
Introduction to Simulation

An introduction to the ideas of simulation, an important technique in
call-centre, retail store, and bank branch planning.

Michael Tanner, Mitan Ltd., CMath, FIMA

29/March/2012
Copyright Mitan Ltd. 2004-2017

Contents

1 xxxx 1

2 Introduction 2

3 Basic ideas of simulation 2

4 Random numbers 4

5 Converting random numbers to distributions 4

6 Analysis of simulation results 4

7 Simulation of a simple system 5

xxxx

0 200 400 600 800

0

500

1,000

1,500

CoreTime

F
re
q
u
en

cy

Data

Mean

Excluded

Figure 1: for newname

Introduction

1



By simulation we mean working out the series of events that occurs when a system, such
as a call-cente or a bank branch or a retail store, deals with a series of calls or customers.
This means writing a computer program that mimics the behaviour of the system, so
obviously a good knowledge of the workings of the system is essential. For many analysts a
great advantage of simulation is that it seems to requires less mathematical and statistical
competency than queueing theory. There are also some more important advantages.
Complex arrival patterns and scheduling rules can be represented, and system-wide effects
can be handled relatively easily. On the other hand, a queueing theory analysis can provide
more insight into the performance characteristics of a system than simulation.

The actual programming and testing of a simulation is also a non-trivial task, since
the structure of a simulation program is akin to a real-time operating system, and not
the straightforward structure that is typical of application programs. For this reason,
specialised simulation languages have been developed. On the other hand, with a suitable
subroutine library, it is perfectly possible to write significant simulations using general-
purpose languages such as Pascal. It used to be said that simulation was expensive in
terms of computer time, since a simulation must be repeated a number of times for each
set of parameters, and each run is a ”number crunching” sort of job. But with the cost
of modern computing power this is not such an important consideration.

Basic ideas of simulation

To see what simulation involves we will simulate a single server queue. First of all,
when will each customer arrive? For our simulation we shall generate random inter-
arrival times by throwing a single die. Each throw of the die is the time before the next
customer arrives. The results are shown in Table 1, where the first column shows the
inter-arrival times, and the second column shows the arrival times. The second column is
just the cumulative sum of the first column.

Next we need to assign a specific service time to each customer. We shall use the die
again to do this. In Table 1 the third column contains the service times. (Astute readers
will notice that the average inter-arrival time is 3.5, which is also the average service
time. This system is not stable, since the server utilisation will be 100%, and for sta-
bility we need utilisation to be strictly less than 100%. We shall ignore the implications
of this in return for the simplicity of using a die to generate inter-arrival and service times.)

2



k I[K] A[k] S[k]

Customer Inter-arrival Arrival Service

time time time

1 2 2 5

2 3 5 3

3 1 6 1

4 6 12 4

5 3 15 2

6 4 19 3

7 1 20 6

etc .. ... ...

Table 1: Simulated arrival and service times

Now we have all the details about the customers that we need, and we can proceed to
work out the timing of events in the system. For our simple example this is easy, but
in a real simulation of a complex system the analysis of how the system works will be a
substantial and challenging piece of work. In Table 1 we have added three more columns.
Two of these columns are used to hold the times at which each customer begins and ends
service. A customer cannot begin service until that customer has arrived, and until the
previous customer has ended service. So for customer k we have the simple relationships

B[k] = max(A[k], E[k − 1]) where E[0] = 0 (1)

E[k] = B[k] + S[k] (2)

The final column that has been added in Table 1 holds the waiting time for each customer.
This is calculated in the obvious way

W [k] = B[k] − A[k] (3)

Using these simple relationships we can calculate the times of all relevant events in the
system, and observe the values of waiting times, queue lengths, busy-period lengths, or
whatever characteristic interests us.

k I[K] A[k] S[k] B[k] E[k] W[k]

Customer Inter-arrival Arrival Service Begin End Waiting

time time time service service time

1 2 2 5 2 7 0

2 3 5 3 7 10 2

3 1 6 1 10 11 4

4 6 12 4 12 16 0

5 3 15 2 16 18 1

6 4 19 3 19 21 0

7 1 20 6 21 27 1

etc ... ... ... ... ... ...

Table 2: Calculating start, finish, and waiting times

3



Random numbers

In the example above we used a die to generate random inter-arrival and service times.
Within a simulation program how do we get random numbers? This is a subject that has
received much attention by researchers, and simple techniques have been devised to gen-
erate sequences of ”pseudo-random” numbers. Most algorithms for generating a sequence
of random numbers are of the form shown below.
where X[n] is the n’th number in the sequence while b, c and m are appropriately cho-
sen constants. For a discussion of suitable choices of these constants see [LAVEN] or
specialised books on simulation. The relationship above will produce numbers that are
non-negative integers in the range 0 to m, so by using X[n]/m we can get vales in the
range 0 to 1.

Pseudo-random number streams can be subjected to a number of tests to see if they have
the characteristics of a genuinely random sequence. The obvious test is that the numbers
should be evenly distributed over the range of values, usually 0 to 1, required. Another
test is that there should be no correlation between values separated in the sequence by a
fixed lag i.e. there should be no serial correlation. This test includes the case of trends
and cycles. Other, more esoteric, tests can be applied to exclude various patterns in the
sequence.

Simulation requires a random number generator that has been properly designed and
tested. The actual programming of a generator may be quite trivial, but the choice of
method and parameters is a specialised job. Special-purpose simulation languages can
be expected to have random number generators that can be trusted. However, many
general-purpose language compilers include a random number generator. Some of these
may be well designed, on the other hand some may be intended just for use in computer
games. For a computer game, it doesn’t matter too much if the sequence of numbers
would fail proper statistical tests.

Converting random numbers to distributions

Assuming we have a reputable random number generator that supplies us with values
in the range 0 to 1, we then have to somehow convert these into, say, exponentially
distributed values, or some other distribution that we want to simulate. Several techniques
have been developed for doing this. The basic method is to mathematically invert the
cumulative probability distribution, but less obvious methods turn out to be better in
some ways for some distributions. Again see [LAVEN] for a detailed description and
algorithms for specific distributions.

Analysis of simulation results

Simulation is often undertaken by analysts with only limited statistical training, so
that it is sometimes forgotten that the result of a simulation run is just one experimental
observation, and an observation of an abstract model rather than the real system. Like all
experiments, a simulation needs to be properly designed to answer the question of concern,
and to be repeated a number of times (with different sequences of random numbers of
course!) to provide a sample of results for analysis.

4



Particular care is needed when simulating queueing systems with randomly arriving
customers or phone calls and a varying mount of time needed for each customer or call.
The performance characteristics we are interested in are usually the percentage of calls
waiting longer than a specified time. On heavily loaded systems these measurements
are very volatile or erratic, both in theory and reality. Getting reliable estimates from
simulation needs great care.

Simulation of a simple system

In order to illustrate some ideas about simulation, an simple queueing system was
simulated with a single server, random arrivals, and exponentially distributed service
times. We don’t need to simulate this system (known as an M/M/1 system), since simple
formulae are available for all the characteristics of interest, but this does mean that we
can compare the simulation results with the exact theoretical calculations.

Figure 2 shows a graph constructed from the trace of the simulation program. The
horizontal axis is time, and the vertical axis shows the queue size (number waiting plus
number being served) when a new customer arrives. This number does not include the
arriving customer. The curve looks quite erratic, and it is worth reminding ourselves that
a stable queueing system will still exhibit this kind of erratic behaviour.

60 80 100 120 140 160 180 200 220 240
0

5

10

Clock, minutes

Q
u
eu

e
si

ze
on

ar
ri

va
l

Queue on arrival

Figure 2: Queue size on arrival against clock

Next observe that the extract selected starts after 60 minutes, not 0. When we start
up a simulation program the simulated system will be empty, and it will require quite
a lot of customers to be processed before the system achieves a ”steady-state” . So we
need to run the simulated system for a ”warm-up” period before we can start collecting
statistics such as waiting time. How long should the warm-up time be? The answer of
course is long enough for a steady state to be reached. There are formal statistical tests
that could be used to decide when a steady state is reached, but in practice knowledge
of the real system being simulated will often suggest a suitable warm-up time. There are
also techniques to speed up the reaching of a steady state. We could set up the first few
customers to arrive at time zero, so there is a queue of customers at the start. Or we could
have a faster arrival rate for, say, half the warm-up period. These are refinements, the

5



analyst still has to check somehow that the system reached steady state before statistics
gathering starts.

On the other hand, maybe we are not actually interested in the steady-state behaviour.
We may want to understand how the system performs when starting ”cold”, or dealing
with short-term high arrival rates. Some real systems may never achieve a steady state.
For example, a shop or store may not have enough customers during the day to make the
concept of an average arrival rate meaningful. Most of the queueing theory in this book is
about steady-state behaviour, which cannot be applied to such situations. Simulation, on
the other hand, can cope with overloaded and unstable queueing systems, with changing
arrival rates. Analysis of the results of simulating unstable systems needs great care, but
at least is possible.

60 70 80 90

0

20

40

60

80

offered utilisation %

se
rv

ic
e

le
ve

l
%

Theory
Simulation
Average

Figure 3: Theory compared to simulation

Now look at Figure 3. This shows the average time in system as measured for a series
of separate simulation runs. For each level of utilisation 10 separate simulation runs were
done, each run for a given utilisation using a different sequence of random numbers. Also
shown is the exact theoretical result. The important point is that a single run produces
one point that is not in itself reliable. It is necessary to do several runs and take the
average of the results. Figure 3 also shows the averages for the 10 runs at each utilisation
value. The match between simulation and exact theory is clearly much better. Note
also that the variance or spread of results is greater for higher utilisations. This is to
be expected, since queueing theory tells us that the variance of time in system increases
with server utilisation. The need to take averages over a number of runs is an elementary
point, but it is not uncommon for analysts to attach too much significance to a single
simulation run.

One question we have not addressed so far is how long should each simulation run be?
We know we need a warm-up time to get to a steady state, but we have seen in Figure 1
how the queue size varies even when statistically a steady state exists. The simple, but
not necessarily helpful, answer is that enough customers need to be processed so that the

6



variance of , for example, the average waiting time for one simulation run is not too high.
Since we are going to take the average of the averages for several runs, there is a trade-off
between doing fewer but longer runs and more but shorter runs. Doing more, but shorter,
runs has the advantage that, if a distinct random number stream is used for each run,
statistically more reliable results are obtained. However, fewer longer runs tends to be
more convenient in practice.

7


