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The removal of natural organic matter (NOM) during water treatment is becoming more important

for all water utilities in the UK, as a result of tightened regulatory standards for trihalomethanes

(THM), disinfection by-products (DBP) formed when residual organics react with chlorine. This

paper considers the spatial and temporal variability of raw and clarified water arising from 16

surface water treatment works in the Midlands region of the UK. A wide range of investigation

techniques are applied in order to develop effective strategies for the treatment of NOM-rich

water. For the first time, rigorous data mining techniques are applied to a major dataset in order

to examine potential inter-relationships between a wide range of quality parameters including,

inter alia, total organic carbon (TOC), UV254, coagulation pH, resin fractionation (hydrophilic acids

(HPIA), hydrophobic acids (HPOA), hydrophilic non-acids (HPINA)) and total THM formation

potential (TTHMFP). This paper focuses on the use of principal component analysis (PCA) to

develop robust algorithms for the prediction of TOC removal and hence THM formation. Results

show that raw water characteristics can be categorised into three main types, according to their

HPOA content and specific ultraviolet absorbance (SUVA.). PCA identified possible THMFP

precursors, according to raw water type verified by strong statistical relationships.
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INTRODUCTION

Natural organic matter (NOM) is found in abundance in

nearly all natural waters around the world due to

interactions between the hydrological cycle and both the

biosphere and geosphere. It is available from a number of

different sources, both pedogenic (e.g. soil and terrestrial

vegetation) and aquagenic (e.g. biota in a water body), and

is known to be variable both spatially and temporally (Kitis

et al. 2002; Scott et al. 2002). NOM exhibits a complex

mixture of organic compounds such as carbohydrates,

lipids, protein biopolymers and humic macromolecules:

the latter varying in terms of molecular weight and charge

density (Edzwald 1993). The variability of NOM is due to a

combination of variations in seasonal production and

transport of pedogenic and aquagenic NOM, variations in

their lability due to differences in chemical structure,

together with variability in their in-stream microbial

processing (Battin et al. 2008). Organic loading varies

seasonally with increased levels occurring in the late

summer and early autumn periods in the UK (Hurst et al.

2004). This has been attributed to increased microbial

degradation of organic matter in the warmer summer

months, with limited rainfall and enhanced evaporation,

followed by a release of potential DOM in early autumn

rainfall (Scott et al. 2002). Over the past decade, UK and US

utilities have reported operational difficulties coinciding

with rapid influxes of organic material at certain times of

year, usually after periods of high and intense rainfall

(Sharp et al. 2006).
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Conventional and well established treatment processes

for NOM removal include coagulation using trivalent metal

salts, flocculation and filtration. However, organics can

cause severe problems during coagulation by coating

particles and dominating the properties of inorganic

colloids (Wilkinson et al. 1997) as NOM has a much higher

surface area and negative charge than turbidity-causing

matter (Kim & Yu 2005). NOM composition is dependent

on source; however hydrophobic (HPO) and hydrophilic

acid (HPI) fractions make up the largest percentage of

NOM composition (Bache 2004). HPO material consists of

humic and fulvic material. Humic acids are heterogeneous

polyfunctional polymers formed by the breakdown of plant

and animal tissue by chemical and biological processes, and

so are more prevalent in surface waters and, because of their

complex properties, are still among the least understood

and characterised components in the environment

(McDonald et al. 2004). HPO material is larger and more

amenable to traditional removal methods. Unlike HPO,

HPI material is much more difficult to remove through

conventional treatment, being smaller, colourless, and with

little or no charge density.

When residual NOM molecules react with chlorine in

the final stage of treatment, potentially carcinogenic

disinfectant by-products (DBPs) are formed. Any increased

loading of NOM in untreated water systems is therefore an

escalating risk to water treatment works (WTW) and

customers alike. The two most abundant DBPs commonly

found in disinfected waters are trihalomethanes (THM) and

haloacetic acids (HAA) (Kitis et al. 2001). Investigations

into THMs and HAAs have highlighted potential reproduc-

tive, carcinogenic and mutagenic effects (Milliarou et al.

2005; Babi et al. 2007; Wang et al. 2007). Over 500 DBPs

have been identified to date, but only THMs are routinely

measured in the UK (Milliarou et al. 2005). The current

consent in the UK for total THMs is 100mg.L21, with no

standard for HAAs. The US THM and HAA standards are

80mg.L21 and 60mg.L21 respectively. It is possible that the

UK could adopt similar standards in the future (Bose &

Reckhow 2007).

This paper aims to identify key trends and potentially

overlooked relationships between NOM character and

trihalomethane formation potential (THMFP). A large

data set has been developed using data from 16 WTWs

over a two year period, to assess the changes in NOM

character and composition, and relate this to THMFP. This

paper applies data mining methods (i.e. discriminant

analysis and principal component analysis (PCA)) to

identify relationships ultimately relating key THMFP pre-

cursors to NOM character.

MATERIALS AND METHODS

Water source

PCA was undertaken on 16 WTWs located within the

Severn and the Trent catchments, and owned and operated

by Severn Trent Water. Samples were collected on a

quarterly basis between March 2006 and February 2008,

and a series of bench scale tests were undertaken in order to

monitor source water characteristics.

NOM Characterisation

DOC

Samples were analysed using a PPM Labtoc Analyser, with

a range of 0.18–10mg.L21 C. Samples were then filtered

though a 0.45mm membrane prior to analysis. Samples

were firstly mixed with persulphate, and inorganic carbon

was purged off as CO2. Samples were then swept by N2

carrier to an infra-red detector to determine CO2 at a

wavelength of 4.4mm, which was then related to the

concentration of total carbon in sample.

UV254

UV254 absorbance analysis was performed using a Biochem

Libra S12 Spectrophotometer, at a wavelength of 254nm.

Monthly and quarterly bench scale samples were filtered

through a 0.45mm membrane to remove turbidity, and

analysed with a 1 cm quartz cell which was rinsed with de-

ionised (DI) water prior to each sample.

Turbidity

Turbidity measurements were performed using a HACH

2100N IS Turbidimeter. 30ml of unfiltered sample was

placed in a vial, which was pre-rinsed with DI water before

each sample.
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Fractionation

Quarterly raw water samples were fractionated using XAD-

7HP and XAD-4 resins. The resins were cleaned before

each sample using 200ml of 0.1 molar NaOH, 200ml of 0.1

molar HCl and then with 200ml of DI water. Samples were

filtered though a Pall 0.45mm membrane filter, pre-washed

with 50ml of DI water. Samples were then adjusted to pH 2

using 3 molar HCl. The water was pumped though the

XAD-7HP resin, with the HPO fraction being absorbed.

Samples were then passed through the XAD-4 resin,

absorbing the HPIA fraction, leaving only the HPINA

fraction.

THM formation potential

Low pH jar tests were conducted to obtain THM formation

potential (THMFP) under optimum pH conditions. Coagu-

lant dose was set to current plant conditions whilst the pH

was reduced to 4.5 using 0.1m or 3m NaOH and HCl. Jar

tests were performed using a Phipps and Bird six paddle jar

test apparatus. Ferric sulphate was added at the start of a 1.5

minute rapid mix stage at 200 rpm. A 15 minute slow mix

stage at 30 rpm followed, after which jars were allowed to

settle for 20 minutes. THMFP analysis was performed using

a HP6890 Gas Chromatograph, fitted with electron capture

detector (ECD). Samples were firstly filtered through a

0.45mm membrane, and then buffered to pH 7 and spiked

to approximately 5mg.L21 free Cl2, prior to storage for

7 days. On day 3, extra free Cl2 was added if necessary. After

the required time, portions of the sample were transferred to

a septum vial. After equilibrium with headspace at 808C, a

sample vapour was injected by autosampler onto a capillary

column GC fitted with ECD to determine quantitatively

THMs present.

Statistical techniques are increasingly being used in data

analysis as they allow the rapid analysis of large and

multidimensional data sets. Discriminant and principal

component analysis were performed using SPSS Inc.

Version 16.0. Discriminant analysis is a tool to determine

an optimum combination of variables to provide the

optimum discrimination between sites (Spencer et al.

2007). Data are split into functions, function 1 providing

the most variation. Functions are orthogonal to one another

and so their contributions to the discrimination do not

overlap (Spencer et al. 2007). PCA is a way of reducing and

simplifying data sets by means of linear transformations,

detecting significant patterns in the data.

RESULTS AND DISCUSSION

Raw water characteristics from all 16 surface water sites can

be seen in Table 1.

Discriminant analysis of raw water NOM character

Discriminant analysis was performed only on the fraction-

ation and SUVA data to detect potential differences

between sites. The main component of Discriminant

Function 1 is SUVA, a prime indicator of NOM character,

obtained by dividing the UV absorbance of a given sample

at a wavelength of 254nm, by the DOC concentration in

mg.L21. The main component in Discriminant Function 2 is

the total HPO fraction in mg.L21. These two functions are

able to achieve a broad spread of the sites, implying these

variables are important for site discrimination (Figure 1).

On the basis of the discriminant analysis, the sites can be

split into three main types.

Type 1 consists of sites 1, 7 and 13, which are typically

moorland source waters, characterised by higher total

fractions of high molecular weight HPO material, NOM

consisting of aquatic humic and fulvic acids. Type 1 water

usually reacts favourably to coagulation and flocculation

processes, with large amounts of total DOC removed during

treatment, but the large scatter visible in Figure 1 demon-

strates that this water type is the most susceptible to

seasonal variation. Type 2 waters include sites 5, 6, 8, 9, 10,

12, 14, 15 and 16. Type 2 waters contain a mixture of

molecular weights, and hydrophilic and hydrophobic NOM.

Due to the HPI fraction in the water, sites are usually less

amenable to standard treatment processes, but good

removal can still be achieved with optimised processes.

Type 2 waters are intermediate water types between types 1

and 3. Finally, Type 3 waters include sites 2, 3, 4 and 11.

These sites exhibit high levels of HPI material in raw source

waters and removal of total DOC is generally below 25%.

Type 3 sites are typically situated in lowland, more
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urbanised catchments and are less influenced by seasonal

variability.

Principal component analysis & stepwise regression

PCA was performed in order to determine any potential link

between source water characteristics and THMFPs present

after conventional treatment processes.

Due to the large number of sites, for the purpose of this

paper, only sites 1, 4 and 10 are considered in detail. Sites 1

and 4 are at opposing ends of the SUVA scale and are

typical examples of Types 1 and 3 waters (Figure 1). Site 10

is closest to the average SUVA for all sites and is an example

of Type 2 waters.

Type 1

For Type 1 waters (typical of moorland catchment raw

waters) component 1 is characterised by high UV, HPO

and DOC, with chloroform and bromodichloride forming

after disinfection (Figure 2). Component 2 is characterised

by high NTU and HPIA, and are low in remaining THMFP

per mgL21 of DOC. As shown in Figure 2, samples are

identified by month number, with a clear distinction

occurring seasonally even with some overlap between

quarters. Months April (4) and October (10) are typically

identified as having lower turbidity and less HPINA,

whereas months July (7) and January (1) are the opposite.

October waters are consistently higher in HPO material and

total DOC. Stepwise regression was found to show a positive

relationship between THM chloroform and HPO material.

Table 1 | Average raw water characteristics and plant removal

Site pH

UV254

(abs.m21)

Turbidity

(NTU)

DOC

(mg.l21)

SUVAp

(m21.l.mg-1)

HPIA

(mg.l21)

HPINA

(mg.l21) Average % Plant Removal Standard Deviation

1 6.17 32.55 1.61 6.12 5.12 0.95 1.22 78.63 4.10

2 7.59 14.74 3.73 5.72 2.45 1.44 1.59 23.51 10.06

3 7.58 12.91 7.64 5.30 2.32 1.37 1.83 21.38 12.12

4 7.88 12.15 1.06 5.96 2.25 1.61 1.95 18.50 6.72

5 7.42 13.19 7.16 4.36 2.93 0.88 1.34 35.01 13.40

6 7.39 14.79 3.06 4.49 3.14 1.00 1.25 48.60 7.08

7 6.69 11.04 1.13 2.68 3.92 0.44 0.74 60.17 7.20

8 7.43 8.67 3.52 2.81 2.86 0.73 0.97 48.38 17.23

9 7.16 13.24 5.65 3.98 3.12 1.15 0.98 48.39 9.15

10 7.55 13.14 1.63 4.68 2.70 1.06 1.50 36.41 9.00

11 7.57 19.41 4.01 7.15 2.61 2.16 2.00 46.49 6.11

12 7.51 8.85 3.92 2.87 2.83 0.66 1.14 35.98 7.91

13 6.84 24.28 3.49 6.71 3.47 1.66 1.5 67.16 4.84

14 7.60 8.85 1.42 3.08 2.72 0.79 0.90 25.38 15.14

15 7.37 14.61 6.91 4.29 3.18 1.11 1.20 36.67 9.33

16 7.63 11.79 1.18 4.32 4.53 1.14 1.52 18.88 7.57

p SUVA—Specific UV Absorbance (UV254 [m21]/DOC [mg.l21])

Figure 1 | Discriminant analysis.
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Figure 2 | PCA and Stepwise Regression. Samples are labelled by months, e.g. January (1), April (4), with tinted text indicating spread of variables in plotted components. Stepwise

regression graphs show trend lines with (coloured) mean confidence bands. In the stepwise regression, scatter is evident, occurring as a result of natural variation. Subscribers to

the online version ofWater Science and Technology: Water Supply can access the colour version of this figure from http://www.iwaponline.com/ws
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Type 2

Type 2 waters typically consist of mixed molecular weight

and HPI/HPO content (Figure 2). Component 1 is high in

chloroform, chlorodibromide and bromodichloride, with a

high residual THMFP mg.l21 per DOC mgL21. Also, there is

a negative relationship with UV, DOC and bromoform.

Component 2 is characterised as high in UV, HPO and

DOC, with a negative relationship with HPIA and turbidity.

April (4) is consistently high in residual THMs, and January

(1) THMFPs after treatment occur less, however there is no

clear trend occurring throughout the diurnal profile over

the 2 year sampling period.

Type 3

Type 3 waters are typical of lowland sources, high in total

HPI material and consistently difficult to remove total

DOC. In this case, component 1 is high in HPINA and all

THMFPs, with a high remaining THMFP mg.l21 per DOC

mgL21 (Figure 2). Component 2 waters are characterised by

being high in HPO, DOC and bromoform. October (10) and

January (1) remain consistent over the two year sampling

period, but April (4) and July (7) do not. July does remain

high in HPINA and THMFPs after treatment; however

there are notable differences in the component 2 charac-

teristics. In the stepwise regression, Type 3 waters were

found to have strong relationships occurring between

chlorodibromide, bromodichloride and UV.

The stepwise regression relationships obtained on each

of the four THMs and the statistical significance of the r 2

relationship are shown in Table 2. Type 1 waters show only

relationships occurring with chloroform, with HPOmaterial

being a common precursor. Where there is a dominance

of HPI material in the raw waters, particularly HPINA,

relationships with the remaining THMs are also found.

CONCLUSIONS

† Using discriminant analysis, it is possible to split Severn

Trent Water source water into three distinct types based

on the raw water SUVA and the HPO fraction.

† Type 1 waters are typically moorland source waters, with

a dominance of HPO material. Type 1 waters show

distinct seasonal variations, with late summer and

autumn periods experiencing notably higher total DOC

concentrations and HPO content.

Table 2 | Stepwise regression relationship in raw waters. Table identifies the variables with which stepwise regression relationships occurred, and the statistical significance. The

statistical significance levels for the sites remain high for the number of data points, with site 1 as 0.01, n ¼ 14; 0.05 for site 4, n ¼ 8

Site Chloroform Chlorodibromide Bromoform Bromodichloride

Type 1 1 HPO (0.64)

HPO þ HPIA (0.77)

7 HPO (0.65)

13

Type 2 5

8 DOC (0.93) HPO (0.76) HPINA (0.68)

9

10 HPINA (0.51)

HPINA þ NTU (0.85)

14

16

15 NTU (0.62)

Type 3 3 HPO (0.81) HPINA (0.84)

2 UV (0.63) HPIA (0.78) UV (0.52)

UV þ NTU (0.85)
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† Stepwise regression for Type 1 waters indicates a

relationship between chloroform and HPO. Months

with increased levels of HPO were found to have higher

chloroform levels occurring after treatment, indicating

HPO is typically a precursor for chloroform at these sites.

† Type 2 waters contain a mixture of both HPO and HPI

material. Seasonal trends were not observed at the

representative site, although THMprecursor identification

was observed at some sites. The only notable trend in

the stepwise regression analysis occurred with bromo-

form and HPINA within the Type 2 source water group.

† Type 3 waters characteristically consist of low molecular

weight, HPI NOM. This is known to hinder the removal

of NOM in typical water treatment processes, leaving

higher amounts of NOM remaining to potentially react

with disinfectants and form undesirable THMs. In the

PCA, seasonal trends were apparent in the autumn and

winter months, however this trend was not carried on

into the remaining quarters. No relationships were

encountered with the occurrence of chloroform, possibly

due to the absence of HPO material. However strong

relationships between potential precursors and the

remaining three THMs were observed.

† Statistical analysis can be hugely beneficial with large

datasets, and is useful for identifying the key components

for sites. Techniques can confirm existing data interpret-

ations and detect new relationships between variables

which would have previously been overlooked.
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