Chapter 8
Tim Foster - dba MPC (Maintenance Projects & Construction)

Company Policy for Electrical Hazards
Qualified and Non-Qualified Personnel

This policy for the prevention of employee exposure to electrical hazards is adopted by Tim Foster - dba MPC (Maintenance Projects & Construction) in accordance with the following OSHA regulations:

§1910.332 - Training §1910.333 - Selection and Use of Work Practices
NFPA 70E - Standards for Electrical Safety in the Workplace

Tim Foster - dba MPC (Maintenance Projects & Construction) has implemented this policy to ensure that no employee is exposed to electrical hazards in the workplace. Tim Foster is the supervisor responsible for ensuring the following policy for controls, training, personal protective equipment, and safe work practices is enforced:

• Only qualified personnel are authorized to perform work, service, or maintenance on electrical parts or systems at Tim Foster - dba MPC (Maintenance Projects & Construction).

• Non-qualified personnel are prohibited by Company Policy from working on or near exposed energized electrical circuits or systems. If a work task requires unqualified personnel, any exposed electrical systems will be de-energized and lockout/tagout procedures adhered to, per Company Policy, before unqualified personnel are allowed access to the work areas. Non-qualified personnel will be trained in the recognition and avoidance of electrical hazards in the work area.

• Tim Foster will ensure that all employees exposed to work involving electrical systems or energized parts will be trained in and familiar with the safety-related work practices required by OSHA regulation and NFPA 70E that pertain to their respective job assignments.

• Tim Foster will ensure that all employees exposed to work involving electrical systems will be trained in, and familiar with, the following:
 - The requirements of NFPA 70E Standards for Electrical Safety in the Workplace
 - The skills and techniques necessary to distinguish exposed live parts from other parts of electric equipment.
 - The skills and techniques necessary to determine the nominal voltage of exposed live parts.
 - The clearance distances specified in §1910.333(c) and the corresponding voltages to which the qualified person will be exposed.

• Safety-related work practices will be employed to prevent electric shock or other injuries resulting from either direct or indirect electrical contacts, when work is performed near or on equipment or circuits which are or may be energized. The specific safety-related work practices will be consistent with the nature and extent of the associated electrical hazards.
Live parts to which an employee may be exposed will be de-energized before the employee works on or near them.

If the exposed live parts are not de-energized for reasons of increased or additional hazards, other safety-related work practices such as insulating shielding will be used to protect employees who may be exposed to the electrical hazards involved.

- Live electrical parts or systems which an employee may be exposed to will be de-energized prior to beginning work on the system. Systems will be assured of being de-energized by proper lockout procedures following company policy.
- Any work to be performed on energized parts will require the use of appropriate personal protective equipment, insulating and shielding materials, and insulated tools.
- If work is to be performed near overhead lines, the lines will be de-energized and grounded, or other protective measures such as insulating shielding will be provided before work is started.
- Vehicles or equipment working near overhead lines will be required to maintain a safe working distance of at least 10 feet. If the voltage is higher than 50 kV, the clearance will be increased 4 inches for every 10 kV over that voltage.
- Employees may not enter spaces containing exposed energized parts or work on energized parts unless illumination is provided that enables the employee to perform the work safely. Employees may not reach blindly into areas which may contain energized parts.
- When an employee works in a confined or enclosed space (such as a manhole or vault) that contains exposed energized parts, Tim Foster - dba MPC (Maintenance Projects & Construction) will provide, and the employee will use, protective shields, protective barriers, or insulating materials as necessary to avoid inadvertent contact with these parts. Doors, hinged panels, and the like will be secured to prevent their swinging into an employee and causing the employee to contact exposed energized parts.
- All workers will maintain the safe approach distances as stated in §1910.333(c)(3) Table S-5.
- Conductive materials and equipment that are in contact with any part of an employee's body will be handled in a manner to prevent them from contacting exposed energized conductors or circuit parts, or will be shielded to prevent conduction of electrical energy. Conductive articles of jewelry and clothing (such as watch bands, bracelets, rings, key chains, necklaces, metalized aprons, cloth with conductive thread, or metal headgear) may not be worn if they might contact exposed energized parts while performing work.
- If conductive materials will be handled in the vicinity of energized electrical parts, the hazardous parts will be shielded or otherwise insulated to prevent accidental contact by the employee or materials being handled.
- Portable ladders will have nonconductive siderails if they are used where the employee or the ladder could contact exposed energized parts. The employee will ensure that the placement of any ladder will allow a safe working distance from any energized parts or equipment.
Training

The training required will be of the classroom or on-the-job type. The degree of training provided will be determined by the risk to the employee based upon the NFPA 70E - Standards for Electrical Safety in the Workplace.

- The training requirements apply to employees who face a risk of electric shock that is not reduced to a safe level by the electrical installation requirements.
- Other employees who also may reasonably be expected to face comparable risk of injury due to electric shock or other electrical hazards will also be trained.
- Employees will be trained in and familiar with the safety-related work practices required that pertain to their respective job assignments.
- Employees who are not qualified persons will also be trained in and familiar with any electrically related safety practices not specifically addressed by regulations but which are necessary for their safety.
- Qualified persons (i.e. those permitted to work on or near exposed energized parts) will, at a minimum, be trained in and familiar with the following:
 - The skills and techniques necessary to distinguish exposed live parts from other parts of electric equipment.
 - The skills and techniques necessary to determine the nominal voltage of exposed live parts.
 - The specified clearance distances and the corresponding voltages to which the qualified person will be exposed.
 - Qualified persons whose work on energized equipment involves either direct contact or contact by means of tools or materials will also have the required training.

Safe Work Practices

- Safe work practices will be employed to prevent electric shock or other injuries resulting from either direct or indirect electrical contacts, when work is performed near or on equipment or circuits which are or may be energized. The specific safe work practices will be consistent with the nature and extent of the associated electrical hazards.
- Live parts to which an employee may be exposed will be deenergized before the employee works on or near them, unless Tim Foster can demonstrate that deenergizing introduces additional or increased hazards or is infeasible due to equipment design or operational limitations. Live parts that operate at less than 50 volts to ground need not be deenergized if there will be no increased exposure to electrical burns or to explosion due to electric arcs.
- If the exposed live parts are not deenergized for reasons of increased or additional hazards or infeasibility, other safe work practices will be used to protect employees who may be exposed to the electrical hazards involved. Such work practices will protect employees against contact with energized circuit parts directly with any part of their body or indirectly through some other conductive object. The work practices that are used will be suitable for the conditions under which the work is to be performed and for the voltage level of the exposed electric conductors or circuit parts.
Deenergized Electrical Equipment

- Conductors and parts of electric equipment that have been deenergized but have not been locked out or tagged will be treated as energized parts. This applies to work on or near them.
- While any employee is exposed to contact with parts of fixed electric equipment or circuits which have been deenergized, the circuits energizing the parts will be locked out or tagged or both.

Lockout-Tagout Procedures

- Tim Foster will maintain a written copy of these procedures and will make them available for inspection by employees and OSHA.
- Deenergizing equipment.
 - Safe procedures for deenergizing circuits and equipment will be determined before circuits or equipment are deenergized.
 - The circuits and equipment to be worked on will be disconnected from all electric energy sources. Control circuit devices, such as push buttons, selector switches, and interlocks, may not be used as the sole means for deenergizing circuits or equipment. Interlocks for electric equipment may not be used as a substitute for lockout and tagging procedures.
 - Stored electric energy which might endanger personnel will be released. Capacitors will be discharged and high capacitance elements will be short-circuited and grounded, if the stored electric energy might endanger personnel.
 - Stored non-electrical energy in devices that could reenergize electric circuit parts will be blocked or relieved to the extent that the circuit parts could not be accidentally energized by the device.
- Application of locks and tags includes
 - A lock and a tag will be placed on each disconnecting means used to deenergize circuits and equipment on which work is to be performed. The lock will be attached so as to prevent persons from operating the disconnecting means unless they resort to undue force or the use of tools.
 - Each tag will contain a statement prohibiting unauthorized operation of the disconnecting means and removal of the tag.
 - If a lock cannot be applied, or if Tim Foster can demonstrate that tagging procedures will provide a level of safety equivalent to that obtained by the use of a lock, a tag may be used without a lock.
 - A tag used without a lock will be supplemented by at least one additional safety measure that provides a level of safety equivalent to that obtained by use of a lock. Examples of additional safety measures include the removal of an isolating circuit element, blocking of a controlling switch, or opening of an extra disconnecting device.
A lock may be placed without a tag only under the following conditions:

1. Only one circuit or piece of equipment is deenergized.
2. The lockout period does not extend beyond the work shift.
3. Employees exposed to the hazards associated with reenergizing the circuit or equipment are familiar with this procedure.

Verification of deenergized condition requirements will be met before any circuits or equipment can be considered and worked as deenergized.

A qualified person will operate the equipment operating controls or otherwise verify that the equipment cannot be restarted.

A qualified person will use test equipment to test the circuit elements and electrical parts of equipment to which employees will be exposed and will verify that the circuit elements and equipment parts are deenergized. The test will also determine if any energized condition exists as a result of inadvertently induced voltage or unrelated voltage backfeed even though specific parts of the circuit have been deenergized and presumed to be safe. If the circuit to be tested is over 600 volts, nominal, the test equipment will be checked for proper operation immediately after this test.

Reenergizing equipment requirements will be met before circuits or equipment are reenergized, even temporarily.

A qualified person will conduct tests and visual inspections to verify that all tools, electrical jumpers, shorts, grounds, or other devices have been removed, so that the circuits and equipment can be safely energized.

Employees exposed to the hazards associated with reenergizing the circuit or equipment will be warned to stay clear of circuits and equipment.

Each lock and tag will be removed by the employee who applied it or under his or her direct supervision. However, if this employee is absent from the workplace, then the lock or tag may be removed by a qualified person designated to perform this task provided that:

1. Tim Foster ensures that the employee who applied the lock or tag is not available at the workplace.
2. Tim Foster ensures that the employee is aware that the lock or tag has been removed before he or she resumes work at that workplace.

There will be a visual determination that all employees are clear of the circuits and equipment.

Energized Electrical Equipment

Only qualified personnel may work on electric circuit parts or equipment that have not been deenergized under the previously stated procedures. Such personnel will be capable of working safely on energized circuits and will be familiar with the proper use of special precautionary techniques, personal protective equipment, insulating and shielding materials, and insulated tools.
• If work is to be performed under or near overhead lines, the lines will be
deeenergized and grounded, or other protective measures will be provided before
work is started. If the lines are to be deenergized, arrangements will be made
with the person or organization that operates or controls the electric circuits
involved to deenergize and ground them. If protective measures, such as
guarding, isolating, or insulating, are provided, these precautions will prevent
employees from contacting such lines directly with any part of their body or
indirectly through conductive materials, tools, or equipment.

• When an unqualified person is working in an elevated position near overhead
lines, the location will be such that the person and the longest conductive object
he or she may contact cannot come closer to any unguarded, energized
overhead line than the following distances:
 - For voltages to ground 50kV or below – 10 feet.
 - For voltages to ground over 50kV – 10 feet plus 4 inches for every 10kV
 over 50kV.

• When an unqualified person is working on the ground in the vicinity of overhead
lines, the person may not bring any conductive object closer to unguarded,
energized overhead lines than the distances given above. For voltages normally
encountered with overhead power line, objects which do not have an insulating
rating for the voltage involved are considered to be conductive.

• When a qualified person is working in the vicinity of overhead lines, whether in
an elevated position or on the ground, the person may not approach or take any
conductive object without an approved insulating handle closer to exposed
energized parts than shown in Table S-5 unless:
 - The person is insulated from the energized part (gloves, with sleeves if
 necessary, rated for the voltage involved are considered to be insulation
 of the person from the energized part on which work is performed).
 - The energized part is insulated both from all other conductive objects at
 a different potential and from the person.
 - The person is insulated from all conductive objects at a potential different
 from that of the energized part.

Table S-5 - Approach Distances for Qualified Employees - Alternating Currents

<table>
<thead>
<tr>
<th>Voltage range (phase to phase)</th>
<th>Minimum approach distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>300V and less</td>
<td>Avoid Contact</td>
</tr>
<tr>
<td>Over 300V, not over 750V</td>
<td>1 ft. 0 in.</td>
</tr>
<tr>
<td>Over 750V, not over 2kV</td>
<td>1 ft. 6 in.</td>
</tr>
<tr>
<td>Over 2kV, not over 15kV</td>
<td>2 ft. 0 in.</td>
</tr>
<tr>
<td>Over 15kV, not over 37kV</td>
<td>3 ft. 0 in.</td>
</tr>
<tr>
<td>Over 37kV, not over 87.5kV</td>
<td>3 ft. 6 in.</td>
</tr>
<tr>
<td>Over 87.5kV, not over 121kV</td>
<td>4 ft. 0 in.</td>
</tr>
<tr>
<td>Over 121kV, not over 140kV</td>
<td>4 ft. 6 in.</td>
</tr>
</tbody>
</table>

• Any vehicle or mechanical equipment capable of having parts of its structure
elevated near energized overhead lines will be operated so that a clearance of
10 ft. is maintained. If the voltage is higher than 50kV, the clearance will be
increased 4 in. for every 10kV over that voltage. However, under any of the
following conditions, the clearance may be reduced:
If the vehicle is in transit with its structure lowered, the clearance may be reduced to 4 ft. If the voltage is higher than 50kV, the clearance will be increased 4 in. for every 10 kV over that voltage.

If insulating barriers are installed to prevent contact with the lines, and if the barriers are rated for the voltage of the line being guarded and are not a part of or an attachment to the vehicle or its raised structure, the clearance may be reduced to a distance within the designed working dimensions of the insulating barrier.

If the equipment is an aerial lift insulated for the voltage involved, and if the work is performed by a qualified person, the clearance (between the uninsulated portion of the aerial lift and the power line) may be reduced to the distance given in Table S-5.

Employees standing on the ground will not contact the vehicle or mechanical equipment or any of its attachments, unless:

- The employee is using protective equipment rated for the voltage.
- The equipment is located so that no uninsulated part of its structure (that portion of the structure that provides a conductive path to employees on the ground) can come closer to the line than permitted below.

If any vehicle or mechanical equipment capable of having parts of its structure elevated near energized overhead lines is intentionally grounded, employees working on the ground near the point of grounding may not stand at the grounding location whenever there is a possibility of overhead line contact.

Additional precautions, such as the use of barricades or insulation, will be taken to protect employees from hazardous ground potentials, depending on earth resistivity and fault currents, which can develop within the first few feet or more outward from the grounding point.

Illumination

- Employees may not enter spaces containing exposed energized parts, unless illumination is provided that enables the employees to perform the work safely.
- Where lack of illumination or an obstruction precludes observation of the work to be performed, employees may not perform tasks near exposed energized parts.
- Employees may not reach blindly into areas which may contain energized parts.

Confined Spaces

- When an employee works in a confined or enclosed space (such as a manhole or vault) that contains exposed energized parts, Tim Foster - dba MPC (Maintenance Projects & Construction) will provide, and the employee will use, protective shields, protective barriers, or insulating materials as necessary to avoid inadvertent contact with these parts.
- Doors, hinged panels, and the like will be secured to prevent their swinging into an employee and causing the employee to contact exposed energized parts.

Conductive Materials and Equipment

- Conductive materials and equipment that are in contact with any part of an employee’s body will be handled in a manner that will prevent them from contacting exposed energized conductors or circuit parts.
• If an employee will handle long dimensional conductive objects (such as ducts and pipes) in areas with exposed live parts, Tim Foster will institute work practices (such as the use of insulation, guarding, and material handling techniques) which will minimize the hazard.

Portable Ladders

• Portable ladders will have nonconductive siderails if they are used where the employee or the ladder could contact exposed energized parts.

Conductive Apparel

• Conductive articles of jewelry and clothing (such a watch bands, bracelets, rings, key chains, necklaces, metalized aprons, cloth with conductive thread, or metal headgear) may not be worn if they might contact exposed energized parts. However, such articles may be worn if they are rendered nonconductive by covering, wrapping, or other insulating means.

Housekeeping

• Where live parts present an electrical contact hazard, employees may not perform housekeeping duties at such close distances to the parts that there is a possibility of contact, unless adequate safeguards (such as insulating equipment or barriers) are provided.

• Electrically conductive cleaning materials (including conductive solids such as steel wool, metalized cloth, and silicon carbide, as well as conductive liquid solutions) may not be used in proximity to energized parts unless procedures are followed which will prevent electrical contact.

Interlocks

• Only a qualified person following the requirements of this section may defeat an electrical safety interlock, and then only temporarily while he or she is working on the equipment. The interlock system will be returned to its operable condition when this work is completed.
§1910.332 TRAINING.

(a) Scope. The training requirements contained in this section apply to employees who face a risk of electric shock that is not reduced to a safe level by the electrical installation requirements of §§1910.303 through 1910.308.

Note: Employees in occupations listed in Table S-4 face such a risk and are required to be trained. Other employees who also may reasonably be expected to face a comparable risk of injury due to electric shock or other electrical hazards must also be trained.

(b) Content of training.

(1) Practices addressed in this standard. Employees shall be trained in and familiar with the safety-related work practices required by §§1910.331 through 1910.335 that pertain to their respective job assignments.

(2) Additional requirements for unqualified persons. Employees who are covered by paragraph (a) of this section but who are not qualified persons shall also be trained in and familiar with any electrically related safety practices not specifically addressed by §§1910.331 through 1910.335 but which are necessary for their safety.

(3) Additional requirements for qualified persons. Qualified persons (i.e., those permitted to work on or near exposed energized parts) shall, at a minimum, be trained in and familiar with the following:

(i) The skills and techniques necessary to distinguish exposed live parts from other parts of electric equipment.

(ii) The skills and techniques necessary to determine the nominal voltage of exposed live parts.

(iii) The clearance distances specified in §1910.333(c) and the corresponding voltages to which the qualified person will be exposed.

Note 1: For the purposes of §§1910.331 through 1910.335, a person must have the training required by paragraph (b)(3) of this section in order to be considered a qualified person.

Note 2: Qualified persons whose work on energized equipment involves either direct contact or contact by means of tools or materials must also have the training needed to meet §1910.333(c)(2).

(c) Type of training. The training required by this section shall be of the classroom or on-the-job type. The degree of training provided shall be determined by the risk to the employee.

TABLE S-4—TYPICAL OCCUPATIONAL CATEGORIES OF EMPLOYEES FACING A HIGHER THAN NORMAL RISK OF ELECTRICAL ACCIDENT

<table>
<thead>
<tr>
<th>Occupation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue collar supervisors.¹</td>
</tr>
<tr>
<td>Electrical and electronic engineers.¹</td>
</tr>
<tr>
<td>Electrical and electronic equipment assemblers.¹</td>
</tr>
<tr>
<td>Electrical and electronic technicians.¹</td>
</tr>
<tr>
<td>Electricians.</td>
</tr>
<tr>
<td>Industrial machine operators.¹</td>
</tr>
<tr>
<td>Material handling equipment operators.¹</td>
</tr>
<tr>
<td>Mechanics and repairers.¹</td>
</tr>
<tr>
<td>Painters.¹</td>
</tr>
<tr>
<td>Riggers and roustabouts.¹</td>
</tr>
<tr>
<td>Stationary engineers.¹</td>
</tr>
<tr>
<td>Welders.</td>
</tr>
</tbody>
</table>

¹ Workers in these groups do not need to be trained if their work or the work of those they supervise does not bring them or the employees they supervise close enough to exposed parts of electric circuits operating at 50 volts or more to ground for a hazard to exist.

§1910.333 SELECTION AND USE OF WORK PRACTICES.

(a) General. Safety-related work practices shall be employed to prevent electric shock or other injuries resulting from either direct or indirect electrical contacts, when work is performed near or on equipment or circuits which are or may be energized. The specific safety-related work practices shall be consistent with the nature and extent of the associated electrical hazards.

(1) Deenergized parts. Live parts to which an employee may be exposed shall be deenergized before the employee works on or near them, unless the employer can demonstrate that deenergizing introduces additional or increased hazards or is infeasible due to equipment design or operational limitations. Live parts that operate at less than 50 volts to ground need not be deenergized if there will be no increased exposure to electrical burns or to explosion due to electric arcs.

Note 1: Examples of increased or additional hazards include interruption of life support equipment, deactivation of emergency alarm systems, shutdown of hazardous location ventilation equipment, or removal of illumination for an area.

Note 2: Examples of work that may be performed on or near energized circuit parts because of infeasibility due to equipment design or operational limitations include testing or electric circuits that...
can only be performed with the circuit energized and work on circuits that form an integral part of a continuous industrial process in a chemical plant that would otherwise need to be completely shut down in order to permit work on one circuit or piece of equipment.

Note 3: Work on or near deenergized parts is covered by paragraph (b) of this section.

(2) Energized parts. If the exposed live parts are not deenergized (i.e., for reasons of increased or additional hazards or infeasibility), other safety-related work practices shall be used to protect employees who may be exposed to the electrical hazards involved. Such work practices shall protect employees against contact with energized circuit parts directly with any part of their body or indirectly through some other conductive object. The work practices that are used shall be suitable for the conditions under which the work is to be performed and for the voltage level of the exposed electric conductors or circuit parts. Specific work practice requirements are detailed in paragraph (c) of this section.

(b) Working on or near exposed deenergized parts.

(1) Application. This paragraph applies to work on exposed deenergized parts or near enough to them to expose the employee to any electrical hazard they present. Conductors and parts of electric equipment that have been deenergized but have not been locked out or tagged in accordance with paragraph (b) of this section shall be treated as energized parts, and paragraph (c) of this section applies to work on or near them.

(2) Lockout and tagging. While any employee is exposed to contact with parts of fixed electric equipment or circuits which have been deenergized, the circuits energizing the parts shall be locked out or tagged or both in accordance with the requirements of this paragraph. The requirements shall be followed in the order in which they are presented (i.e., paragraph (b)(2)(i) first, then paragraph (b)(2)(ii), etc.).

Note 1: As used in this section, fixed equipment refers to equipment fastened in place or connected by permanent wiring methods.

Note 2: Lockout and tagging procedures that comply with paragraphs (c) through (f) of §1910.147 will also be deemed to comply with paragraph (b)(2) of this section provided that:

(1) The procedures address the electrical safety hazards covered by this Subpart; and
(2) The procedures also incorporate the requirements of paragraphs (b)(2)(iii)(D) and (b)(2)(iv)(B) of this section.

(i) Procedures. The employer shall maintain a written copy of the procedures outlined in paragraph (b)(2) and shall make it available for inspection by employees and by the Assistant Secretary of Labor and his or her authorized representatives.

Note: The written procedures may be in the form of a copy of paragraph (b) of this section.

(ii) Deenergizing equipment.

(A) Safe procedures for deenergizing circuits and equipment shall be determined before circuits or equipment are deenergized.

(B) The circuits and equipment to be worked on shall be disconnected from all electric energy sources. Control circuit devices, such as push buttons, selector switches, and interlocks, may not be used as the sole means for deenergizing circuits or equipment. Interlocks for electric equipment may not be used as a substitute for lockout and tagging procedures.

(C) Stored electric energy which might endanger personnel shall be released. Capacitors shall be discharged and high capacitance elements shall be short-circuited and grounded, if the stored electric energy might endanger personnel.

Note: If the capacitors or associated equipment are handled in meeting this requirement, they shall be treated as energized.

(D) Stored non-electrical energy in devices that could reenergize electric circuit parts shall be blocked or relieved to the extent that the circuit parts could not be accidentally energized by the device.

(iii) Application of locks and tags.

(A) A lock and a tag shall be placed on each disconnecting means used to deenergize circuits and equipment on which work is to be performed, except as provided in paragraphs (b)(2)(iii)(C) and (b)(2)(iii)(E) of this section. The lock shall be attached so as to prevent persons from operating the disconnecting means unless they resort to undue force or the use of tools.

(B) Each tag shall contain a statement prohibiting unauthorized operation of the disconnecting means and removal of the tag.
(C) If a lock cannot be applied, or if the employer can demonstrate that tagging procedures will provide a level of safety equivalent to that obtained by the use of a lock, a tag may be used without a lock.

(D) A tag used without a lock, as permitted by paragraph (b)(2)(iii)(C) of this section, shall be supplemented by at least one additional safety measure that provides a level of safety equivalent to that obtained by the use of a lock. Examples of additional safety measures include the removal of an isolating circuit element, blocking of a controlling switch, or opening of an extra disconnecting device.

(E) A lock may be placed without a tag only under the following conditions:
 (1) Only one circuit or piece of equipment is deenergized, and
 (2) The lockout period does not extend beyond the work shift, and
 (3) Employees exposed to the hazards associated with reenergizing the circuit or equipment are familiar with this procedure.

(iv) Verification of deenergized condition. The requirements of this paragraph shall be met before any circuits or equipment can be considered and worked as deenergized.
 (A) A qualified person shall operate the equipment operating controls or otherwise verify that the equipment cannot be restarted.
 (B) A qualified person shall use test equipment to test the circuit elements and electrical parts of equipment to which employees will be exposed and shall verify that the circuit elements and equipment parts are deenergized. The test shall also determine if any energized condition exists as a result of inadvertently induced voltage or unrelated voltage backfeed even though specific parts of the circuit have been deenergized and presumed to be safe. If the circuit to be tested is over 600 volts, nominal, the test equipment shall be checked for proper operation immediately before and immediately after this test.

(v) Reenergizing equipment. These requirements shall be met, in the order given, before circuits or equipment are reenergized, even temporarily.
 (A) A qualified person shall conduct tests and visual inspections, as necessary, to verify that all tools, electrical jumpers, shorts, grounds, and other such devices have been removed, so that the circuits and equipment can be safely energized.
 (B) Employees exposed to the hazards associated with reenergizing the circuit or equipment shall be warned to stay clear of circuits and equipment.
 (C) Each lock and tag shall be removed by the employee who applied it or under his or her direct supervision. However, if this employee is absent from the workplace, then the lock or tag may be removed by a qualified person designated to perform this task provided that:
 (1) The employer ensures that the employee who applied the lock or tag is not available at the workplace, and
 (2) The employer ensures that the employee is aware that the lock or tag has been removed before he or she resumes work at that workplace.
 (D) There shall be a visual determination that all employees are clear of the circuits and equipment.

(c) Working on or near exposed energized parts.
 (1) Application. This paragraph applies to work performed on exposed live parts (involving either direct contact or contact by means of tools or materials) or near enough to them for employees to be exposed to any hazard they present.
 (2) Work on energized equipment. Only qualified persons may work on electric circuit parts or equipment that have not been deenergized under the procedures of paragraph (b) of this section. Such persons shall be capable of working safely on energized circuits and shall be familiar with the proper use of special precautionary techniques, personal protective equipment, insulating and shielding materials, and insulated tools.
 (3) Overhead lines. If work is to be performed near overhead lines, the lines shall be deenergized and grounded, or other protective measures shall be provided before work is started. If the lines are to be deenergized, arrangements shall be made with the person or organization that operates or controls the electric circuits involved to deenergize and ground them.

If protective measures such as guarding, isolating, or insulating, are provided, these precautions shall prevent employees from contacting such lines directly with any part of their body or indirectly through conductive materials, tools, or equipment.

Note: The work practices used by qualified persons installing insulating devices on overhead power transmission or distribution lines are covered by §1910.269 of this Part, not by §§1910.332 through
Under paragraph (c)(2) of this section, unqualified persons are prohibited from performing this type of work.

(i) Unqualified persons.

(A) When an unqualified person is working in an elevated position near overhead lines, the location shall be such that the person and the longest conductive object he or she may contact cannot come closer to any unguarded, energized overhead line than the following distances:

(1) For voltages to ground 50 kV or below - 10 feet (305 cm);

(2) For voltages to ground over 50 kV - 10 feet (305 cm) plus 4 inches (10 cm) for every 10 kV over 50 kV.

(B) When an unqualified person is working on the ground in the vicinity of overhead lines, the person may not bring any conductive object closer to unguarded, energized overhead lines than the distances given in paragraph (c)(3)(i) of this section.

Note: For voltages normally encountered with overhead power lines, objects which do not have an insulating rating for the voltage involved are considered to be conductive.

(ii) Qualified persons. When a qualified person is working in the vicinity of overhead lines, whether in an elevated position or on the ground, the person may not approach or take any conductive object without an approved insulating handle closer to exposed energized parts than shown in Table S-5 unless:

(A) The person is insulated from the energized part (gloves, with sleeves if necessary, rated for the voltage involved are considered to be insulation from the energized part on which the work is performed), or

(B) The energized part is insulated both from all other conductive objects at a different potential and from the person, or

(C) The person is insulated from all conductive objects at a potential different from that of the energized part.

(iii) Vehicular and mechanical equipment.

(A) Any vehicle or mechanical equipment capable of having parts of its structure elevated near energized overhead lines shall be operated so that a clearance of 10 feet (305 cm) is maintained. If the voltage is higher than 50 kV, the clearance shall be increased 4 inches (10 cm) for every 10 kV over that voltage. However, under any of the following conditions, the clearance may be reduced:

(1) If the vehicle is in transit with its structure lowered, the clearance may be reduced to 4 feet (122 cm). If the voltage is higher than 50 kV, the clearance shall be increased 4 inches (10 cm) for every 10 kV over that voltage.

(2) If insulating barriers are installed to prevent contact with the lines, and if the barriers are rated for the voltage of the line being guarded and are not a part of or an attachment to the vehicle or its raised structure, the clearance may be reduced to a distance within the designed working dimensions of the insulating barrier.

(3) If the equipment is an aerial lift insulated for the voltage involved, and if the work is performed by a qualified person, the clearance (between the uninsulated portion of the aerial lift and the power line) may be reduced to the distance given in Table S-5.

(B) Employees standing on the ground may not contact the vehicle or mechanical equipment or any of its attachments, unless:

(1) The employee is using protective equipment rated for the voltage; or

(2) The equipment is located so that no uninsulated part of its structure (that portion of the structure that provides a conductive path to employees on the ground) can come closer to the line than permitted in paragraph (c)(3)(iii) of this section.

(C) If any vehicle or mechanical equipment capable of having parts of its structure elevated near energized overhead lines is intentionally grounded, employees working on the ground...
near the point of grounding may not stand at the grounding location whenever there is a possibility of overhead line contact. Additional precautions, such as the use of barricades or insulation, shall be taken to protect employees from hazardous ground potentials, depending on earth resistivity and fault currents, which can develop within the first few feet or more outward from the grounding point.

(4) Illumination.
(i) Employees may not enter spaces containing exposed energized parts, unless illumination is provided that enables the employees to perform the work safely.
(ii) Where lack of illumination or an obstruction precludes observation of the work to be performed, employees may not perform tasks near exposed energized parts. Employees may not reach blindly into areas which may contain energized parts.

(5) Confined or enclosed work spaces. When an employee works in a confined or enclosed space (such as a manhole or vault) that contains exposed energized parts, the employer shall provide, and the employee shall use, protective shields, protective barriers, or insulating materials as necessary to avoid inadvertent contact with these parts. Doors, hinged panels, and the like shall be secured to prevent their swinging into an employee and causing the employee to contact exposed energized parts.

(6) Conductive materials and equipment. Conductive materials and equipment that are in contact with any part of an employee's body shall be handled in a manner that will prevent them from contacting exposed energized conductors or circuit parts. If an employee must handle long dimensional conductive objects (such as ducts and pipes) in areas with exposed live parts, the employer shall institute work practices (such as the use of insulation, guarding, and material handling techniques) which will minimize the hazard.

(7) Portable ladders. Portable ladders shall have nonconductive siderails if they are used where the employee or the ladder could contact exposed energized parts.

(8) Conductive apparel. Conductive articles of jewelry and clothing (such as watch bands, bracelets, rings, key chains, necklaces, metalized aprons, cloth with conductive thread, or metal headgear) may not be worn if they might contact exposed energized parts. However, such articles may be worn if they are rendered nonconductive by covering, wrapping, or other insulating means.

(9) Housekeeping duties. Where live parts present an electrical contact hazard, employees may not perform housekeeping duties as such close distances to the parts that there is a possibility of contact, unless adequate safeguards (such as insulating equipment or barriers) are provided. Electrically conductive cleaning materials (including conductive solids such as steel wool, metalized cloth, and silicon carbide, as well as conductive liquid solutions) may not be used in proximity to energized parts unless procedures are followed which will prevent electrical contact.

(10) Interlocks. Only a qualified person following the requirements of paragraph (c) of this section may defeat an electrical safety interlock, and then only temporarily while he or she is working on the equipment. The interlock system shall be returned to its operable condition when this work is completed.