain, which have to be integrated simultaneously. Here we address this issue in the
context of Image Quilting, one of the recently developed multiple-point geostatistics methods. Based on a
training image that represents fine-scale spatial variability, we use the simplified renormalization upscaling
method to obtain a series of upscaled training images that correspond to the different scales at which
measurements are available. We then apply Image Quilting with such a multiscale training image to be able
to incorporate simultaneously conditioning data at several spatial scales of heterogeneity. The realizations
obtained satisfy the conditioning data exactly across all scales, but it can come at the expense of a small
approximation in the representation of the physical scale relationships. In order to mitigate this approxima-
tion, we iteratively apply a kriging-based correction to the finest scale that ensures local conditioning at the
coarsest scales. The method is tested on a series of synthetic examples where it gives good results and
shows potential for the integration of different measurement methods in real-case hydrogeological models.

1. Introduction

Numerical simulation of groundwater flow and solute transport is nowadays widely employed to predict
available groundwater resources or the fate of pollutant plumes. Hydraulic conductivity (K) defines the ease
with which a fluid can move through pore spaces or fractures of a medium, and is the most influential
parameter in numerical models.

An important issue in the numerical simulation of groundwater flow and mass transport is the problem of
scale dependence of hydraulic conductivity. In a heterogeneous aquifer, preferred pathways and transmis-
sive portions are expected to be encountered when larger volumes of a medium are tested (e.g., when
larger-scale tests like pumping tests are compared to permeameter measurements), resulting in an increase
of hydraulic conductivity. When comparing measurements from different methods, a consistent increase in
K was observed or proposed by various authors [Clauser, 1992; Herzog and Morse, 1986; Neuman, 1990;
Rovey and Cherkauer, 1995; Schulze-Makuch and Cherkauer, 1998]. Either the volume of rock tested or the
radius of influence of an aquifer test is commonly the measure used to examine the scale dependence of K.
Schulze-Makuch and Cherkauer [1998] analyzed conductivity measurements made with different methods in
a given geological formation. They showed that the increase in hydraulic conductivity with scale of mea-
surement occurs up to the position of an upper bound, after which the medium behaves as a homogeneous
medium and K remains constant with scale. Further, it has been argued that a value of hydraulic conductiv-
ity is necessarily associated to a support volume, and that no punctual estimation can be given for it [Emsel-
lem and De Marsily, 1971; Matheron, 1967].

Given this nonlinear scale dependence of hydraulic conductivity, it can be challenging to simultaneously
take into account hydraulic conductivity measurements taken at different scales. This paper focuses on the
question of simultaneous integration of hydraulic conductivity data representing different investigated
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volumes, in the context of training image-based stochastic models where the strong heterogeneity makes
the relationships between scales complicated.

Dagan [1986] discusses three support scales: the laboratory, the local, and the regional scale. In terms of
data, information is usually collected at scales that are different than the elements used in numerical mod-
els. In practical applications, K measurements are taken using slug tests, well tests, lab measurements, or
even indirectly with airborne remote sensing measurements [Dickson et al., 2014; Koch et al., 2014]. All these
measurements need to be ‘‘translated’’ into the scale of the model. In the context of multi-Gaussian models,
analytical formulations are available that can estimate equivalent hydraulic conductivity as a function of
spatial parameters and scale [Dagan, 1989; Emery, 2008; Renard and De Marsily, 1997]. These are based on
the assumption that the scale dependence of permeability follows a geometric average [Matheron, 1967],
thus offering a convenient way to translate hydraulic conductivity values across scales. Tran [1996] pro-
posed an approach in the framework of a multi-Gaussian model, consisting in establishing an empirical rela-
tion between the small scale and the block scale by using a numerical upscaling method, and then
calibrating a two-scale geostatistical model. It gave rise to interesting studies in the field of inverse prob-
lems resolution using multiple scales of models [Gardet et al., 2014]. However, those methods do not hold
when the medium is not multi-Gaussian or presents strong heterogeneities. This is especially problematic
when using geostatistical methods focused on strongly heterogeneous media, such as Multiple-Point Simu-
lation (MPS), object-based or pluri-Gaussian models. In this paper, we propose an approach that builds on
the work of Tran [1996] and generalizes it to nonmulti Gaussian models.

Scale translation can go in two directions: it can be either upscaling (from a small scale to a coarser scale) or
downscaling (from a coarse scale to a smaller scale). In the first case, one has to estimate a single equivalent
parameter for a group of smaller model elements where measurements exist. In the second case, the small-
scale variability of a given area must be reconstituted under the constraint that the equivalent parameter
for this area corresponds to a large-scale measurement.

The question of upscaling has been thoroughly studied in the last decades. Upscaling is needed when a detailed
geological description allows representing small-scale spatial features. Complex geological models are routinely
built; however, these models require fine discretization and are computationally prohibitive when directly used
for flow simulation, particularly in the context of sensitivity studies, inverse modeling, or Monte-Carlo analyses,
which require multiple runs of the computer codes. While computational power has significantly increased in
the last years, the maximum discretization that can be realistically simulated is still limited to few million cells.
Using upscaling to transform hydraulic conductivities from the scale of the geological model to the coarser scale
of the flow model has been the subject of research for many years [Botros et al., 2006; Emery, 2009; Gomez-Her-
nandez and Gorelick, 1989; Renard and De Marsily, 1997; Sanchez-Vila et al., 2006; Zhou et al., 2010].

Another use of upscaling arises when data are available at a smaller scale than the model elements. This
can be the case in mining studies, where drill holes provide mineral grades on a much smaller support size
than the mining blocks where mineral concentrations have to be estimated. Block simulation has been
extensively used in such mining applications [Boucher and Dimitrakopoulos, 2012; Deutsch, 2006; Emery and
Ortiz, 2011; Gomez-Hernandez and Journel, 1994; Marcotte, 1994]. However, these methods are not applica-
ble for hydraulic conductivity which is not an additive variable: as mentioned above, it is not possible to cal-
culate an equivalent permeability by a simple arithmetic mean.

The downscaling problem is more difficult because large-scale measurements do not uniquely inform the
small scale. It then becomes necessary to use stochastic approaches that construct multiple small-scale
models having spatial characteristics compatible with the sedimentary processes that led to the creation of
the reservoir rocks [Koltermann and Gorelick, 1992; Tang et al., 2013a]. This is however difficult because such
process-based models cannot be easily constrained to local data or regional averages. Methods have been
designed for geostatistical simulation with block constraints on a large scale [Kupfersberger et al., 1998; Liu
and Journel, 2009; Ren et al., 2008], which could be used to populate small-scale hydraulic conductivity con-
ditioned to large-scale measurements (e.g., well test data). However, these methods are also limited to
media presenting a low degree of heterogeneity and simple connectivity patterns, and therefore are only
applicable in conjunction with variogram-based spatial models.

In this paper, we present a solution for simultaneously assimilating hydraulic conductivity data at different
scales (upscaling as well as downscaling) without invoking multi-Gaussian assumptions, and we test the
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method on synthetic example cases. Its principle is to start from a training image that describes a geologi-
cally realistic variability for the domain considered at the smallest measured scale (e.g., core scale). Such a
training image could be obtained, for example, from a process-based model that produces physically realis-
tic small-scale properties [McHargue et al., 2011]. Then, using classical upscaling approaches such as the
ones described above, this training image is coarsened to larger scales corresponding to other types of
measurements (e.g., slug tests, well tests). This results in a multivariate training image that describes physi-
cally correct interscale relationships for the type of heterogeneity considered. A multivariate simulation
algorithm is then used to create multiscale models that are conditioned to all measurements simultane-
ously, for all scales considered.

The methodology presented here uses Image Quilting [Mahmud et al., 2014] as a multivariate MPS algo-
rithm, and Simplified Renormalization [Renard et al., 2000] as an upscaling technique, but our workflow is
general and these algorithms could in principle be substituted by any other combination of a multiple-
point simulation and a numerical upscaling algorithm. The novelty of our approach is to put together these
different elements in a multiscale workflow for integrating data at different scales. In addition, we present
the first implementation and application of multivariate MPS in the context of patch-based methods.

2. Methodology

2.1. Background on Image Quilting (IQ)
Guardiano and Srivastava [1993] suggested the first multiple-point geostatistics (MPS) approach based on the
assessment of the conditional probability distribution for a simulated value based on a training image (TI). The
term multiple-point statistics is used in reference to the traditional variogram model used with kriging that
only takes into consideration the average square difference between two points, i.e., a measure of two-point
statistics. The variogram characterizes spatial patterns between pairs of points and often fails to capture
important geological patterns such as connectivity and curvilinearity. MPS simulation aims at characterizing
patterns using several points, typically between 15 and 80, instead of two, thus providing a more realistic rep-
resentation of geological patterns [Mariethoz and Caers, 2014]. There are now many MPS algorithms available,
e.g., SNESIM [Strebelle, 2002], SIMPAT [Arpat and Caers, 2007], FILTERSIM [Wu et al., 2008; Zhang et al., 2006],
IMPALA [Straubhaar et al., 2011], HOSIM [Mustapha and Dimitrakopoulos, 2011], MCP [Allard et al., 2011],
MPPCA [Abdollahifard and Faez, 2013], CCSIM [Tahmasebi et al., 2012], Direct Sampling [Rezaee et al., 2013],
Image Quilting [Mahmud et al., 2014] that are currently being used in real-world applications. TIs used in MPS
methods may originate from real data representative of the geology under consideration [Jung et al., 2013],
outcrops [Falivene et al., 2006], remote sensing data [Tang et al., 2013b], large unconditional realizations of
another stochastic simulation technique [Comunian et al., 2014], or be based on sketches produced by geolo-
gists [Natali et al., 2014]. The concept of simulating models using Multiple-Point statistics from a TI seems
easy, straightforward, and smart for geologists [Hu and Chugunova, 2008]. From its original applications in res-
ervoir modeling [e.g., Caers et al., 2003; Huysmans and Dassargues, 2012; Ronayne et al., 2008], MPS algorithms
have been used for a broad spectrum of applications relevant to water resources modeling, such as remote
sensing [Boucher et al., 2008; Gibson, 1950; He et al., 2013; Mariethoz et al., 2012], climate modeling [Jha et al.,
2013; Oriani et al., 2014], physics of fluids in porous media [Farmer, 2002; Hajizadeh et al., 2011; Okabe and
Blunt, 2007; Tahmasebi and Sahimi, 2013], and even medical imaging [Pham, 2012; Tsunoyama et al., 2014].

A recent review [Mariethoz and Lefebvre, 2014] showed that the field of computer graphics, and in particular,
texture synthesis methods, pursues goals similar as MPS: to generate images made of similar patterns as a
training image (or exemplar), and showing stochasticity (i.e., are not a repetitive tiling of the same patterns).
Originating from texture synthesis, the method of Image Quilting was initially proposed by Efros and Free-
man [2001] and considers blocks or patches rather than taking a particular pixel as the simulation unit. This
is similar as patch-based geostatistical methods [Arpat and Caers, 2007; El Ouassini et al., 2008; Faucher et al.,
2012; Tahmasebi et al., 2012; Zhang et al., 2006].

Whereas many geostatistical patch-based methods use patterns databases to store and search patterns, IQ
is part of a family of MPS algorithms that directly search patterns in the training image, which notably
includes CCSIM [Tahmasebi et al., 2012]. For each neighborhood N, a separate convolution is performed,
denoted C(y)5TI(y)*N, where y is a location in the training image and the symbol * denotes a convolution
operation. Any norm can be used for the convolution, whether the variable is continuous or categorical. For
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example, CCSIM involves computing a convolution based on a cross-correlation function, which provides
increased computational efficiency. In IQ, Mahmud et al. [2014] do not use a cross-correlation function, but
rather perform convolutions based on a Euclidean distance for continuous variables, and a distance based
on the number of mismatching nodes for categorical variables. The locations with a small convolution value
correspond to candidate patches that can be used in the simulation. A specificity of IQ is that once a candi-
date patch has been sampled, the patch shape is modified by cutting it such that the overlap error is mini-
mized. This minimum error boundary cut was the main contribution of the original method by Efros and
Freeman [2001]. It consists in using dynamic programming [Dijkstra, 1959] to cut the patches such that over-
lapping artifacts do not appear. A contribution of Mahmud et al. [2014] was to further develop the cutting
method to adapt it to the 3-D case. The most important parameters in IQ are the patch size p, the overlap
size o and the number e of replicates considered.

Mahmud et al. [2014] present an implementation of IQ that is amenable to be used for subsurface modeling.
Compared to the original version of Efros and Freeman [2001], important additions are the extension to 3-D
models and the possibility to consider conditioning data. For conditioning, the TI is searched for blocks that
agree both with their neighbors along the section of overlaps and at the same time all hard data available
within the block. Therefore, instead of selecting candidate patches solely based on their overlap with previ-
ously simulated areas, the compatibility with conditioning data is also considered. In the case of a continu-
ous variable, it is not possible to condition exactly due to the finite size of the TI (and hence a limited
pattern set). In order to have exact conditioning, the iterative template splitting (TS) has been introduced
[Tahmasebi et al., 2012]. The main idea is that it is easier to honor the hard data with a smaller template
size. This is particularly the case when several conditioning data points from different scales fall in a single
template, and when the pattern formed by these data has no equivalent in the TIs. In cases where there is
no suitable block that exactly matches the data, the template splits in 4 (in 2-D) or 8 (in 3-D). The resulting
smaller templates will each contain less data, and therefore will be easier to condition. The operation is car-
ried out recursively, until the template is small enough for conditioning to be feasible.

2.2. Multivariate Image Quilting (MIQ)
Many hydrogeological applications involve the simulation of several variables simultaneously on the same
spatial domain. Sometimes the relationship between variables can be modeled with a simple parametric
(linear) function, but such is often not the case, for example, for the scale dependence of hydraulic conduc-
tivity. For complex dependences, one can use multivariate TIs to convey such relationships. The multivariate
TI consists of a set of collocated variables each representing the spatial structure being modeled within that
variable, and at the same time representing physically realistic spatial relationships between all the varia-
bles. Once such a TI is available, it can be used to generate multivariate spatial patterns that reproduce the
desired multivariate relationship. It is noted that the concept of multivariate training images is different
from the use of auxiliary variables, which are exhaustively known and typically used to impose nonstationar-
ity [Chugunova and Hu, 2008; Strebelle, 2002].

In this paper, we are using the joint simulation of variables for multiscale modeling. We consider that the
hydraulic conductivity at each scale is a separate variable, and therefore there are as many variables as scales
considered. The different scales are not independent, but present complex scale dependencies, which are
described by a multivariate TI. A physics-based upscaling method is used to generate such a multivariate TI
that has physically consistent scale dependencies. To apply such a multiscale methodology, a necessary prelimi-
nary step is to extend the IQ method described above in order to be able to use multivariate training images.

The general concept used in multivariate IQ simulation is very different from that used in the context of
variogram-based geostatistics for cosimulations. In this typical framework (cokriging or cosimulation), two
or more variables are simulated together by maintaining a given linear model of coregionalization (cross
variogram) between the variables. To statistically infer the parameters of multivariate relationships, the only
data available are sparse locations where variables are observed simultaneously. In practice however, when
multiple hydraulic measurements are available, they are seldom collocated, making it difficult to infer a
parametric multivariate model. One scale may be sampled at some locations, while another scale is sampled
at different locations. In some areas, information at several scales may overlap. For example, some data at
the scales of the core samples (cm) and also at the scale of the well tests (100 m) are known, but no data is
available at a larger scale (km).
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From an algorithmic point of view, the multivariate version of the IQ method follows the same principle as in the
univariate case; the difference lies in the use of multivariate neighborhoods and multivariate distances to perform
convolutions. Here we provide a simple illustrative example on a synthetic case involving a multivariate convolu-
tion, based on the bivariate TI shown in Figure 1. Two variables are considered, consisting of simplified representa-
tions of hydraulic conductivity at two different scales. The grid size is 100 3 100 pixels in 2-D. Variable 1 is
obtained by the method of Zinn and Harvey [2003] that consists in taking the absolute value of a realization
sampled from a multi-Gaussian model with zero mean and an isotropic exponential variogram. The realization
obtained has an asymmetric histogram. A histogram transformation (normal-score transform) is then used to
restore the standard Gaussian histogram. The resulting patterns are complex and difficult to describe with covari-
ance models. One such realization is shown in Figure 1a (top). Note that the values are inversed in this figure such
that high values are connected instead of the low values. Variable 2 is defined as a smoothing of variable 1 with a
moving average using a window of 17 by 17 pixels, shown in Figure 1a (bottom). The smoothed variable resulting
from the moving average operation can be assimilated for example to hydraulic conductivity considered on a
larger support size, in a similar fashion as an upscaling operation that coarsens up the detailed spatial features.

Two small blocks randomly taken from another similar bivariate TI are shown in Figure 1b, representing
multivariate data events. These blocks have a similar spatial correlation as the TI. The convolution for each
variable is obtained independently (Figure 1c) and then normalized in the interval [0 1]. A single multivari-
ate convolution map (Figure 1d) is then obtained by lumping the individual univariate convolutions. The
resulting lumped convolution Cm can then be used as a basis for determining the training image locations
where the patterns are similar to a given multivariate neighborhood. In the case of v variables G1. . .Gv, such
a lumped convolution is formulated:

CmðyÞ5
Xv

G50

wG TIGðyÞ � NG½ �2 (1)

with TIG being the training image for variable G, NG is the neighborhood considered for variable G, and w1

. . . wv are weights given to each variable, summing to 1. Applying a threshold on this error map yields the
set of matching locations (Figure 1e), where training image patterns correspond to a given multivariate
neighborhood. A location is sampled from this set and the corresponding entire multivariate patch N 5 [N1

Figure 1. Multivariate convolution showing the thresholded convolution map. (a) Bivariate training image. (b) Bivariate neighborhood. (c) Convolution maps for both variables. (d) Com-
bined convolution is obtained by lumping the individual univariate convolution maps with equal weights. (e) Locations with patterns being similar to the multivariate neighborhood in
Figure 1b. The x and y axis show the grid sizes in all figures, in units of number of grid cells. The color scales for Figures 1a and 1b represent logarithmic hydraulic conductivity values, for
Figure 1c, they represent sums of square differences, and for Figure 1d, it indicates the values of Cm, normalized in [0 1].
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N2 . . . Nv] is pasted from the training image to the simulation. To define the optimal cut between the
patches in the overlapping regions, we compute separately the cumulative minimum errors along the cut-
ting direction as described in Mahmud et al. [2014] for all variables. Then we add those errors with the given
variable weights to get a single lumped error map. The resulting lumped error map can then be used as the
basis for determining a single optimum cut through all different variables. In this way, we can preserve the
same complex relationship between the variables as given by the TIs.

2.3. Simplified Renormalization
Among various possible upscaling methods, we applied the technique of Renard et al. [2000], which is a
recursive algorithm used for fast upscaling. The equivalent permeability of a fine-mesh grid is determined
by a series of successive aggregations where meshes are grouped two by two. In a first step, the cells are
grouped alternatively in parallel and in series with respect to the direction of calculation. The basic opera-
tion is the approximate calculation of equivalent permeability of a cell with 2-D meshes. The Cardwell and
Parsons [1945] bounds are used to iteratively aggregate groups of cells at the local scale to produce ‘‘com-
posite’’ cells and then to successively reapply the same rules to the resulting composite cells until the
desired coarse-scale resolution is achieved. If the two cells are in series (aligned in the direction of the flow
lines), they are replaced by a unique cell whose conductivity is the harmonic mean of the conductivity of
the cells (lx

h; l
y
h in x and y directions, respectively). If the two cells are in parallel (placed perpendicularly to

the flow lines), the arithmetic mean (lx
a; l

y
b in x and y direction, respectively) is used. This basic procedure is

repeated until a grid of the desired size is obtained, ultimately one single element. In two dimensions (Fig-
ure 2), one can start with a grouping in series along the x direction, followed by grouping the new pairs in
parallel along the y direction, then repeat this basic algorithm until one gets a value that is denoted cxx

min:

cxx
min 5ly

að:::ly
aðlx

hÞ:::Þ (2)

Alternatively, one can start with a grouping in parallel along the y direction, followed by grouping the new
pairs in series along the x direction, then one repeat the algorithm to get a value denoted by cxx

max:

cxx
max 5lx

hð:::lx
hðly

aÞ:::Þ (3)

The renormalization results in a tensor of upscaled hydraulic conductivities. In our case, we assume that K is
isotropic, because we are interested in integrating measurements of hydraulic conductivity such as pump-
ing tests, which generally do not provide a tensor but an isotropic value. We therefore take the norm of the
upscaled hydraulic conductivity value:

kxx
b 5log 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cxx

min
21cxx

max
2

q
(4)

2.4. Multiscale Modeling With MIQ
Before describing the methodology, we define a set of notations that will be followed throughout the paper:

x designates a location in the simulation and y designates a location in the TI;

G 5 G1. . .Gv the grid level, from finer to coarser;

Figure 2. Simplified renormalization procedure in two dimensions. The cells are grouped two by two iteratively in order to finally obtain two values denoted cmin and cmax and eventually
kb (modified from Renard et al. [2000]).
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TIG the different scales of the training images;

SIMG the different scales of the MIQ simulation;

UPSG, with G 5 G2. . .Gv the upscaled models obtained from SIM1;

DG The data available at scale G;

SIMG’ The simulation corrected by kriging.

The key principle of our methodology is to consider different scales of hydraulic conductivity as joint varia-
bles, which are simulated together. The complete algorithm is given in Figure 3. Two inputs are provided:

1. Conditioning data, DG which are hydraulic conductivity measurements having different support sizes (for
example, fine-scale hydraulic conductivity from lab tests, coarse scale hydraulic conductivity from in situ
pumping tests, etc.).

2. A training image, TI1 representing hydraulic conductivity at the smallest measured scale.

Based on TI1 which represents the smallest scale, we use renormalization to obtain a series of upscaled training
images, TIG for scales G2. . .Gv that correspond to the different scales at which measurements are available. Con-
sidered together, these upscaled maps constitute a multiscale representation of the hydraulic conductivity.

With these training images TIG, MIQ is used to obtain a multiscale realization SIMG that is conditional to the
data available, DG. Each conditioning data point is assigned only to the variable that corresponds to its mea-
surement support. However, the simulation SIMG is constrained by the multivariate patterns specified in the
training image, TIG. Therefore, conditioning data at one scale can influence the hydraulic values at the other
scales, if such dependence is present in the training image. For example, a well test might result in a large
hydraulic conductivity value imposed at the coarsest scale. Since the different scales in the training image
are obtained with a physically consistent process (the renormalization upscaling), the locations of the TI
where high values occur should also present high values at the smaller scales.

At this stage, the result of MIQ is a realization that honors the conditioning data exactly and reproduces the sta-
tistical relationships between scales present in the training image. However, this is not sufficient because the
scale dependence has a physical basis that is only approximated through the MIQ simulation. As is the case with
all multiple-point simulation methods, the training image has a finite size and the statistics it represents might
not be reproduced exactly. Moreover, the results of multiple-point simulation are dependent on the implemen-
tation and on the parameterization of the simulation algorithm. As a result, it is possible that the relationships

Figure 3. Multiscale data assimilation workflow with Kriging correction.
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between the simulated scales are not physically consist-
ent (even though they are statistically consistent). The
scale relationships of the simulated model, SIMG can
however be simply tested: it suffices to take the smallest
scale of the realization, SIM1 (which is conditioned to the
fine-scale conditioning data) and apply renormalization
upscaling to it. If the result of this upscaling UPSG honors
the coarse-scale conditioning data DG, for G2. . .Gv, then
the scale relationships are physically consistent, accord-
ing to the upscaling method used.

The next step of our methodology consists precisely
in performing this test: if, when upscaling is applied,
the coarse conditioning data are all honored (or within
a given measurement error), then the multiscale

model obtained by IQ and renormalization (UPSG) is physically correct at all scales and consistent with the
data DG, and nothing else needs to be done.

However, if there is a significant mismatch with the coarse data, corrective measures have to be taken. This
correction is applied on the finer scale only, because all other scales can be deduced from it using renormal-
ization upscaling. The goal is to perturb the fine-scale hydraulic conductivity SIM1 such that, when upscaled,
the coarse-scale measurements UPSG for G2. . .Gv are matched. Furthermore, this perturbation should pre-
serve the conditioning data D1, which are honored at the finest scale. The only way to accomplish this is to
add smooth and large-scale perturbations to the small scale, which will have as a consequence to shift the
upscaled values up or down. This is done by using kriging, which has the desired properties since it is a
smooth interpolator and can be constrained at conditioning locations. Kriging-based corrections are applied
iteratively to the small-scale hydraulic conductivity, SIM1, until the error between the upscaled SIMG’ and the
measured coarse data, DG for G2. . .Gv is small enough (i.e., under the measurement uncertainty).

For this, we initially calculate the errors between the different scales of the simulation UPSG and the given
conditioning data DG for scales G2. . .Gv. Then simple kriging is applied to the fine-scale simulation only, in
order to find a correction that minimizes these errors on the scales G2. . .Gv while not affecting the condi-
tioning of grid 1 (which does not need upscaling to achieve conditioning to the data of scale 1). We denote
t(x) the kriging-based correction. It is set to zero at all conditioning locations on G1 (these do not need cor-
rection). At the location of data corresponding to the scales G2. . .Gv, the correction t(x) is defined as the
error between the conditioning data DG and UPSG:

tðxÞ5
Xn

j51

kjErrj (5)

where k is the kriging weight, n is the total number of data points, and Err is the data mismatch for each
data point. Kriging interpolates this error smoothly, which is then subtracted to the fine-scale realization
(SIM1) to correct it:

SIM1’5SIM12tðxÞ (6)

This minimizes the differences between the new SIM1’ and the data DG for scales G2. . .Gv, while leaving it
unaffected at the locations of the fine-scale data D1. Then we perform another test by upscaling the SIM1’ and
if there are remaining conditioning errors we repeat kriging corrections until all conditioning data points are
exactly satisfied at all scales. Each iteration will necessarily reduce the difference between measured and mod-
eled values. We found that in practice all hydraulic conductivity values at all scales are reproduced after a rela-
tively small number of kriging iterations (no more than three iterations in the test cases considered).

We emphasize that the kriging correction is only applied to the fine-scale hydraulic conductivity map G1, but it
results in affecting the other scales when G1 is upscaled. The smooth corrections around the data points ensure
that the heterogeneity patterns are not significantly affected. One limitation is that if the kriging-based correc-
tion becomes too strong, it may affect the structures simulated with MIQ, resulting in a change in the connectiv-
ity properties of the simulation. Therefore, when using this method one should quantify the amount of kriging

Figure 4. Workflow for the creation of the synthetic reference
data set.
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correction and use the results carefully if very large corrections have been used to achieve conditioning. This is
investigated in detail in the case studies section.

3. Application Examples

3.1. Test Case 1: Highly Connected Features
We consider a first synthetic case with three scales and three corresponding data sets. We have chosen to
work with synthetic examples in this paper because they allow validating the results against a known refer-
ence. Moreover, a real case might have additional sources of uncertainty such as the choice of the TI. Here
we only want to evaluate our multiscale data integration method, for which synthetic examples provide
controlled conditions.

To create the conditioning data sets, we follow the algorithm shown in Figure 4. This case study uses the
fine scale TI (TI1) shown in Figure 5a (top), representing the logarithm of hydraulic conductivity values gen-
erated from a Landsat 7 image of the Lena Delta in Russia. It is used to represent synthetic hydraulic con-
ductivity. The channels are highly connected and therefore can create complex relationships between
scales. We use the renormalization upscaling technique to obtain the corresponding hydraulic conductivity
at two coarser scales shown in Figure 5a (middle and bottom). This multivariate TI is used with conditioning
data (Figure 5b) taken randomly from an unconditional multiscale realization simulated by IQ. Different ran-
dom conditioning locations are chosen at each scale. We sample 50, 20, and 10 data points for fine, medium
and coarse scales, respectively. The sizes of both the TIs and simulation grids (SGs) are 368 3 368 fine-scale
pixels. MIQ simulation is used to obtain the fine-scale hydraulic conductivity realization, with parameters as

Figure 5. Performance of data conditioning with MIQ for a continuous field with three different scales. The same colorbar is used for TI, Conditioning data, and Simulated K maps, which
represent the logarithm of hydraulic conductivity. The x and y axis show the number of grid cells.
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follows: patch size p 5 30 3 30 pixels, an overlap region of o 5 8 pixels and e 5 10 replicates. These parame-
ters have been shown to provide good results according to the sensitivity analysis carried out in Mahmud
et al. [2014].

Having set out the synthetic case, we execute the algorithm shown in Figure 3. One fine-scale realization is
shown in Figure 5c (top). We then use renormalization upscaling to produce large-scale conductivity maps
based on the fine-scale realization. Upscaled conductivity maps are shown in Figure 5c (middle and bot-
tom). The fine-scale simulation obtained by MIQ naturally honors all fine-scale data points, but for larger
scales the conditioning is not exact. Conditioning data match is shown as scatter plots in Figure 5 with the
R2 values indicated. The next section will show how a kriging-based correction can be used to make sure
that all conditioning data points are honored.

Our goal is that the realizations correspond to the measured values for all different scales (or exhibit a mis-
match reflective of the measurement error). To this end, we follow the algorithm described in section 2.4
and perform iterative kriging corrections of all the error values calculated for larger scales, until all data
points, at all scales, are satisfied within a given RMSE. The variogram model used for kriging has the follow-
ing parameters: range 5 15, sill 5 2.115, and nugget 5 0.45, which are inferred from the fine-scale training
image. The target RMSE is set to 1025, which was obtained after two iterations taking 96 s. Figure 6a shows
the simulated hydraulic conductivity maps after iterative kriging corrections have been applied, as well as
ensemble averages of 20 conditional realizations (Figure 6b). The difference maps shown in Figure 6c quan-
tify the effect of the kriging correction on the simulated hydraulic conductivity maps, showing that its mag-
nitude is small compared to the range of simulated values. The cross plots (Figure 6d) and the R2 values
illustrate that our method allows exact conditioning of all data points for different scales.

Figure 6. Performance of data conditioning using upscaling with kriging correction. The same colorbar is used for Simulated K maps and ensemble averages, which represent logarithm
of hydraulic conductivity values. The x and y axis show the number of grid cells. Data locations are shown in ensemble averages with black circles.
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3.2. Test Case 2: Large Upscaling Factor
3.2.1. Univariate IQ Simulation
We consider another synthetic case with 2 variables and create the conditioning data sets and the reference
maps by following again the algorithm shown in Figure 4. Specifically, this test case consists of the follow-
ing steps:

1. Define the training image.

2. Use it to generate the reference hydraulic conductivity fields.

3. Sample conditioning data sets.

Figure 7. Univariate IQ simulation for a continuous TI with two different scales. (a) Multiscale training image. (b) Conditioning data ran-
domly sampled from (c) the reference model. (d) Models conditioned to each scale independently. (e) Conditioning accuracy when model-
ing each scale independently.
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4. Solve the problem with both univariate IQ and MIQ analysis.

5. Validate the MIQ outcome comparing with univariate IQ simulations.

The TI is based on data from a flume experiment simulating sediment deposition in a realistic physical set-
ting [Paola et al., 2009]. Time-lapse images are taken during the experiment, which allow reconstructing the
sediment volume. As a result, this is one of the best examples of fully known realistic heterogeneous reser-
voirs. Our TI consists in one cross section through this volume, and is shown in Figure 7a (left), where the
color values have been converted to logarithms of hydraulic conductivity values. We use this example to
investigate the use of a large upscaling factor with our method, which reflects situations encountered in
real cases. Figure 7a (right) corresponds to a 8X upscaling factor applied to the original fine-scale training
image. Conditioning data (Figure 7b) are generated by taking random points from the unconditional realiza-
tions shown in Figure 7c, which constitute the reference hydraulic conductivity maps for both scales. We
sample 50 and 10 data locations for fine and coarse scale, respectively. The sizes of the TIs and SGs are iden-
tical with 256 3 512 and 32 3 64 cells for the fine and coarse scales. The same IQ parameters as for the pre-
vious example are used to obtain the fine-scale hydraulic conductivity realization.

Before performing multiscale IQ, we start by testing an approach where the scale interactions are ignored.
This is done by simulating each scale independently with univariate training images, the fine-scale data
being used with the fine-scale TI and the coarse-scale data being used with the coarse TI. The resulting
models are shown in Figure 7d. In this case, the conditioning data are honored exactly (Figure 7e), but we
know that we are not using all the information at hand since the data at one scale is not used for simulating
the other scale. The simulations are then compared to the exhaustively known reference, resulting in a
RMSE of 1.41 for the fine scale (Figure 7c, left) and a RMSE of 1.29 for the coarse scale (Figure 7c, left). It is
expected that accounting for the interscale relationships should allow better exploiting the available data
and therefore obtaining lower RMSE values.

3.2.2. Multiscale MIQ Simulation
We now consider the same example as in Figure 7, but using our methodology to take into account the
scale relationships. The same methodology is applied as in the first test case to obtain the fine-scale MIQ
realization (Figure 8a, left). Then, we implement the renormalization upscaling technique to produce large-
scale conductivity map (Figure 8a, right) using the fine-scale realization. Similarly as in the previous test
case, the conditioning data are not exactly matched, as shown in the scatter plots of Figure 8b. The mis-
match between the upscaled realization and the coarse data is quite large due to the upscaling factor of 8,
i.e., 1 coarse pixel 5 64 fine pixels.

For the kriging correction, the variogram adjusted on the fine-scale training image results in following
parameters: range 5 20, sill 5 0.51, and nugget 5 0.5. We then perform iterative kriging corrections until all
conditioning data are satisfied within a RMSE of 1025. The simulated hydraulic conductivity maps after

Figure 8. MIQ simulation for a continuous TI with two different scales.
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kriging corrections are shown in Figure 9a, with the difference caused by the kriging correction in Figure
9b. When comparing these realizations with the reference we get RMSE values of 1.28 and 1.04 for fine and
coarse scales, which is a significant improvement compared to the case where each scale is considered
independently. This indicates that considering the interactions between large and small scales results in an
improved characterization of the aquifer.

4. Conclusion

It has been widely demonstrated that the hydraulic conductivity of an aquifer increases with a larger por-
tion of the aquifer tested. This poses a challenge when different hydraulic conductivity measurements coex-
ist in a field study and have to be integrated simultaneously (e.g., core analysis, slug tests and well tests,
remote sensing campains). While the scaling of hydraulic conductivity can be analytically derived in multi-
Gaussian media, there is no general methodology to simultaneously integrate hydraulic conductivity meas-
urements taken at different scales in highly heterogeneous media. Here we address this issue in the context
of MPS simulation.

The key principle of our methodology is to consider the different scales of hydraulic conductivity as joint
variables which are simulated together. Based on a TI that represents the fine-scale spatial variability, we
use a classical upscaling method to obtain a series of upscaled TIs that correspond to the different scales at
which measurements are available. In our case, the renormalization method is used for this upscaling step,
but any upscaling method could be employed. Considered together, the different scales obtained are con-
sidered a single multiscale representation of the initial TI, in a similar fashion as the multiscale pyramids
used in image processing.

We then use IQ, which is a recent MPS simulation method that allows dealing with multivariate TIs, to gen-
erate conditional realizations of the different scales together. One characteristic of these realizations is that
the possible nonlinear relationships between the simulated scales are statistically similar to the relationships

Figure 9. Performance of data conditioning using upscaling with kriging correction for a continuous TI with two different scales. The color-
bar in Figure 9a represents logarithm of hydraulic conductivity values, and in Figure 9b, it indicates the differences between both the simu-
lated ‘‘K’’ maps before and after kriging correction.
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observed in the multiscale TI. Therefore these relationships are considered a reasonable approximation of
the renormalization results that were used on the TI. Another characteristic of these realizations is that they
can be directly conditioned to local data, and data at any scale can be considered.

The realizations obtained exactly satisfy the conditioning data across all scales, but it comes at the expense
of an approximate representation of the physical scale relationships. In order to mitigate this approximation,
we apply a kriging-based correction to the finest scale, which ensures local conditioning at the coarsest
scales but may degrade the patterns found in the training image. Significant patterns degradation did not
occur in the cases tested. However, if the kriging correction is large compared to the magnitude of the
simulated hydraulic conductivity, it can be a symptom that the model setting has to be revisited (i.e., either
the structures in the training image are inaccurate, the upscaling scheme is not valid, or the data have mea-
surement errors). The method is tested on a series of synthetic examples with different connectivity proper-
ties, where it gives good results and shows potential for the integration of different measurement scales
allowing a better characterization of aquifers by making the best possible use of field data.
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