

Colluding Against Workers

Vincent Delabastita* Michael Rubens†

This version: November 18, 2022

First version: November 15, 2021

Abstract

Empirical models of labor market competition usually assume that employers set wages non-cooperatively, despite ample evidence for collusive wage-setting agreements. We propose an identification approach for labor market collusion that relies on production and cost data. We apply this approach to study how collusion affected wage markdowns of 227 Belgian coal firms between 1845 and 1913, a setting that features an observable shock to collusion due to the introduction of a coal cartel in 1897. We are able to detect collusion through this cartel without ex-ante knowledge of its timing, and find that it explains the fast growth in markdowns after 1900. We also find that prior to the cartel, firms were already colluding through ‘industry associations’, albeit imperfectly.

JEL classification codes: N33, J42, L40

Keywords:

Collusion, Industrial Revolution, Labor Markets, Monopsony

*Radboud University Nijmegen, Department of Economics and Business Economics.
E-mail: vincent.delabastita@ru.nl

†University of California, Los Angeles, Department of Economics. E-mail: rubens@econ.ucla.edu.
Acknowledgements: We thank Frans Buelens, Erik Buyst, Jan De Loecker, Marc Deloof, Sebastian Fleitas, Maarten Goos, Joel Mokyr, Mohamed Saleh, Jo Van Biesebroeck, Gertjan Verdickt, Frederic Vermeulen, Hillary Vipond, Patrick Wallis and Noam Yuchtman for helpful comments and suggestions. Vincent Delabastita and Michael Rubens both benefited from a PhD Fellowship (Aspirant) of the Research Foundation - Flanders (FWO), grant numbers 11F8619N and 11A4618N respectively. Rubens gratefully acknowledges support from the ERC Consolidator grant 816638 MPOWER. We are grateful to Filip Strubbe from the Belgian National Archives for help with the data sources. This paper circulated previously circulated under the titles “Monopsony and Industrialization” and “Colluding Against Workers: Evidence from Belgium, 1845-1913”.

1 Introduction

There are growing concerns about increasing levels of labor market power held by firms.¹ Whereas empirical labor market models have focused on many sources of imperfect competition, such as labor market frictions, concentration, or employer differentiation, they have usually assumed non-cooperative wage-setting by employers.² However, there is quite some evidence for wage-fixing and anti-poaching agreements, for instance between high-tech firms, fast-food chains, oil companies, and universities (Gibson, 2021, Krueger & Ashenfelter, 2018, Naidu, Posner, & Weyl, 2018, 597-598).³ The extent to which collusive wage-setting drives the wage markdown, which is the wedge between the marginal product of labor and wages, remains an open question.⁴ The answer to this question is crucial when designing policies to constrain ‘monopsony’ or ‘oligopsony’ power.⁵ For instance, antitrust policy has a key role in addressing oligopsony power if this oligopsony power is derived from collusion between employers, but not if it arises from non-cooperative sources, such as search frictions or employer differentiation.

In this paper, we close this gap by developing an empirical approach to detect and quantify employer collusion in labor markets using firm-level production, cost, and wage data. Our approach consists of estimating wage markdowns using a production-cost model that does not impose conduct assumptions upstream, and comparing these to markdown bounds that employers would charge if they would not collude, and if they would perfectly collude. Knowledge of these markdown bounds requires imposing a model of labor supply, in addition to the labor demand conditions derived from the production model. This identification strategy builds on the markup comparison done by De Loecker and Scott (2016), with the important distinction that we use this comparison to identify collusion, and that we invert the model to compare wage markdowns across models with different conduct assumptions, rather than price

¹See, for instance, Krueger (2018) and surveys in Manning (2021) and Sokolova and Sorensen (2021).

²Recent examples include Caldwell and Harmon (2019) for oligopsony power due to search frictions, Card, Cardoso, Heining, and Kline (2018) for heterogeneous worker tastes over firm-specific (dis)amenities, and Schubert, Stansbury, and Taska (2021) for labor market concentration.

³See U.S. Department of Justice for a no-poaching agreements case in higher education.

⁴In his well-known literature review, Manning (2011, 979) already considered the potential role of collusion on labor markets an “open question”.

⁵For the remainder of the paper, we use the terms ‘oligopsony’ rather than ‘monopsony’, because actual monopsonies are scarce.

markups.

We apply our method to examine the extent to which wage markdowns of 227 Belgian coal firms between 1845 and 1913 were due to collusion, or to other sources of imperfect competition. By examining imperfect labor market competition during the industrialization process of Belgium, we touch an ‘old’ question in economics: were workers exploited during the industrial revolution, and to which extent was this due to collusion between employers?⁶

The Belgian coal setting is uniquely fit for our research question, because of three reasons. First, cartels were legal throughout the 19th century, which allows us to observe collusion. In the Belgian coal setting, a cartel was formed in 1897, and we also observe information about collusive wage-setting through the membership of ‘industry associations’, professional organizations at which firm executives met weekly to discuss current industry developments and wage-setting. This allows us to compare our wage collusion estimates, which do not require observing collusion, to observed collusive behavior. Second, the coal industry offers a rare case in which rich micro-data can be retrieved over a uniquely long period that covers most of the industrialization of Belgium, the first country on the European continent to participate in the Industrial Revolution. Third, the coal industry features limited product differentiation, which facilitates the empirical analysis. Despite these ‘special’ characteristics of the historical Belgian coal setting, our method can be applied in any other industry for which production, cost, and wage data are available, and can be extended to settings with differentiated goods and/or multi-product firms.

Our findings can be summarized as follows. During a first period, up to the 1870s, wage markdowns were stable, with workers being paid around 70% of their marginal product at the median firm. During the 1880s and 1890s, markdowns increased, leaving workers with around 60% of their marginal product. Finally, after 1900, markdowns increased even further, leaving workers less than 50% of their marginal product.

⁶The relationship between workers’ living standards and industrialization is a core question in economic history (for a notable example, see Feinstein, 1998). The roles of distorted labor markets and collusion are, however, rarely considered. This is remarkable, given that Friedrich Engels (1892, 241-260), whose work *The Condition of the Working Class in England* is a large source of inspiration for this literature on workers’ well-being, himself already dedicated a chapter to lament the “cheating” and “plundering” by the “coal kings”. The case of Belgium is particularly interesting, because Karl Marx, in a letter exchange with Engels, called the country “the snug, well-hedged, little paradise” of the capitalist (1985, 47).

By comparing our markdown levels to non-collusive and fully collusive markdown bounds, we can unpack this markdown increase into collusive and other sources. We find that prior to 1900, the rise in wage markdowns was mostly due to non-collusive sources. Median markdowns were between 25 and 50% in between the non-collusive lower bound and the fully-collusive upper bound, which indicates imperfect collusion. This degree of collusion was roughly constant throughout this time period, and hence does not explain markdown growth prior to 1900.

Contrary to this, the sharp increase in wage markdowns after 1900 was entirely due to collusion. Wage markdowns jumped to the fully-collusive level right after the emergence of the Liège coal cartel in 1897. As 75% of the market was controlled by this cartel, markdowns rose not only at the cartel participants, but also at the other firms in the same market. Our test for labor market collusion cannot reject the null hypothesis of zero collusion from 1901 onwards. Using our empirical approach, we would have been able to detect the increased collusion after the introduction of the cartel without observing this cartel. This increase in employer collusion had important implications for workers. Miner wages would have grown 40% faster after 1898 in the absence of the cartel, and 84% faster in the absence of any collusion on the labor market. Downstream, we find evidence for low markups, meaning that firms had more market power upstream than downstream.

We think that these results have external relevance beyond the coal setting, for two reasons. First, in terms of our findings about the role played by collusion in driving markdowns in the industrial era, we judge that these bear some external validity for other industries because Belgian coal mines were located within commuting distances of industrial cities, and shared many labor market characteristics with these other industries.⁷ The introduction of cartels was not specific to coal, but happened in many industries both in Europe and the U.S.A., and we have anecdotal information that employer collusion was not unique to coal firms but was also present in, for instance, the steel industry.

Second, our results are not just relevant from a historical perspective, but also help understanding the upstream effects of downstream cartels today. Given that output is more easily observed than inputs, firms might be more inclined to collude on output

⁷This is very different from earlier historical studies on labor market power of U.S. coal mining firms, which are usually geographically isolated (for appraisals, see Fishback, 1992; Boal, 1995).

quantities or prices, even if the main goal is to exert market power upstream, rather than downstream. We show that in settings with imperfect labor market competition, downstream cartels can lead to substantial growth in wage markdowns and the exertion of monopsony power through wage collusion.

This paper contributes to three strands of literature. First, we contribute to the literature on imperfectly competitive labor markets. Empirical models of imperfect labor market competition usually impose untested assumptions about firm conduct and competition, such as monopsonistic competition (Card et al., 2018; Lamadon, Mogstad, & Setzler, 2022) or oligopsonistic competition (Berger, Herkenhoff, & Mongey, 2019; Azar, Berry, & Marinescu, 2019). We contribute to this literature by allowing for collusive wage-setting, and by examining how labor market conduct changes when cartels are formed downstream.

Second, we build on a literature on conduct identification in the industrial organization literature. Most empirical work on collusion follows a ‘demand-side’ approach in the tradition of Bresnahan (1987), with the key challenge that both marginal costs and conduct are latent. Possible solutions are to identify shifts in collusion, rather than its level (Ciliberto & Williams, 2014), to rely on in-sample variation in ownership (Miller & Weinberg, 2017), or to find instruments that are orthogonal to affect only marginal costs but not conduct, or vice-versa (C. Michel & Weiergraeber, 2018; Backus, Conlon, & Sinkinson, 2021). If one has production-cost data, however, a production model like in De Loecker and Warzynski (2012) can be used to identify markups without making explicit conduct assumptions, which has been extended to the factor markets side by Morlacco (2020); Brooks, Kaboski, Li, and Qian (2021); Mertens (2020); Rubens (2021, 2022); Yeh, Macaluso, and Hershbein (2022).⁸ We rely on a combination of both approaches, as in De Loecker and Scott (2016), to identify conduct.⁹ Our results show that cartels on product markets can have very large effects on anti-competitive behavior on input markets. This calls for taking into account imperfect competition along the entire vertical chain when studying collusive behavior, similarly to Rubens (2021) who found the same to be true when studying the input market effects of downstream mergers and acquisitions.

⁸Using production function estimation to categorize labor market competition goes back to the work of Dobbelaere and Mairesse (2013).

⁹Rubens (2021) also combines a factor supply model with a production model, but for a different purpose, recovering markups and markdowns in the presence of non-substitutable inputs.

Third, we contribute to the economic history of employer collusion and anti-competitive labor market institutions. The economic history literature contains ample evidence for employer collusion on labor markets. For instance, 14th-century England feudal landlords coordinated to keep labor costs low (Jedwab, Johnson, & Koyama, 2022).¹⁰ Guilds were widely used to manipulate wages (Ogilvie, 2019, 190-191). Textile firms colluded when setting prices for domestic textile production, which remained an invaluable source of income for many until deep in the 19th century (Humphries & Schneider, 2019, 152). Throughout the 19th century, employers increasingly unionized in employers' associations, in which employers sought to defend common commercial interests, control their labor force and counter emerging trade unions.¹¹ We contribute by showing that industry associations were crucial vehicles of wage collusion for most of the 19th century, but that they lost this function due to the emergence of cartels during the 1890s. We find that employer collusion remained relatively stable throughout most of the industrial revolution, only to increase sharply at the turn of the century.¹² The surge of cartels after the turn of the century, in Europe and the U.S.A. alike (Lamoreaux, 2019), hence provided opportunities for collusion not only on the product market, but also on the labor market¹³.

The remainder of this paper is structured as follows. Section 2 describes the historical setting of Belgian coal mining and presents the data. In Section 3, we present the model and estimate firm-level wage markdowns between 1845 and 1913. In section 4, we test for collusive-wage setting, decompose wage markdowns into a collusive and non-collusive component, and use these estimates to examine the consequences of the 1897 coal cartel for miner wage growth. Finally, Section 6 concludes.

¹⁰Interestingly and relatedly, the case of feudalism is also a particular case of labor coercion. Similar to the case of employer collusion, the many historical examples of labor coercion have long had only a limited impact on economics (Acemoglu & Wolitzky, 2011). Recently, a range of historical empirical studies have proven coercion's prevalence in industrial labor markets (Naidu & Yuchtman, 2013) as well as its long-run effects (Dell, 2010).

¹¹A prominent example can be found in British coal mining during the Victorian era, where multiple coal owners' associations actively coordinated to fix wages (Church, 1986, 651-674). Empirical research on the role of employers' organizations is scarce, however. Exceptions with a historical focus can be found in Yarmie (1980) for the UK and Vanthemsche (1995) for Belgium. A current-day analysis of employer unions is done by Martins (2020), who studies how firm performance measures differ between members of such unions and other firms.

¹²Whereas collusion between employers was usually legal, there were legal restrictions on striking and unionization. Naidu and Yuchtman (2018) present evidence of substantial firm-specific rents in 19th-century US labor markets, facilitated by legal restrictions on striking efficacy.

¹³For a concise overview on European coal cartels, see Murray & Silvestre, 2020, 679-680)

2 Industry background and facts

2.1 Coal demand and production

The industrialization of Belgium

Belgium's Industrial Revolution, the first on the continent, started when Walloon entrepreneurs imitated British technological innovations during the 18th century.¹⁴ The macroeconomic effects of these innovations materialized during the following decades, with industrial production taking off primarily from the middle of the 19th century: during the 1850s and 1860s, Belgium became an economic powerhouse (Gadisseur, 1979; Pluymer, 1992). This growth trend continued into the age of globalization when technologically advanced firms fuelled strong export performance in coal-based sectors, such as metal and steel production (Huberman, Meissner, & Oosterlinck, 2017).

Coal industry

The presence of rich and easily accessible coal deposits in the south played an important role in Belgium's industrialization (Allen, 2009, 104).¹⁵ As a result, the coal mining industry became a major industrial employer, with its share of industrial employment surpassing 10% at the turn of the 19th century.¹⁶ This large labor force was distributed among three provinces in Belgium's industrial belt, from east to west, being Hainaut, Namur and Liège.¹⁷ In this paper, we focus on the coal mines in Liège and Namur: these provinces represented approximately 3 out of 10 coal workers in Belgium and 20 to 25% of Belgian coal production throughout the 19th century.¹⁸ There were on

¹⁴This can be clearly illustrated by the case of the first Newcomen machine on the Continent, which was constructed in in Tilleur, near Liège, only eight years from its inception in 1712 (Lebrun, Bruwier, Dhont, & Hansotte, 1981, 263, 313).

¹⁵The discussion on the causes of the Belgian Industrial Revolution mirrors the international debate on whether coal was a crucial determinant in industrialization. Recent research has reappraised the crucial role of coal (Fernihough & O'Rourke, 2021).

¹⁶Due to this central role of coal in Belgium's economy, the coal worker became emblematic for the wider labor population (Geerkens, Leboutte, & Péters, 2020).

¹⁷See the map in Figure A4 in Appendix A. A distinction is typically made between the coal basins of the *Borinage*, *Centre*, *Charleroi* (all three in the province of Hainaut), *Basse-Sambre* (in Namur) and *Liège*.

¹⁸These employment shares are based on the industrial censuses of 1846 and 1896, allowing for comparison through the adaptation by Delabastita and Goos (2022). Production shares are based on Statistique de la Belgique (1858) and the *Annales de Mines de Belgique* (Administration des Mines, 1896, 505).

average 60 coal firms per year in the Liège basin and 19 in the Namur basin. The main buyers of coal were households (22% of sales), steel mills (20%), railroads (13%), cokes producers (10%) and non-ferrous metal manufacturers (10%) (De Leener, 1908).

The Belgian economy's reliance on coal also meant that the local coal industry grew in tandem with its booming industrial manufacturing sector. During the economic downturn of the 1870s, it became increasingly clear that the first signs of exhaustion of Belgian mines meant that domestic coal producers could not meet local demand. Increasing imports from France and Germany, however, meant that coal prices remained relatively stable at around 10 Belgian Francs (BEF) per ton until 1900, with sharp price fluctuations that quickly reverted to the mean. Nonetheless, after 1900, a prolonged increase in coal prices took place. As we will see below, this coincides with the emergence of coal cartels.

While coal can be considered a relatively homogeneous product, there is some differentiation in its volatile matter content, which determines its usage. Four coal types are distinguished in the data set based on volatile content percentiles: 13 – 18% (*houille maigre sans flamme*, anthracite coal), 18 – 26% (*houille sèche courte flamme*), 26 – 32% (*houille maigre longue flamme*), and > 32% (*houille grasse longue flamme*). The first type was mainly used by households for heating purposes, the second for powering steam engines, and the latter two types for railroad locomotives. Mines often extracted a combination of these coal types, which are a function of the geological characteristics of the mine's location.

Production process and technological change

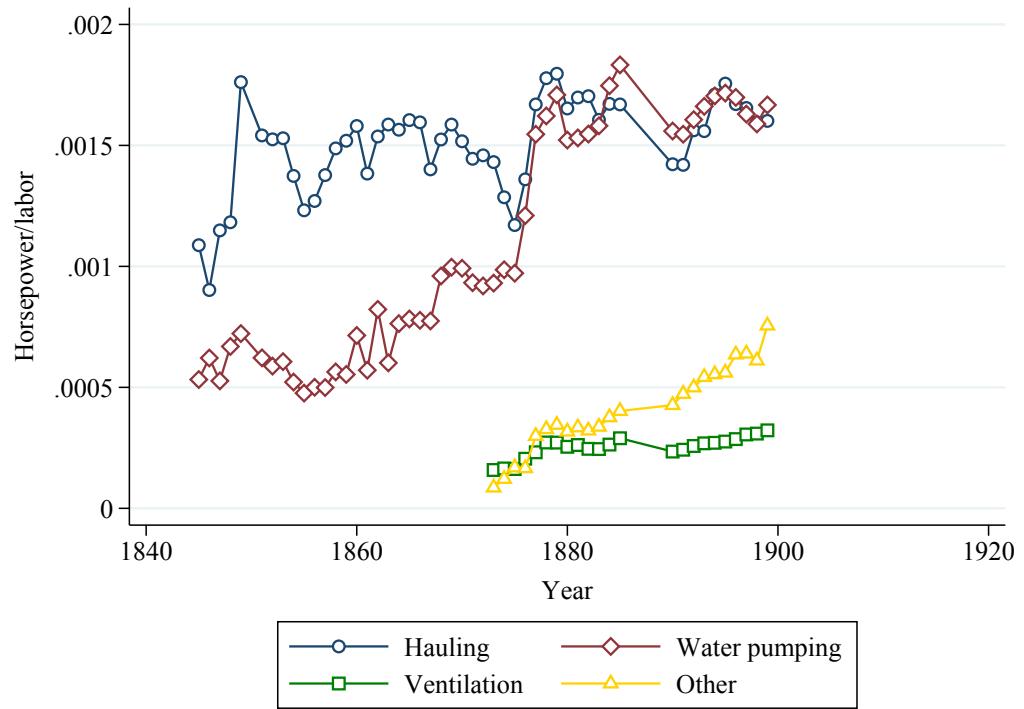
Extracting coal required, roughly speaking, four steps. First, the underground coal vein had to be reached by digging a mine shaft. Second, the coal had to be extracted. This was done manually by the miners (*abatteurs* or *ouvriers à veine*) with a pickaxe. Third, the lumps were hauled to the surface in containers or minecarts by mules and laborers, *hiercheurs*, often young children and women.¹⁹ Fourth, coal had to be sorted from stones, which was done at the surface.

¹⁹An important innovation lied in the successful combination of interior rails and horse-drawn carriages in the second decade of the 19th century (Gaier, 1988, 79). The tight nature of many Liège mines made the introduction of equine power challenging, however, and experimentation with new rail and mine cart systems would increase its applicability throughout the 19th century (Caulier-Mathy, 1971, 217-219).

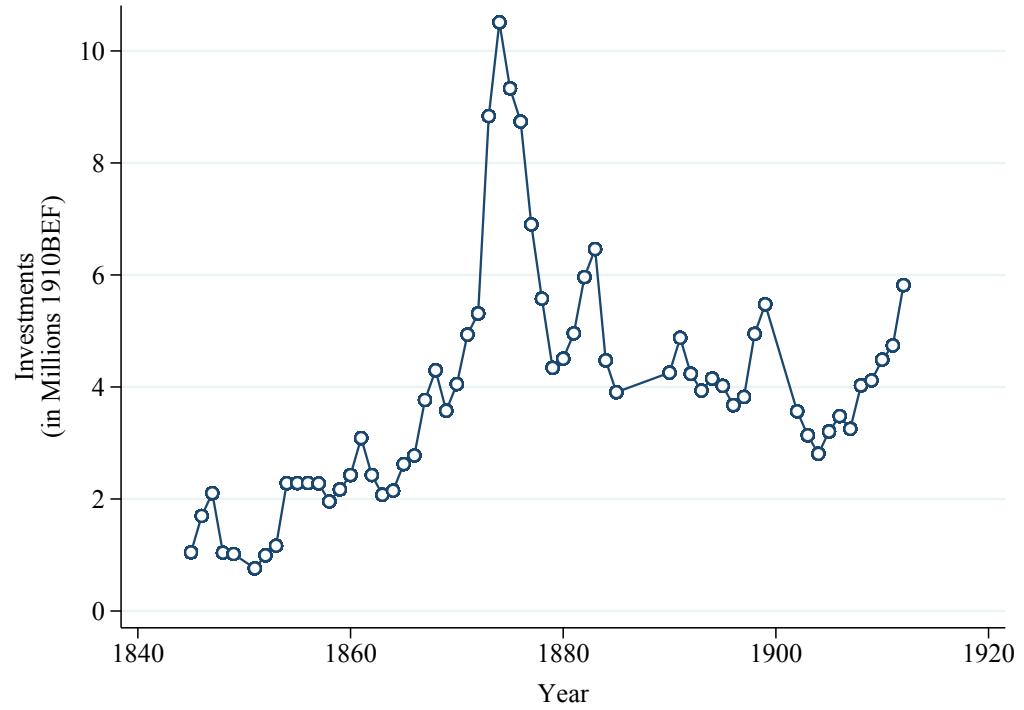
Throughout the sample period, there was extensive capital accumulation and mechanization. First, coal haulage was already mechanized at the start of our sample period, as steam-powered underground mining locomotives were introduced around 1812. The ratio of locomotive horsepower per employee-day used remained fairly constant over the sample period, as shown in Figure 1a. Two other forms of mechanization were, however, increasingly adopted during the 19th century. First, mechanical pumps were introduced to extract water from the mines. These were initially steam-powered, but from 1893 onwards also electrically-powered (Gaier, 1988, 72). Figure 1a shows that the usage of water pumps mainly increased during the 1870s. Second, steam-powered ventilation fans were introduced from the 1870s onwards, to deal with sudden releases of firedamp. In contrast to the hauling process, coal cutting was mechanized very little in Liège and Namur throughout our sample period. Pneumatic coal cutting machines would only be implemented in Liège coal mining around 1908 and had little success because coal veins were too narrow to use cutting machines.²⁰ This contrasts with, for instance, the case of the U.S. where these cutting machines were readily adopted from 1882 onward (Rubens, 2022).

Figure 1b shows the evolution of total investment by Liège and Namur coal mines, in millions BEF. The main peak in investment happened in the late 1870s, and mainly resulted in the increased installations of water pumps and the adoption of mechanical mine ventilation fans which we described in Figure 1a.

2.2 Labor relations and wage-setting


Overview

Due to the high population density in Belgium, manufacturing and mining firms could easily tap into low-cost labor (Mokyr, 1976). Belgium was indeed labeled as a low-wage country by contemporaries, despite its industrial successes. Government intervention on labor markets remained all but nonexistent throughout the 19th century, as politicians held true to the liberal, *laissez-faire* principles on which Belgium was founded in 1830. Moreover, suffrage was conditional on wealth, with merely 1% of the population



²⁰At the 1905 world fair in Liège, organized to showcase the region's industrial leadership, local industrialists had to grudgingly admit that the introduction of mechanical cutting techniques was hampered by difficult geological conditions (Drèze, 1905, 816).

Figure 1: Mechanization in Liège- and Namur-based coal mining

(a) Horsepower per worker-day, by technology, of Liège and Namur coal firms, 1845-1900

(b) Total investment by the Liège and Namur coal firms, 1845-1913

holding voting rights until 1893. This pushed questions on topics such as worker rights and living conditions to the political periphery.²¹

Legal framework

Labor legislation had been drafted under French rule in the beginning of 19th century and generally placed laborers in an unfavorable position by prohibiting collective bargaining for wages or working conditions.²² Article 414 of the criminal code prohibited labor coalitions until 1866, when this article was replaced by stark limitations on strikes.²³ Large-scale labor movements consequently knew little to no development for the larger part of the 19th century. Belgian trade unions were only in the embryonic stages of their development in the 19th century, and employers did not recognize them as legitimate partners for collective bargaining until the First World War (Luyten, 1995, 16).²⁴

Wage contracts

Labor contracts were informal and primarily oral, and legal hiring and firing costs were virtually nonexistent (Van den Eeckhout, 2005). Salaries were determined using either time or piece rates, with the latter typically reserved for miners and other more skilled workers. The only source of government intervention in labor markets was the worker *livret*, a sort of worker's passport, which was abolished in 1883. These livrets could in theory be withheld from workers by employers to prevent workers from switching jobs. In practice, however, micro-evidence shows that this requirement did not stop coal workers from being highly mobile among employers. Coal workers were highly mobile: on average, more than half of the Liège-based coal workers changed workplaces 10 to

²¹Indeed, international comparisons of legislation with regards to child labor, working time and factory inspection, consistently rank 19th-century Belgium amongst least regulated countries in Europe (Huberman & Lewchuk, 2003). We return to the issue of democratization in Section 5.

²²Other than this feature and the aforementioned *livret*, most aspects of the labor relationship, such as working time, safety measures and method of wage payment, were largely agreed upon informally or orally (Van den Eeckhout, 2005).

²³Strikes, the most important instrument of trade unions, remained illegal until 1921, when the article of 24 May 1921 was installed to warrant freedom of coalition.

²⁴The few Belgian trade unions which did form were exclusive of nature and focused on limiting labor supply in urban craft industries. Trade unions that were able to successfully mobilize large parts of the labor force would only arise in the last two decades of the century, and would leave their mark on economic policy only during the 20th century (Vandaele, 2004, 270-271). In his overview work, Chlepner (1972, 27) aptly describes regarding Belgian trade unions in the 19th century: "it is not necessary to describe at length what does not exist".

24 times within their careers (Leboutte, 1988, 49). Furthermore, Belgium's expansive transport network meant that transport costs were low and that the average Belgian worker was also mobile in a geographical sense (Huberman, 2008).

Output per worker and wages

Figure 2a plots the evolution of output per worker and daily wages in the Liège and Namur coal basins during our sample period. From 1845 to 1875, both wages and output per worker grew proportionally. During the late 1870s and 1880s, wage growth stalled despite increasing output per worker. In the late 1890s, wages grew again while output per worker started to fall. These changes can be interpreted in many ways other than monopsony power. Output per worker is not equal to the marginal revenue product of workers because there are more inputs than labor and because product markets might be imperfectly competitive. For instance, capital investment seems important here. The increasing wedge between output per worker and wages during the 1870s coincides with increased capital investment and mechanization during those years, as shown in Figure 1b. Due to these issues, a production model is necessary to correctly identify the wedge between the marginal revenue product of labor and wages. We will lay out this model in Section 3.

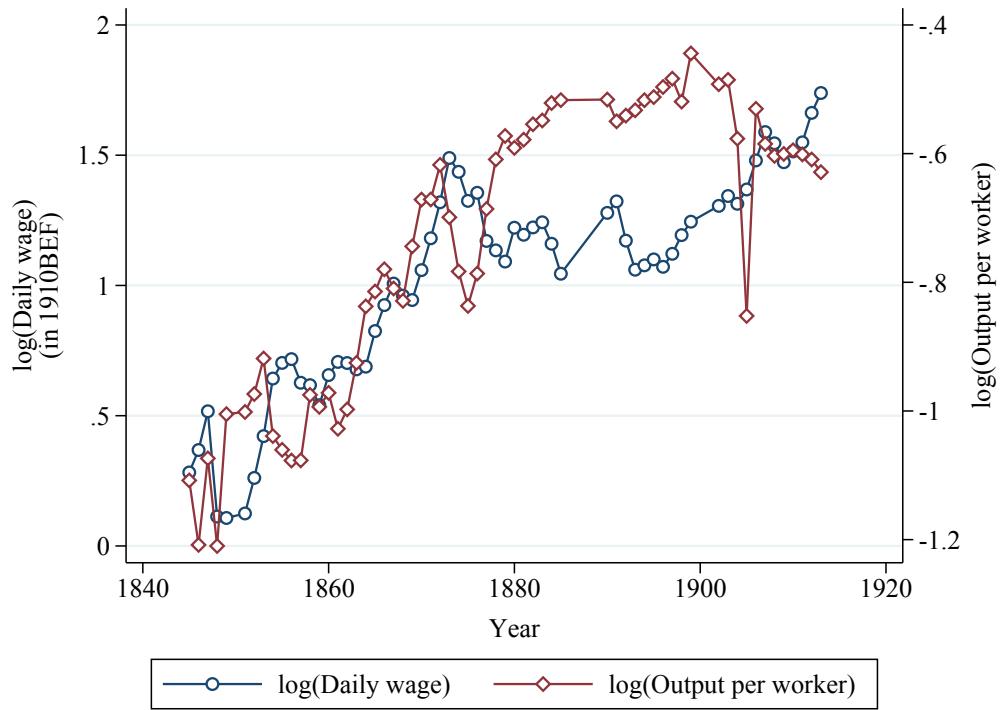
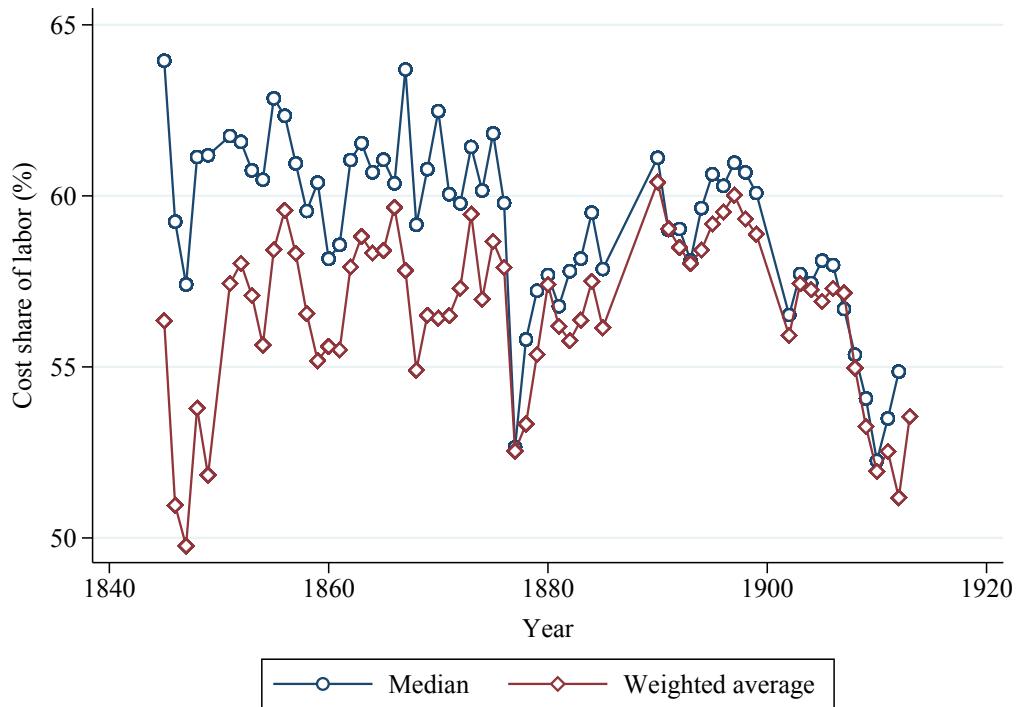

Cost share of labor

Figure 2b plots the median and weighted average cost share over time, defined as labor expenditure over total input expenditure. Until the 1890s, the median cost share of labor was relatively stable, whereas the weighted average cost share grew, indicating reallocation of inputs towards high labor cost share firms. After 1900, both the median and average labor cost share fell. This trend could either indicate technological change or a drop in the relative price of labor compared to the other inputs. We will examine this in the empirical model of Section 3.


2.3 Collusion

Two types of firm collusion are observed throughout the sample period. First, firms co-ordinated wages through employers' associations. Second, coal cartels were introduced during the late 1890s, which imposed output quota on cartel participants.

Figure 2: Output per worker, wages, and cost shares in Liège- and Namur-based coal mining, 1845-1913

(a) Output per worker and wages

(b) Cost share of labor

Employers' associations

Similar to worker collusion, employer collusion when setting wages was illegal. However, the law stipulated much harsher punishment for worker collusion, and included a vague and difficult-to-prove condition that employer collusion had to be “unjust” and “abusive” in order to be punishable (Stevens, 1998, 402). Wage collusion between employers was facilitated by employer unions or so-called ‘employers’ associations’, a type of syndicate which was formed in many industries throughout the 19th century. In the Liège coal mining industry, several mines united in the form of the *Union des charbonnages Liégeois* in 1840, which was publicly registered in 1868 under the name of the *Union des charbonnages, mines et usines métallurgiques de la province de Liège*.²⁵ 33% of firms in our data set were members of an employers’ association, but they produced 80% of output. Many small firms did not join these associations, likely because voting rights were granted based on the number of employees, causing employer associations to be dominated by the large employers. The official objective of the *Union des charbonnages* was to defend the interests of the local coal and metal industries, and its annual reports reveal its role as a lobby group to fight government intervention in issues such as child labor, female labor, working conditions, and labor unionization (Union des charbonnages (...), 1869–1913).

The Union’s committee convened on a monthly basis to discuss current industry developments and to coordinate all kinds of employment decisions (De Leener, 1909, 138). Importantly, the employers’ association served to “coordinate salary fluctuations” (De Leener, 1904, 234). This aligns with the general perception of these early employers’ associations in the 19th century as collusive devices (Dubois, 1960, 6-10). The collusion was of informal nature, as the Union did not impose formal quota or punish deviant behavior. In Mons, coal firm unions suspected that authorities would never bother to enforce the aforementioned regulation against labor coalitions, but stuck to oral agreements as to not warn authorities of their labor coalition violations (Lefèvre, 2004). Some clear-cut cases of collusive wage-setting in Belgian coal mining are known, however, as managers of Hainaut-based coal firms controlled by the universal bank *So-*

²⁵Similar initiatives surfaced in the other Belgian coal *bassins*. The other region in our data set, *Basse-Sambre*, was recognized by more small-scale, family-run firms, lacking formal cohesion. Charleroi’s employers’ association attempted to gain control over this area, but without widespread success in terms of membership (see Appendix B.2 for more details).

ciété Générale de Belgique openly compared the wages paid at their respective firms, and deviations from collusive wage levels were heavily frowned upon.²⁶ This anecdotal evidence indicates that multilateral wage agreements among 19th-century employers were rife, and suggests that this collusive wage-setting behavior happened through employers' associations. We will verify this hypothesis empirically in Section C.

Coal cartels

As in many other industrializing countries, Belgian industries saw a strong increase in the number of cartels from the 1870s onwards. Figure 3a shows that the number of official cartels, which were legal and incorporated as firms, increased from 5 to 80 between 1880 and 1910. The coal industry was no exception: on July 1, 1897, 27 coal firms in Liège entered a cartel, the *Syndicat de Charbonnages Liégeois*. The *Syndicat* was set up as a *Société Anonyme* (SA), in which the partaking firms committed to waiving the vending rights of their production to the cartel. The directors of the coal firms assembled at least twelve times a year, and convened at the demand of a democratic majority; voting rights were determined according to each firm's output. The amount of coal sold was determined and constrained by a collectively decided quota in terms of tonnage. In practice, the individual coal firms remained responsible for their own customer relationships.²⁷ Cartel firms who sold more than the agreed upon quantity were fined 50 BEF per excess ton (compared to an average price of 9.7 BEF per ton in 1898), while other violations of the cartel statutes were fined 1000 BEF. In this framework, the cartel sold between 75 and 80% of total sales in the Liège *bassin*, with the remainder being taken up by the dissenters. The *Syndicat* did not impose any quota on employment or other input expenditures. Its underlying cartel agreement was binding for a period of 5 years, and was renewed until 1935, when it was replaced by a national coal cartel, the *Office National des Charbons* (Vanthemsche, 1983).

²⁶The minutes of their monthly meetings can still be consulted (Mottequin, 1973). Comparative tables of the wages paid at the respective firms were presented and discussed. For instance, at the meeting of 23 February 1863, one of the managers had to defend the elevated wage levels at his firm by pointing to the difficult geological conditions of his exploitation (Mottequin, 1973, 367). It is important to emphasize that such inter-firm capital connections played a less important role in Liège and Namur (Kurgan-van Hentenryk & Puissant, 1990, 206-207). We return to this issue in Appendix B.1.

²⁷This is in contrast to some other coal cartels from that era, where all sales activities were collectivized.

The effect of this cartel can be clearly seen by comparing the Liège coal price to import price of coal in Belgium.²⁸ We plot this import price in Figure 3b. Up to 1897, the Liège coal price was below the import price, as this import price includes transportation costs to the Belgian border. It was hence cheaper for Liège coal consumers, such as steel plants, to buy Liège coal over international coal. Following the cartel introduction in 1897, the Liège coal price increased up to the level of imported coal.²⁹ The cartel had implications on the cost share of labor too: as was shown in Figure 2b, the cost share of labor dropped after 1897, indicating that the cartel could have had labor market implications as well. We will examine this hypothesis in the empirical model.

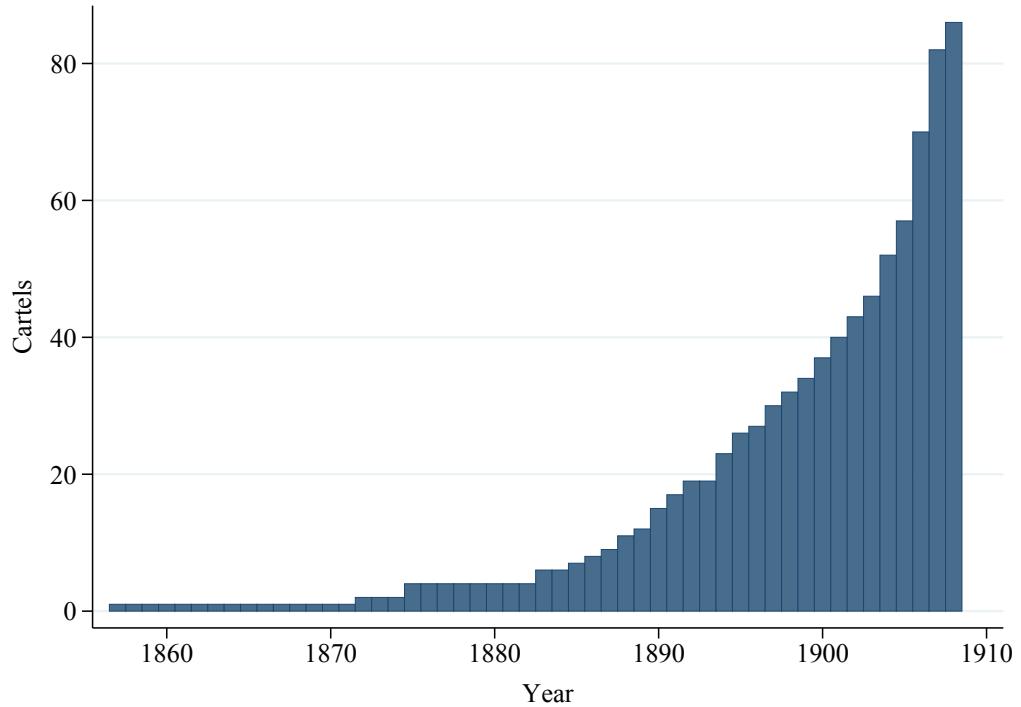
2.4 Data

Annual inspection reports

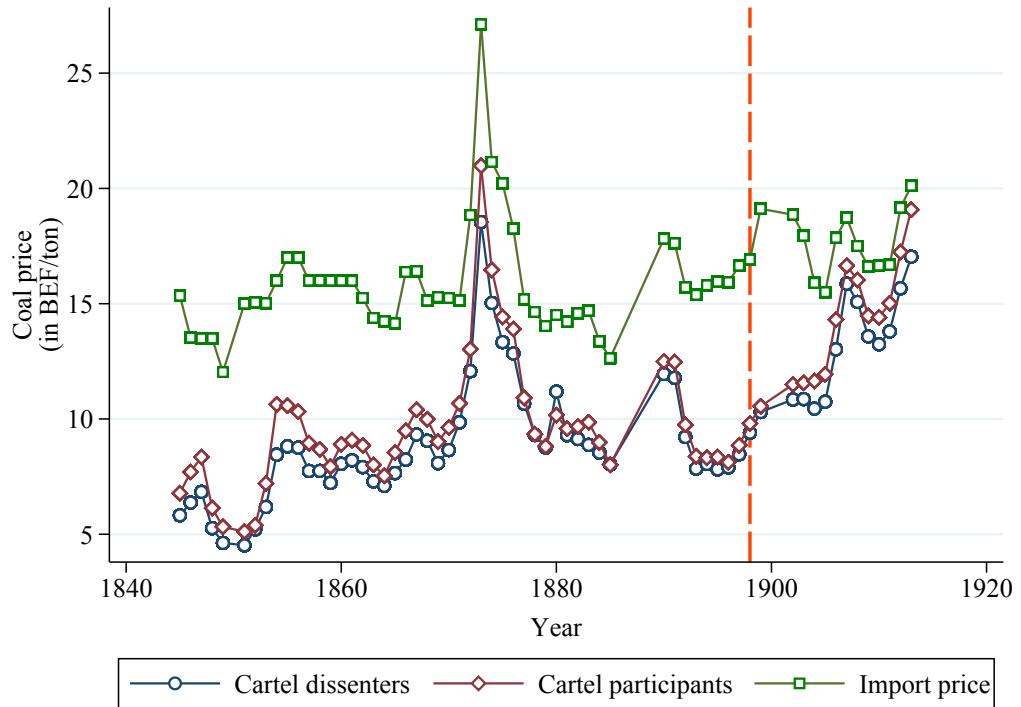
Our main data source is a novel data set which collects annual reports by the *Administration des Mines*, a state agency that employed engineers to annually inspect coal mines.³⁰ We refer to Appendix B for all details concerning the data collection and processing. The *Administration* data comes at the level of mining concessions, in which the state grants permission to a person or firm to mine its natural resources. Concessions could be composed of multiple mines (production units). In theory, the same individual or firm could operate multiple concessions simultaneously, but in practice, however, this almost never happened in the Liège and Namur *bassins* as firms who owned multiple concessions immediately merged these into a single concession. Hence, we can assume that the concession-level unit of observation in the data corresponds to mutually independent firms.³¹

For the 227 firms in our data set, we observe annual coal extraction in tons by type of coal, and coal prices at the mine gate. Employment is reported in numbers of workers and in days, with a distinction between underground and surface workers.³²

²⁸This import price is computed as total value of imported coal at the border divided by imported quantity of coal; it hence includes transport costs from foreign mines to the border.


²⁹A cartel would not price above this import price, as this would lead to massive substitution towards imported coal.

³⁰More historical background on this agency and the reports is in Appendix B.1.


³¹We motivate this assumption in depth in Appendix B.1.

³²For some years, especially the earlier and later periods, the counts also differentiate workers based on their age and gender.

Figure 3: Cartels in Belgium and in the Liège coal industry

(a) Number of cartels in Belgium

(b) Prices and the Liège coal cartel, 1845-1913

Notes: The dashed vertical line represent the start of the coal cartel, the *Syndicat de Charbonnages Liégeois*.

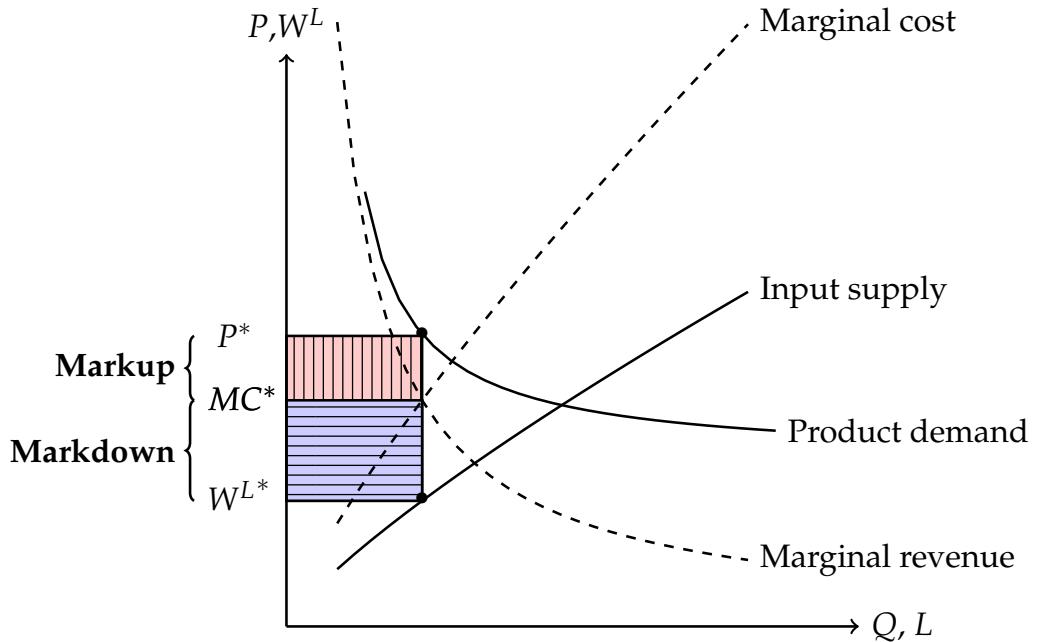
Gross and net wages by worker category are also recorded.³³ The data reports expenditure on, literally, ‘non-labor ordinary expenses’ and ‘extraordinary expenses’. The latter category includes all expenses that involve ‘mine construction, mine transformation and other expansion costs’ (Wibail, 1934). Hence, we consider the former to be intermediate input expenditure and the latter to be fixed capital investment.³⁴ Besides capital investment, we also observe the total horsepower of the various machine types used per firm, up to 1899. We use these different capital measures to construct the capital stock using a perpetual inventory method, as explained in detail in Appendix B.3.

Additional data sets

We complement the inspection reports with various other data sources.³⁵ We obtain yearly information on each firm’s membership of an employers’ association by digitizing the monthly *Bulletin* of the *Union des Charbonnages, Mines et Usines Métallurgiques de la Province de Liège*, for the Liège basin, and of the *Association Charbonnière et l’industrie houillière des bassins de Charleroi et de la Basse-Sambre*, for the Namur basin. We also observe membership in coal cartels using the cartel lists from De Leener (1904). Furthermore, we link the municipalities in which the firms are located to data on opening dates of railroad and tramway stations. Hence, we know for every firm in every year whether it was connected to the railroad and tramway networks, or not. Finally, we use the Consumer Price Index (CPI) of Segers (2003) and the extension thereof to 1845 using Scholliers’ index (1995) to deflate all monetary variables in the data set.

3 Quantifying wage markdowns

In this section, we estimate the wedge between the marginal revenue product of labor and their wage, the ‘wage markdown’. If a firm possesses monopsony power over workers, this should result in a markdown wedge. In the next section, we will examine the extent to which collusive-wage setting contributed to the level and evolution of this


³³For the earlier periods, the distinction between gross and net wages (typically due to participation in insurance schemes) was irrelevant.

³⁴Further information on the construction of the cost variables can be found in Appendix B.1.

³⁵More information on the construction of these variables is provided in Appendix B.2.

wage markdown. The empirical challenge of estimating wage markdowns is illustrated in Figure 4. Consider a firm that faces an upward-sloping labor supply curve and a downward-sloping product demand curve. If the firm is profit-maximizing, or cost-minimizing, it will choose its labor quantity, and all other input quantities, in order to equate the marginal cost and revenue of each input. This results in the product price P to be marked up above marginal costs, and the wage W^L to be marked down below the marginal revenue product of labor. The key empirical challenge is that even if output and input prices may be observed, marginal revenue products are latent. Simply comparing a revenue/worker ratio to the wage per worker does not uncover the wage markdown because first, there are usually multiple inputs, and second, output prices are endogenous to firm size if there is imperfect competition downstream.

Figure 4: **Markups and markdowns**

3.1 Model

Production model

Output Q_{ft} indicates the tonnage of coal extracted during a given year by firm f , and P_{ft} is the mine-gate coal price per ton. Given that there is limited differentiation in coal quality, we assume coal to be a homogeneous product. Although there is some differentiation in terms of coal quality, we sum the output of coal across qualities,

because quality depends on exogenous geological conditions, and does not affect the production function.³⁶ To verify this assertion, we regress the estimated TFP residual on the share of high-quality coal, and obtain an R^2 below 10^{-5} .

Firms use two variable inputs: labor L_{ft} , which is measured as the average number of miners employed throughout the year, and the amount of intermediate inputs purchased, M_{ft} . The capital stock consists of steam engines used for water pumping, coal hauling, and ventilation. The value of total capital used at each mine is denoted K_{ft} . Logarithms of variables are denoted in lowercases. As our baseline specification, we assume a Cobb-Douglas production function in materials, labor, and capital, as given by Equation (1).

$$q_{ft} = \beta^l l_{ft} + \beta^m m_{ft} + \beta^k k_{ft} + \omega_{ft} \quad (1)$$

In other words, we allow for substitution between different inputs. In case of the materials and labor inputs, this can be straightforwardly illustrated with the example of mine tunnel excavation, an important activity in 19th-century coal production. One can choose to use manual labor to dig these tunnels; an alternative, however, is to use explosives to open up new areas for coal extraction. We define the output elasticities of labor and materials as $\theta_{ft}^l \equiv \frac{\partial Q_{ft}}{\partial L_{ft}} \frac{L_{ft}}{Q_{ft}}$ and $\theta_{ft}^m \equiv \frac{\partial Q_{ft}}{\partial M_{ft}} \frac{M_{ft}}{Q_{ft}}$. In the baseline Cobb-Douglas model of Equation (1), the output elasticities are constant, $\theta_{ft}^l = \beta^l$. In Appendix D.1, we extend to a more flexible functional form by also estimating a translog production function.D.1.

Total factor productivity is denoted ω_{ft} . We assume that the total factor productivity transition is given by the AR(1) process in Equation (2), with an unexpected productivity shock v_{ft} .

$$\omega_{ft} = h(\omega_{ft-1}) + v_{ft} \quad (2)$$

There are a number of mechanisms that would invalidate this AR(1) productivity transition, such as cost dynamics. We examine cost dynamics in Appendix D.2. We rely on a Hicks-neutral production function, but technological change might have been factor-biased. We examine this possibility using detailed technology data in section 5.

³⁶Quality differences are mainly due to variation in caloric content. We observe the breakdown of coal output into three quality categories but aggregate to a single product by summing physical output.

We assume that both labor and intermediate inputs are variable and static inputs, meaning that they are not subject to adjustment frictions and only affect current profits. Capital is, in contrast, assumed to be a dynamic and fixed input: we assume capital investment is chosen one period in advance, and affects both current and future profits, as capital does not depreciate immediately. We defend these timing assumptions in Section 5, by looking at the impulse-response functions of the different inputs after the coal demand shock of 1871.

Labor and intermediate input supply

Firms face a labor supply function with an inverse firm-level elasticity of $\psi_{ft}^l = \frac{\partial W_{ft}^l}{\partial L_{ft}} \frac{L_{ft}}{W_{ft}^l} - 1$. If firms are wage takers on the labor markets, this implies that $\psi_{ft}^l = 1$. In equilibrium, ψ_{ft}^l is equal to the ratio of the marginal revenue product of labor over the wage, it hence quantifies the degree of labor market power held by firms. We will call the term ψ_{ft}^l the ‘wage markdown’ throughout the remainder of the paper.

In contrast, we assume that intermediate input prices are exogenous to each individual firm, meaning that $\psi_{ft}^m = 1$. The Belgian coal industry was well integrated in the manufacturing sector and had to compete with other industrial sectors for material inputs such as tools, explosives and black powder, so it seems reasonable to assume that these input markets were indeed competitive. To corroborate this assumption, we collected monthly prices for *pétroleum* (lamp oil), an important intermediate input in underground coal mining. Lamp oil was chosen because of data availability reasons, as well as its homogeneity allowing for straightforward regional comparison. This exercise resulted in a panel data set, which covers all major urban and industrial centers in Belgium for the period 1896 to 1913.³⁷ As shown in Figure A5 in Appendix A.1, we find little regional variation in the prices of this input, both within mining areas (such as between Mons, in the west, and Liège, in the east), and across mining and non-mining centers (such as Bruges, Brussels and Ghent). This underlines that Belgian markets for industrial inputs were well integrated and supports our assumption that intermediate input prices were exogenous to the individual firm.

³⁷This database is built on retail prices, collected by the Belgian labor inspection services. Few wholesale prices survived for 19th-century Belgium, and reconstructions are mostly based on nationally aggregated trade statistics (such as in Loots, 1936). Regional prices for earlier periods are even more scarcely available. For more information on the source, we refer to Figure A5.

Firm behavior

The usual markup model of De Loecker and Warzynski (2012) assumes that firms choose variable inputs to minimize their own static costs. However, the anecdotal evidence for firm collusion, both through the employers' association and a coal cartel after 1897, implies that some firms choose inputs cooperatively in order to minimize joint costs. Hence, we assume in Equation (3) that firms choose variable inputs in order to minimize a joint cost function, with collusion weights λ_{fgt} between firm f and each other firm g within the same input market $i(f)$, with the set of firms in market i being denoted $\mathcal{F}_{i(f)t}$. This is the cost minimization equivalent of the objective functions in empirical collusion models such as in Bresnahan (1987).

$$\min_{L_{ft}, M_{ft}} \left(\sum_{g \in \mathcal{F}_{i(f)t}} \lambda_{fgt} (L_{gt} W_{gt}^L + M_{gt} W_{gt}^M) - \kappa_{ft} (Q_{ft} - Q(L_{ft}, M_{ft}, K_{ft}, \Omega_{ft}; \beta)) \right) \quad (3)$$

with $\lambda_{fgt} = 1$ if $f = g$, and $0 \leq \lambda_{fgt} \leq 1$ if $f \neq g$. The collusion weights λ_{fgt} indicate the extent to which firms internalize only their own costs when choosing inputs, or also the costs of their competitors. If firms choose variable inputs to minimize only their own costs, this implies that the matrix of λ_{fgt} weights, Λ_t is the identity matrix, in which case our model collapses to the one in De Loecker and Warzynski (2012). If firms are perfectly colluding, they are setting wages as if they would be a single firm, and Λ_t becomes a matrix of ones.

Timing of choices

In accordance with the assumptions made above, the timing of choices is as follows. At time $t - 1$, prior to observing productivity shocks ν_{ft} , firms choose collusion weights λ_{fgt} , and capital investment. At time t , after the productivity shock materializes, they choose labor and intermediate inputs.

Price markups and wage markdowns

As in De Loecker and Warzynski (2012), the markup μ_{ft} is the ratio of the output price P_{ft} over marginal costs κ_{ft} : $\mu_{ft} \equiv \frac{P_{ft}}{\kappa_{ft}}$. We denote the revenue share of labor as $\alpha_{ft}^l \equiv \frac{L_{ft} W_{ft}^l}{P_{ft} Q_{ft}}$ and similarly for materials, as α_{ft}^m . The first-order conditions on labor

and materials imply the following system of markup equations:

$$\mu_{ft}^m = \frac{\theta_{ft}^m}{\alpha_{ft}^m} \quad (4a)$$

$$\mu_{ft}^l = \frac{\theta_{ft}^l}{\alpha_{ft}^l (\psi_{ft}^l + \sum_{g \in \mathcal{F}_{i(f)t}} \lambda_{fgt} (\psi_{fgt}^l \frac{L_{gt} W_{gt}^l}{W_{ft}^l L_{ft}}))} \quad (4b)$$

with the cross-wage elasticities being $\psi_{fgt}^l \equiv \frac{\partial W_{gt}^l}{\partial L_{ft}} \frac{L_{ft}}{W_{gt}^l}$

Similarly to Mertens (2020); Morlacco (2020); Brooks et al. (2021), but now allowing for collusion, we divide the markdown derived from labor by the markdown derived from intermediate inputs to obtain the wage markdown expression in Equation (5):

$$\mu_{ft}^l \equiv \frac{\theta_{ft}^l W_{ft}^m M_{ft}}{\theta_{ft}^m W_{ft}^l L_{ft}} = \psi_{ft}^l + \sum_{g \in \mathcal{F}_{i(f)t}} (\lambda_{fgt} \psi_{fgt}^l \frac{L_{gt} W_{gt}^l}{W_{ft}^l L_{ft}}) \quad (5)$$

The left-hand side of equation 5, μ_{ft}^l is known up to the production function parameters. It can be interpreted as a ‘wage markdown’. As shown in Appendix E, this variable is equal to the ratio of the marginal (joint) revenue product of labor at firm f , $MRPL_{ft}$, over the wage at firm f :

$$\mu_{ft}^l = \frac{MRPL_{ft}}{W_{ft}^l}$$

As motivated at the start of this section, the markdown variable μ_{ft}^l will be the main object of interest in the empirical analysis: in perfect competition, wages are equal to marginal revenue products, so $\mu_{ft}^l = 1$. In the absence of collusion, the wage markdown is equal to one plus the inverse *firm*-level elasticity of labor supply: $\mu_{ft}^l = \psi_{ft}^l + 1$. In case of full collusion, the wage markdown is equal to one plus the inverse *market*-level elasticity of labor supply: $\mu_{ft}^l = \psi_{ft}^l + \sum_{g \in \mathcal{F}_{i(f)}} \psi_{fgt}^l \frac{L_{gt} W_{gt}^l}{W_{ft}^l L_{ft}} + 1$.

3.2 Identification and estimation

Identification

In order to identify the production function, we combine timing assumptions on firms’ input choices, as proposed by Olley and Pakes (1996), with a labor supply shifter. As

labor and materials were assumed to be static and variable inputs, they are chosen after the productivity shock v_{ft} is observed by the firm, at time t , while capital is fixed and dynamic, so investment is chosen before the productivity shock is observed, at time $t - 1$. Second, we rely on agricultural wage shocks as an additional instrument. It is a well-established fact in Belgian economic history that the Walloon coal belt attracted a large surplus of agricultural labor (predominantly from Flanders, the northern area of Belgium), and that this process accelerated in periods such as the Agricultural Invasion (Segers, 2003, 334; Buyst, forthcoming, 23). Negative shocks to agricultural wages hence should have acted as positive labor supply shocks to coal mines. We include current and lagged agricultural wages in Belgium, as measured by Segers (2003, 622-623), in the instruments vector. The assumption here is that changes in agricultural wages w_t^{agri} affected labor supply to the mines, but did not affect coal mining total factor productivity directly. In Appendix Table A1, we provide evidence on the first stage by regressing the annual change in log total mining employment in the Liège and Namur coal basin on the annual change in log agricultural wages in Belgium. Negative agricultural wage shocks indeed increase the growth of coal mining employment. Following these assumptions, we can now write:

$$\mathbb{E} \left[v_{ft} | (l_{fr-1}, m_{fr-1}, k_{fr}, w_r^{agri}) \right]_{r \in [2, \dots, t]} = 0 \quad (6)$$

The usual approach in the literature is to invert the intermediate input demand function to recover the latent productivity level ω_{ft} , which can be used to construct the productivity shock v_{ft} using the productivity law of motion (Olley & Pakes, 1996; Levinsohn & Petrin, 2003; Ackerberg, Caves, & Frazer, 2015). This approach hinges on productivity being the only latent, serially correlated input demand shifter. However, input demand varies due to markup and markdown variation as well. The approach with input inversion can still be used when making additional parametric assumptions about the distribution of markups and markdowns. Another possibility is to impose more structure on the productivity transition process. Following Blundell and Bond (2000), the productivity transition (2) can be rewritten as a linear function with serial correlation ρ , Equation (7). By taking ρ differences of Equation (7), one can express the productivity shock v_{ft} as a function of estimable coefficients without having to

invert the input demand function.

$$\omega_{ft} = \rho\omega_{ft-1} + v_{ft} \quad (7)$$

We pursue this approach as it allows us not to impose additional structure on the distribution of markups and markdowns across firms and over time. This comes at the cost of ruling out a richer productivity transition function $h(\cdot)$, and of not coping with selection bias due to endogenous entry and exit. As is often noted in the literature, however, our use of an unbalanced panel, in which we do not select negatively on market exit, already alleviates most concerns of selection bias.³⁸

Estimation

Rewriting the moment conditions from Equation (6), and only using the lags up to one year, the moment conditions are given by Equation (8).³⁹

$$\mathbb{E} \left[q_{ft} - \rho q_{ft-1} - \beta^0(1 - \rho) - \beta^l(l_{ft} - \rho l_{ft-1}) - \beta^m(m_{ft} - \rho m_{ft-1}) - \beta^k(k_{ft} - \rho k_{ft-1}) \mid (l_{ft-1}, m_{ft-1}, k_{ft}, k_{ft-1}, w_t^{agri}) \right] = 0 \quad (8)$$

As the estimation procedure requires lagged variables to be observed, we can estimate the model only on years for which the prior year is included in the data set as well, which reduces the sample size to 4003 observations. This also excludes firms that do not use capital or intermediate inputs, as logarithms are taken. Labor is measured as the number of workers times the number of days worked. Materials are measured using the ‘ordinary expenses’ variable, which is reported in the data. Capital is constructed by using the perpetual inventory method on the ‘extraordinary expenses’ category, which we describe more in detail in Appendix B.3. We block-bootstrap the estimation procedure, taking draws by replacement within mines over time. We use 200 bootstrap draws. We sequentially estimate (i) the production function, (ii) markdowns and markups, and (iii) regressions of markdowns and/or markups on other variables within the same bootstrap iteration, in all the regressions that follow.

³⁸See Olley and Pakes (1996) and De Loecker, Goldberg, Khandelwal, and Pavcnik (2016).

³⁹In theory, one could use more lags, but this further reduces the data set, which is already small.

3.3 Wage markdowns: level and evolution

Production function estimates

The production function estimates are in Table 1a. Column (I) reports the OLS estimates, as a comparison, whereas column (II) reports the GMM estimates, which are used in the remainder of the paper. The output elasticity of labor is estimated to be 0.638, whereas the output elasticity of materials is estimated at 0.259. These estimates confirm the historical record that Belgian coal mining was indeed very labor-intensive. The capital coefficient is 0.161. As was explained in Section 2, capital investment in Liège mines was mainly limited to mining locomotives and lifts, ventilation fans, and water pumps. Ventilation fans and water pumps are safety investments, which can be seen as a sunk cost to operate the mine, but do not affect labor productivity. Mining locomotives, however, increased productivity, as documented for U.S. mines in Rubens (forthcoming). Finally, cutting machines, which increased TFP,⁴⁰ were almost entirely not adopted in Liège due to too narrow coal veins, as was explained earlier.

Table 1: Model estimates

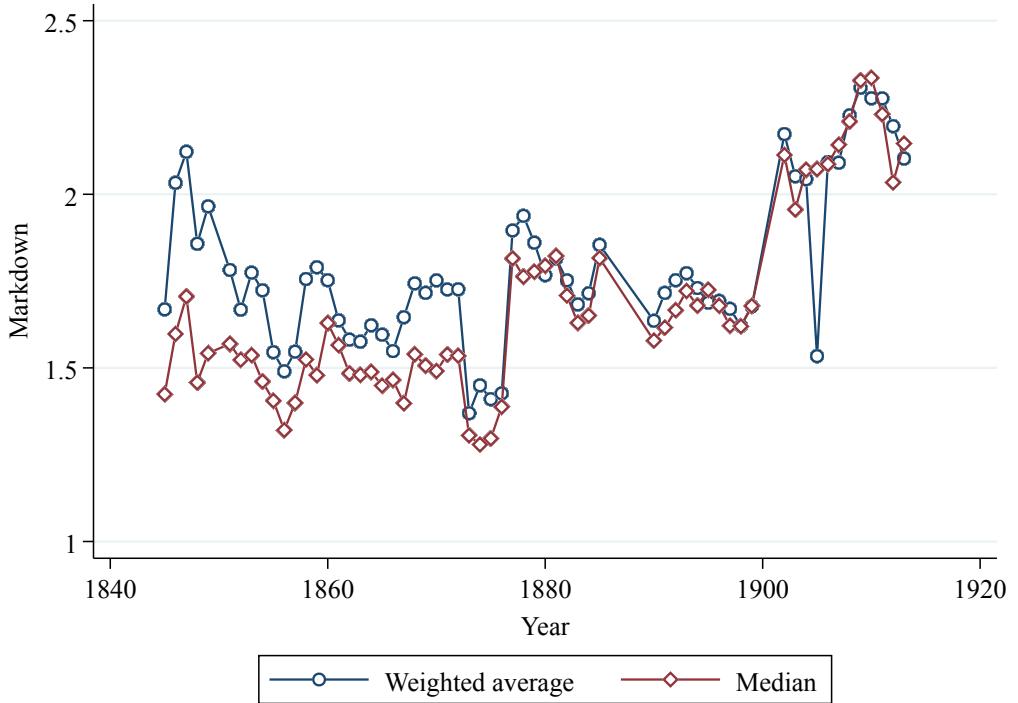
<i>(a) Production function</i>		OLS		GMM	
		Est.	SE	Est.	SE
log(Labor)	β^l	0.795	0.034	0.697	0.330
log(Materials)	β^m	0.275	0.029	0.225	0.137
log(Capital)	β^k	-0.008	0.140	0.151	0.074
R-squared			.941		.938
Observations			4476		3999

<i>(b) Markdowns/markups</i>	Wage markdown		Price markup	
	Est.	SE	Est.	SE
Median	1.651	0.448	0.724	0.492
Average	1.796	0.487	0.775	0.530
Weighted average	1.771	0.581	0.736	0.541

Notes: Block-bootstrapped standard errors, 200 iterations.

⁴⁰This is documented in Rubens (2022)

Wage markdown and price markup levels


Using the production function coefficients, we estimate coal price markups and wage markdowns following Equation (5). The estimated moments are in Table 1b. At the median firm, the wage markdown is 1.314, which implies that worker wages are 25% below their marginal revenue product. The average markdown is 1.409 when weighting by employment usage, and 1.429 when taking the unweighted average. These results suggest that coal firms had some market power in their labor markets, although equilibrium markdowns above one do not necessarily imply a monopsonistic or oligopsonistic model, but could be due to other drivers. We examine the drivers of wage markdowns more in detail in the next sections.

In contrast, the coal price markup was at the median 0.83, on average 0.892, and weighted by employment usage 0.848. Hence, coal prices lay below marginal costs, which does not imply that firms were loss-making, as the total profit margin is the combined wage markdown and price markup. The markup being close to one implies that coal mines had little market power downstream. This is no surprise, given that the relevant coal market size was much larger than Liège and Namur. Figure 3b shows that the coal price in Liège and Namur followed the international coal price up to 1897, which indicates that the firms in our data set were price takers on the coal market. Our markup estimates are also in line with recent historical research that has highlighted the increasingly integrated nature of the European coal market throughout the 19th century (Murray & Silvestre, 2020).

Wage markdown evolution

Figure 5 plots the evolution of wage markdowns in all coal mines in Namur and Liège provinces between 1845 and 1913. Up to the 1870s, the median firm had a wage markdown of around 1.5, which implies that workers received around two thirds of their marginal revenue product. This markdown was relatively stable throughout the 1840s, 1850s, and 1860s. The weighted average markdown was higher, around 1.75, which means that larger firms could charge higher wage markdowns. During the late 1870s and 1880s, a long period of recession, median wage markdowns jumped to around 1.7. Despite short-run fluctuations, markdowns usually reverted to their long-term means within 4 to 5 years.

Figure 5: Evolution of the average and median wage markdown, 1845-1913

Notes: This graph shows the evolution of the weighted average (by employment) and median wage markdown in Liège and Namur coal mines from 1845-1913.

Around 1900, there was a sharp increase in wage markdowns, both on average and at the median firm. The average markdown after 1897 was around 2.2, meaning that workers received less than 50% of their marginal revenue product. This markdown increase was persistent: there was no reversion to the pre-1897 steady-state level. The estimates in Table 2 show that the increase in the wage markdown after 1897 was statistically significant. The markdown increase after 1897 does not reflect reallocation between firms but was the result of within-firm markdown growth. Figure A6 in Appendix A.2 compared the unweighted average wage markdown to the weighted average wage markdown, by employment usage. The unweighted average markdown grew by even more after 1897, which indicates that there was some reallocation away from the highest-markdown firms after 1897.

When comparing markdowns across firms, the estimates in the first column of Table 2 show that markdowns were 11% among industry association members. This confirms anecdotal evidence of wage-fixing through these industry associations. Markdowns were also around 8% higher for members of the coal cartel, but given that the membership of the cartel and the industry associations overlap, there is a concern of

multicollinearity here. Also, comparing markdowns at cartel and non-cartel members does not reveal the true effect of the cartel on wage markdowns, for reasons we will explain in Section 4.

Table 2: **Markdowns: evolution and correlations**

	log(Markdown)		log(Markdown)	
	Est.	SE	Est.	SE
1(Industry Association)	0.106	0.053		
1(Cartel)	0.078	0.040		
1(1855 < Year < 1865)			-0.021	0.038
1(1865 < Year < 1875)			-0.020	0.038
1(1875 < Year < 1885)			0.058	0.044
1(1885 < Year < 1895)			0.107	0.046
1(1895 < Year < 1905)			0.196	0.042
1(1905 < Year < 1915)			0.421	0.044
Year FE	Yes		Yes	
R-squared	.146		.076	
Observations	4156		4699	

Notes: Reference category is the period between 1845-1859. Bootstrapped standard errors, 200 iterations.

4 Collusive wage-setting

The previous section documented an increase in wage markdowns in the Belgian coal industry, especially after the turn of the century. In this section, we examine the role of employer collusion and the coal cartel as drivers of wage markdowns.

4.1 Identifying employer collusion

Intuition

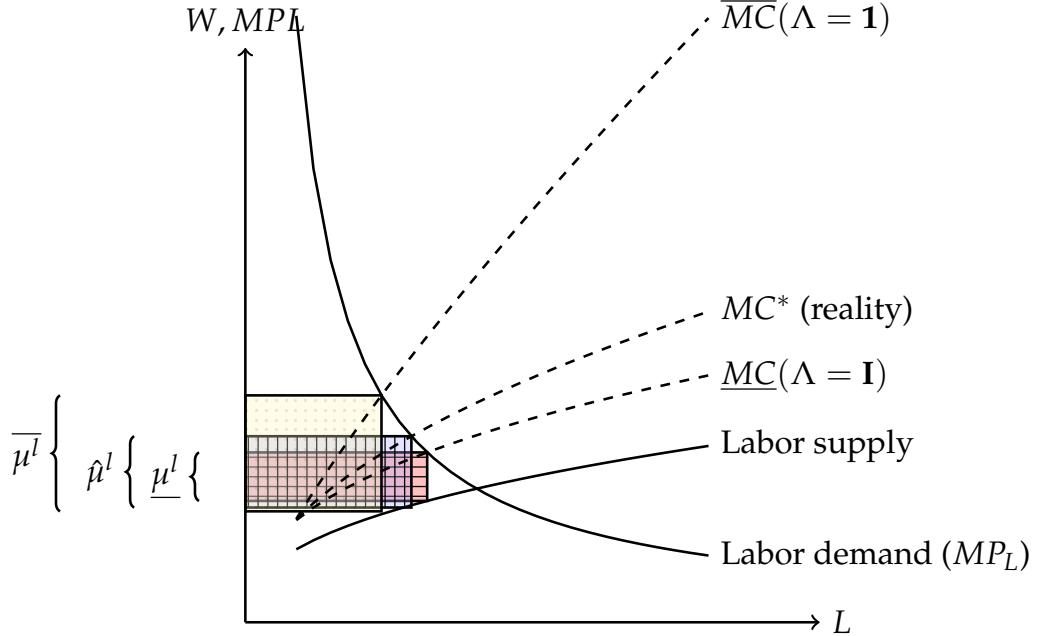

Figure 4, graphically showed the distinction between input price markdowns and product price markups. The markdown estimates from the previous section recovered the actual wage markdowns charged in the market, without imposing conduct assumptions on the labor market. The objective of this section is to examine the extent to which wage markdowns are driven by collusive behavior.

Figure 6 visually explains the intuition for our conduct identification approach. As becomes clear from Equation (3), different collusion weights imply different marginal cost curves. Under no collusion, the marginal cost curve of a firm only contains its own wage, whereas under collusion it also includes the wages paid by its competitors. The estimated markdown under the production-cost model is $\hat{\mu}^l$. In order to quantify the extent of labor market collusion, we need to benchmark this markdown against the lower bound of the markdown under zero collusion, $\underline{\mu}^l$, and the upper bound under full collusion $\overline{\mu}^l$. The upper bound implies that the collusion matrix Λ is a matrix of ones, the lower bound corresponds to a unity matrix Λ : $\lambda_{fgt} = 1, \forall g \neq f$.

Labor supply model

In order to identify the non-collusive and fully-collusive markdown bounds, we need to impose a labor supply model. We rely on a static homogeneous firms Cournot model to benchmark our estimated markdowns against. The main reason to model firms as not being differentiated is that there is very limited wage variation across firms within towns. Firm and year fixed effects together explain 93% of wage variation, whereas municipality and year fixed effects explain 92% of wage variation. This does not reduce the applicability of our approach: for labor markets in which employer

Figure 6: Markdowns and conduct

differentiation or labor market frictions are important, these should simply feature in the benchmark model against which the markdown estimates from the production model are compared.

We assume a log-linear labor supply curve with inverse market-level elasticity Ψ^l , as shown in Equation (9). Wages W_{it}^l are the same for all firms within a labor market i in each year t . Market-level employment is denoted L_{it} , and a market-specific residual ν_{it} reflects variation in the relative attractiveness of different labor markets, for instance due to variation in outside options available to workers.

$$W_{it}^l = \Psi^l W_{it}^l + \nu_{it} \quad (9)$$

As was mentioned earlier, each firm chooses the employment level that minimizes their current variable costs. Working out the first order conditions of this optimization problem delivers the following markdown expression. The wage markdown at the firm-level, μ_{ft}^l , is equal to the inverse labor supply elasticity at the market level, $\Psi^l \equiv \frac{\partial W_{it}^l}{\partial L_{it}} \frac{L_{it}}{W_{it}^l}$ multiplied by the labor market share s_{ft}^l , plus one. This mirrors the Cournot markup in imperfectly competitive homogeneous goods markets.

$$\mu_{ft}^l = 1 + \Psi^l s_{ft}^l$$

We estimate Equation (9) defining labor markets at the municipality-year level. As mentioned above, there is barely any within-municipality wage variation. Moreover, 90% of the workers did not commute more than 10km from their home, as shown in Figure A8. This shows that most workers worked within the boundaries of the village where they lived.⁴¹ In order to identify the labor supply curve, we need labor demand shifters, as firms set wages with knowledge of the latent market-level labor supply shifters ν_{lt} . We rely on two labor demand shifters. First, we construct an indicator variable for the coal demand shock between 1871 and 1874 due to the aftermath of the Franco-Prussian war, which was shown in Figure 3b as a peak in the international coal price. Second, we include cartel membership during the cartel period as a demand shifter, given that the cartel decreased coal supply, and hence labor demand, for the cartel participants. The estimates are in Table 3. The market-level inverse elasticity of labor supply is estimated at 1.013. This implies that at a monopsonistic firm, the marginal revenue product of labor is twice the wage.

Table 3: **Labor supply**

	log(Wage)	
	Est.	S.E.
log(Employment)	1.013	0.248
First-stage F-statistic	456	
R-squared	.096	
Observations	1990	

Notes: Block-bootstrapped standard errors, 200 iterations.

Testing for collusion

Combining the labor supply estimates above with the markdown estimates from the previous section permits the identification of the degree of wage-setting collusion in the labor market. Denote the markdown level in the absence of collusion as $\underline{\psi}_{ft}^l$, and the markdown level in a fully collusive market as $\overline{\psi}_{ft}^l$. According to the Cournot model above, the lower markdown bound without collusion is equal to $\underline{\psi}_{ft}^l = 1 + \psi_{ft}^l s_{ft}^l$,

⁴¹We examine different labor market definitions in Appendix E.1.

whereas the upper bound in the presence of full wage collusion is $\bar{\psi}_{ft}^l = 1 + \psi_{ft}^l$: under full collusion, all firms set wages as if they were a single firm, and hence the labor market share goes to one. We define a ‘wage collusion indicator’ $\hat{\lambda}_{ft} \in [0, 1]$ as:

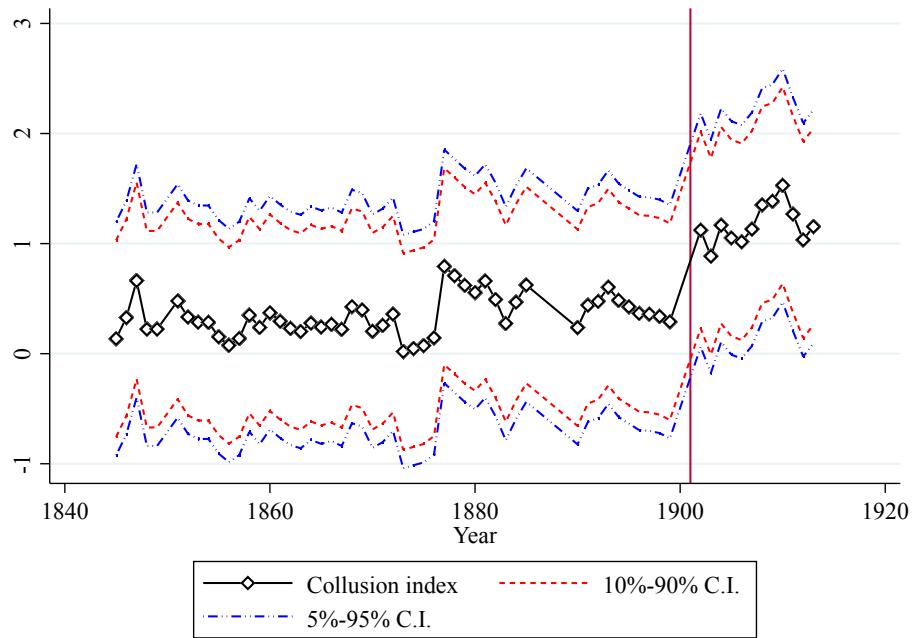
$$\hat{\lambda}_{ft} \equiv \frac{\psi_{ft}^l - \underline{\psi}_{ft}^l}{\bar{\psi}_{ft}^l - \underline{\psi}_{ft}^l}$$

In the absence of collusion, $\hat{\lambda}_{ft} = 0$, whereas in a fully collusive market, $\hat{\lambda}_{ft} = 1$. Using the estimated labor supply estimates, we estimate the collusion indicator $\hat{\lambda}_{ft}$.

Can we pick up wage collusion during the coal cartel without ex-ante knowledge of this cartel? Figure 7a plots the evolution of median collusion by year, along with confidence intervals. We find that the median markdown fluctuated around 50% of the collusive markdown level up to 1900, but cannot reject the null hypothesis of no wage collusion for any year up to 1900. From 1901 onwards, we can reject the null of no collusion for every year except 1903 at the 10% confidence level. At the 5% confidence level, we can reject the absence of collusion for 1904 and in between 1906 and 1910. The price data in Figure 3b suggests that the collusive behavior within the cartel took off from 1904 onwards, as this is the year in which Liège coal mine prices start moving towards the international coal price. The collusion estimates hence seem to be able to detect collusion due to the cartel, without requiring any a priori information about the cartel.⁴²

4.2 Consequences of collusive wage-setting

Markdown decomposition


To what extent was the markdown increase documented in section 3 due to collusion? To answer this question, we decompose our estimated markdowns into a collusive and a non-collusive component. Figure 7b plots the evolution of three markdown series. The blue circles are the evolution of the median lower bound for markdowns in the absence of collusion. The red diamonds are the upper bound of markdowns under full wage collusion - this is the inverse market-level elasticity of labor supply. The

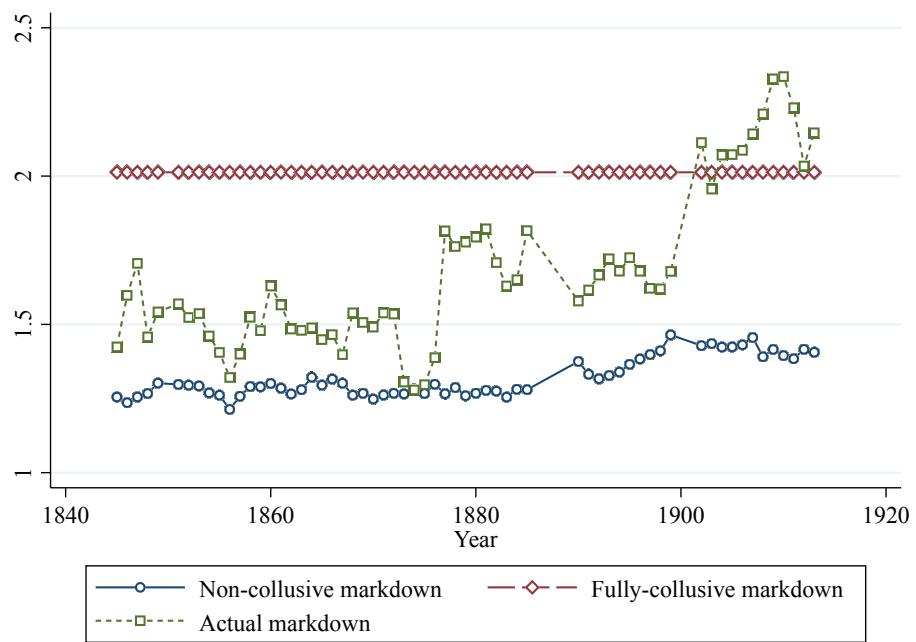

⁴²Admittedly, we did rely on cartel information as a demand shifter to estimate labor supply, but this is not strictly necessary. With the availability of demand shifters, one could identify collusion using our approach without requiring information about which firms are colluding, or when.

Figure 7: Employer collusion

(a) Median employer collusion index

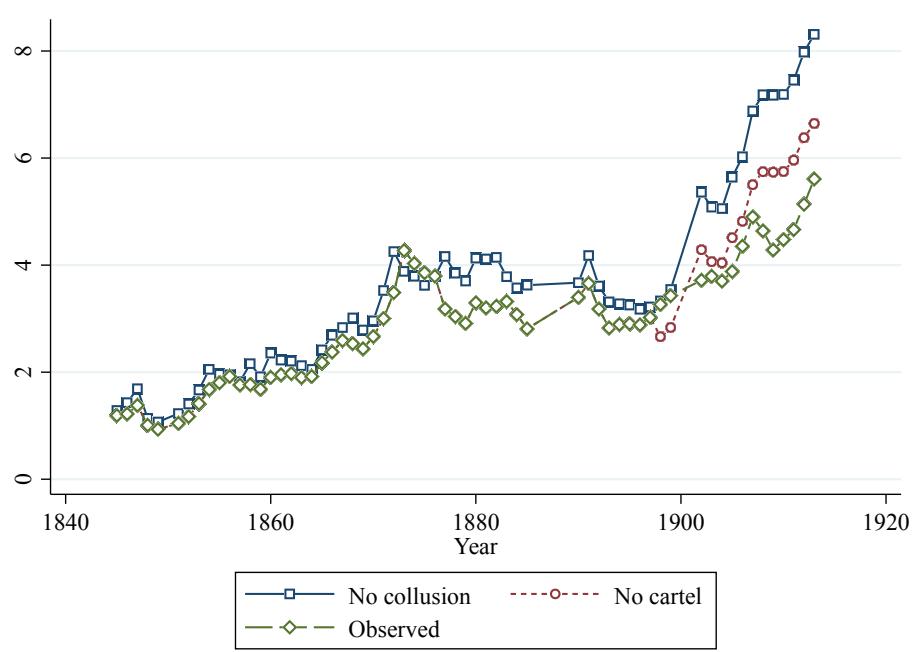
(b) Collusive vs. non-collusive markdowns

Notes: This graph plots the evolution of median wage collusion, by year, together with bootstrapped confidence intervals between 1845-1913.

green squares are the estimated median markdowns. Prior to the introduction of the cartel in 1897, the actual markdown lies above the non-collusive lower bound. This difference could be due to imperfect wage collusion, but could just as well be due to

any other deviation from the baseline Cournot model, such as search or adjustment frictions, firm differentiation, or dynamic labor supply. After the introduction of the cartel in 1897, the estimated markdown level goes up the collusive upper bound.

From 1870 to 1900, there was an increase in the median markdown level, but there was equally an increase in the non-collusive lower markdown bound. The growth in markdowns prior to 1900 hence seems not to be related to wage collusion. However, around 1900, markdowns jump to the fully collusive upper-bound for the wage markdown. Given that the non-collusive markdown does not grow after 1900, the growth in markdowns after the introduction of the coal cartel seems entirely driven by wage collusion.


The effects of the 1897 cartel

To what extent were markdowns and wages affected by the 1897 coal cartel? The across-firms markdown comparison in Section 3.3 did not measure the true effect of the cartel on markdowns because the reduction of employment by the cartel firms also decreased wages at the non-cartel firms, and not just at the cartel firms. As was argued above, there is not much wage variation in a given labor market-year, which was used to motivate the Cournot assumption of a single market-level wage.

In order measure the true effect of wage collusion and of the cartel on wages and markdowns, we compute two counterfactual wage series. As a first counterfactual, we compute wages if there would be no wage collusion, meaning that $\lambda_{ft} = 0$, holding the marginal revenue product of workers fixed. In a second counterfactual, we compute wages if the cartel would not have been introduced, by fixing the level of collusion at its median level over the period 1845-1898. The evolution of the corresponding median wage levels are plotted in Figure 8.

In reality, daily wages increased from 3,02 to 5,61 fr. between 1897 and 1913, an increase of 86%. Without the cartel, the estimated wage increase was from 3,02 to 6,65 fr, an increase of 120%. Without collusion, wages were higher to begin with, at 3,22 fr., and increased to 8,31 fr., an increase of 158%. Hence, wages would have grown 40% faster after 1897 without the cartel, and 84% faster in the absence of any collusion.

Figure 8: Wage consequences of collusion

Notes: This graph plots the evolution of median wage collusion, by year, together with bootstrapped confidence intervals between 1845-1913.

5 Sensitivity analysis

In this section, we discuss four potential confounding variables of our wage markdown estimate, and hence for our collusion indicator: adjustment frictions, factor-biased technical change, compensating differentials, and the emergence of collective bargaining and unionization.

5.1 Input adjustment costs

Although labor markets were characterized by little firing and hiring costs from the employer side, as documented in Section 2.2, there could still be adjustment frictions that explain why firms do not set the marginal revenue product of inputs exactly equal to their input price in every period. Also, inventories of intermediate inputs would validate our static input demand model and could explain short-run fluctuations in cost shares. Both these deviations from the static input demand model in our model would threaten the identification of the wage markdown, as we interpret cost share variation as markdown variation. However, given that adjustment costs are by definition temporary, they cannot explain longer-term trends of our wage markdown

estimates, nor their correlation with the employer unions and cartels.

We have direct evidence of the lack of adjustment frictions on labor and materials by looking at the impulse-response function of a large coal demand shock in 1871. After the Franco-Prussian war of 1870, the French coal basin in Lorraine was annexed by Germany, which resulted in a sharp increase in the international coal price, and hence in demand for coal in the Liège and Namur coal basin.⁴³ We plot labor and intermediate input expenditure and capital investment in the median mine around the 1871 demand shock in Figure A11 in Appendix A.2. Labor and intermediate input expenditure increase immediately as the import price of coal increases, but capital investment lags by one year. This is evidence of the lack of adjustment costs on both labor and intermediate inputs, as is crucial for our markdown and markup identification strategy, and of the existence of adjustment costs on capital, as is crucial for our production function identification strategy. We conclude from this evidence that it is unlikely that our markdown estimates pick up input adjustment costs rather than monopsony power.

5.2 Factor-biased technical change

Our markdown identification strategy relies on a Hicks-neutral production function. If there was factor-biased technological change, factor-augmenting productivity levels are not separately identified from wage markdowns (Rubens, 2021). This paper finds that, in the context of 19th century mining, cutting machines were a directed technology, which changed the output elasticity of miners. But as mentioned before, these machines were not adopted in Liège until 1908 and were not used a lot afterward either due to coal veins being too narrow. First, we note that the production function with capital-labor and materials-labor interaction terms in Appendix D.1 delivers statistically insignificant interaction terms and equally finds a large markdown increase after 1897. Second, as was shown in Figure 2b, the labor cost share did not persistently change between 1870 and 1890, despite the large upshoot in capital investment during the 1870s. If technological change was capital- or materials-biased, we should see a falling cost share of labor throughout this investment peak. Conversely, the

⁴³Other contributions to the ‘coal famine’ of the early 1870s were the Boer War, cold winters and other reasons for rapid increases in consumption (Murray & Silvestre, 2020, 688).

decrease in the labor cost share after 1897 did not coincide with a large increase in capital investment. Finally, looking at the detailed technology variables in our data set is useful. The correlation between our markdown estimate and the amount of horsepower for each of the three technology variables we observe is low: -0.012 for ventilation machines, 0.015 for water pumps, and 0.003 for locomotives.

5.3 Compensating differentials

Another probable driver of the long-run evolution of markdowns are compensating differentials.⁴⁴ The nature of work changed substantially throughout 19th-century industrialization and it could be that the documented long-run pattern of markdowns reflects these changes.⁴⁵ One specific dimension which merits attention in this context is the role of worker safety. Coal mining was a notoriously dangerous profession in that era, and coal firms have been found to provide some compensation to their workers for these professional hazards (Fishback, 1992, 125).

Could drastic changes in mine safety explain the markdowns as documented in Section 3? In Figure A9, we reconstruct the safety record of Liège-based coal mines in terms of mortal casualties for the long 19th century. From a Belgian perspective, mines in Liège were relatively dangerous because of their geological composition, with narrow coal veins. Throughout the second half of the century, however, working conditions improved substantially. This pattern, which fits the European picture, was supported by considerable investments in improved lightning and mechanical ventilation (Murray & Silvestre, 2015).⁴⁶ Crucially, most of these developments were completed before the end of the century. This means that the rise in markdowns we document in the early 20th century is unlikely to have been imposed on workers to make them pay for the cost of these safety-oriented investments.

⁴⁴This can also be interpreted as a specific case of monopsonistic competition with firm differentiation (for instance, see Lamadon et al., 2022). The arguments against firm differentiation as a plausible driver forwarded in Section C thus also hold here.

⁴⁵A similar argument has been raised in the living standards debate, in which pessimistic appraisals underlined that optimistic conclusions regarding 18th- and 19th-century wage growth forewent the negative impact of industrialization on non-wage working and living conditions (for a recent overview and comprehensive analysis, see Gallardo-Albarrán & de Jong, 2021).

⁴⁶We also provided evidence of this in Figure 1a.

5.4 Unionization and democratization

In this paper, we have focused on labor market collusion between employers, but trade unions are of course another form of labor market collusion, between the workers. We took this approach because trade unions struggled to make a significant impact in Belgium throughout the 19th and early 20th century, as worker collectives were heavily restrained by the legal framework (see Section 2.2). In the social movements of the 1880s and onward, coal mine workers were prominent participants, but they largely failed to materialize their demands.⁴⁷ A reason for this can be found in the lack of centralized syndical actions, as the Belgian federation is considered to have been the “weak link in the international chain of mining syndicalism” (J. Michel, 1977, 467).⁴⁸

One dimension in which the social movements of the final decades of the 19th century were successful, was the demand for increased political participation. From Belgium’s inception in 1830, voting rights were distributed according to a system of census suffrage, in which only the wealthiest - about 7% of the adult male population on average - were able to vote (Stengers, 2004, 249). This was undoubtedly a contributing factor to Belgium’s total commitment to a *laissez-faire* policy stance regarding labor and social issues. The emergence of the Belgian socialist party *Parti Ouvrier Belge* (POB), as well as increasing progressive voices within the liberal and catholic parties, paved the way towards universal suffrage, although with plural voting rights such that the highest taxpayers maintained a disproportionate amount of political control.

Figure A10a in Appendix A.2 documents the voter shares of the first two elections at the community level with universal suffrage, showcasing the popularity of the new POB within the Liège and Namur industrial areas. The question is now whether this newfound political independence of the working class translated into improvements of the workers’ bargaining position. In Figure A10b in Appendix A.2, we provide a first answer to this complicated question. We compare the evolution of markdowns in socialist-dominated communities with those in which other parties had a political majority. It is apparent that socialist rule was not able to counter the documented up-

⁴⁷Indeed, the coal sector was by far the biggest social battleground in terms of numbers of strikes and employees involved at the turn of the 19th century. The share of successful strikes from the perspective of the labor force, however, was notably lower than the industry average, indicating a strong position of the employer (see Figure A3 in Appendix A.1).

⁴⁸This was especially the case in the Liège coal basin, where the scattered and heterogeneous nature of local mining companies hindered the formation of collective action (J. Michel, 1977, 470).

swing in employer market power, with both categories experiencing a similar structural break in markdowns.

Two caveats are to be placed with this tentative analysis. First, we forego the fact that other traditional parties also adapted their program to cater to the increasing demand for social policies.⁴⁹ This limits the validity of this counterfactual analysis, and monopsony could have even surged more in the absence of this emerging labor movement. Second and more importantly, many of the demands by the emerging labor movement would only be made a reality after the First World War. True universal male suffrage was only granted in 1919, allowing the POB to finally play an important role on the national political scene.⁵⁰ At the same time, however, the cartel era gained further steam, and cartels became increasingly formalized, even encouraged, by the Belgian government (Vanthemsche, 1983). It remains to be seen how these diverging trends affected market power on labor markets, as this period falls beyond the scope of our historical sources. We leave this intriguing question for future research.

6 Conclusions

In this paper, we examine the role of collusive wage-setting by employers for the exertion of labor market power. We provide a method to identify collusive behavior by combining a production-cost model with a labor supply model. We use this model to examine the extent to which wage markdown growth during the Belgian industrial revolution was driven by collusion between employers. We estimate wage markdowns set by 227 firms between 1845-1913, and hence provide the first long-run view of how labor market competition evolved during the industrialization process. We find that markdown levels were relatively stable throughout the 19th century, but increased sharply around the turn of the century. We decompose markdowns into a collusive and non-collusive component, and use this to show that the rise of markdowns around 1900

⁴⁹An important example is the 1891 encyclical of Pope Leo XIII, *Rerum Novarum or Rights and Duties of Capital and Labor*, which had a revolutionary impact on the Belgian christian party. In this letter, the Catholic leader also expressed his condemnation of what we would now call monopsony: “doubtless, before deciding whether wages are fair, many things have to be considered; but wealthy owners and all masters of labor should be mindful of this - that to exercise pressure upon the indigent and the destitute for the sake of gain, and to gather one’s profit out of the need of another, is condemned by all laws, human and divine” (Leo XIII, 1891).

⁵⁰Uncoincidentally, it was also only in this era that trade unions would become legitimate political institutions as well as recognized partners in the wage bargaining process (see Section 2.2).

was entirely driven by collusive behavior. This confirms observed collusion through the introduction of the Belgian coal cartel in 1897, which we are able to identify without requiring to observe it.

Our findings have two important implications. First, we find that collusive behavior can play an important role in shaping labor market power and wage growth, which calls for the incorporation of cooperative wage-setting in empirical models of imperfectly competitive labor markets. Second, we find that downstream cartels can have adverse effects on workers, besides the usual focus on consumers, by affecting collusive behavior upstream. This shows that in settings with frictional or localized input markets, antitrust policy should not just be concerned with policing collusion on product markets, but also on labor and other factor markets, as also argued by Naidu et al. (2018). As an avenue for future research, we see much potential in more research on specific types of collusive labor market practices besides overt wage fixing, such as tacit wage collusion, information sharing, and ‘no-poaching’ agreements: practices that can be observed in both historical and current-day labor markets (Gibson, 2021).

References

Acemoglu, D., & Wolitzky, A. (2011). The economics of labor coercion. *Econometrica*, 79(2), 555–600.

Ackerberg, D. A., Caves, K., & Frazer, G. (2015). Identification properties of recent production function estimators. *Econometrica*, 83(6), 2411–2451.

Allen, R. C. (2009). *The British Industrial Revolution in global perspective*. Cambridge: Cambridge University Press.

Azar, J., Berry, S., & Marinescu, I. E. (2019). *Estimating labor market power* (Working paper). IESE Business School.

Backus, M., Conlon, C., & Sinkinson, M. (2021). *Common ownership and competition in the ready-to-eat cereal industry* (Tech. Rep.). National Bureau of Economic Research.

Benkard, C. L. (2000). Learning and forgetting: The dynamics of aircraft production. *American Economic Review*, 90(4), 1034–1054.

Berger, D. W., Herkenhoff, K. F., & Mongey, S. (2019). *Labor market power* (Working Paper). National Bureau of Economic Research.

Blundell, R., & Bond, S. (2000). GMM estimation with persistent panel data: An application to production functions. *Econometric Reviews*, 19(3), 321–340.

Boal, W. M. (1995). Testing for employer monopsony in turn-of-the-century coal mining. *The RAND Journal of Economics*, 519–536.

Bresnahan, T. F. (1987). Competition and collusion in the American automobile industry: The 1955 price war. *The Journal of Industrial Economics*, 35(4), 457–482.

Brooks, W. J., Kaboski, J. P., Li, Y. A., & Qian, W. (2021). Exploitation of labor? Classical monopsony power and labor's share. *Journal of Development Economics*, 150, 102627.

Buyst, E. (forthcoming). Changes in the occupational structure of Belgium: New estimates for the 1846–1910 period. In O. Saito & L. Shaw-Taylor (Eds.), *Occupational structure, industrialization and economic growth in a comparative perspective*. Cambridge: Cambridge University Press.

Caldwell, S., & Harmon, N. (2019). *Outside options, bargaining, and wages: Evidence from coworker networks* (Working paper). MIT.

Capitaine, F. (1858). *Essai biographique sur Henri Joseph Orban*. Liège: J.-G. Carmanne Imprimeur.

Card, D., Cardoso, A. R., Heining, J., & Kline, P. (2018). Firms and labor market inequality: Evidence and some theory. *Journal of Labor Economics*, 36(S1), S13–S70.

Caulier-Mathy, N. (1971). *La modernisation des charbonnages Liégeois pendant la première moitié du XIXe siècle: Techniques d'exploitation* (Vol. 192). Paris: Société d'Édition Les Belles Lettres.

Chlepner, B.-S. (1972). *Cent ans d'histoire sociale en Belgique*. Brussels: Éditions de l'Université de Bruxelles.

Church, R. (1986). *History of the British coal industry. Volume 3. 1830-1913: Victorian pre-eminence*. Oxford: Clarendon Press.

Ciliberto, F., & Williams, J. W. (2014). Does multimarket contact facilitate tacit collusion? Inference on conduct parameters in the airline industry. *The RAND Journal of Economics*, 45(4), 764–791.

Delabastita, V., & Goos, M. (2022). *Does technological progress equal wage progress? 19th-century technological change, real wage growth and wage inequality* (Working paper). KU Leuven.

De Leener, G. (1904). *Les syndicats industriels en Belgique* (2nd ed.). Brussels: Misch et Thron.

De Leener, G. (1908). *Étude sur le marché charbonnier Belge*. Brussels: Misch et Thron.

De Leener, G. (1909). *L'organisation syndicale des chefs d'industrie: Étude sur les syndicats industriels en Belgique*. Brussels: Misch et Thron.

Dell, M. (2010). The persistent effects of Peru's mining mita. *Econometrica*, 78(6), 1863–1903.

De Loecker, J., Goldberg, P. K., Khandelwal, A. K., & Pavcnik, N. (2016). Prices, markups, and trade reform. *Econometrica*, 84(2), 445-510.

De Loecker, J., & Scott, P. T. (2016). *Estimating market power: Evidence from the US brewing industry* (Working Paper). National Bureau of Economic Research.

De Loecker, J., & Warzynski, F. (2012). Markups and firm-level export status. *American Economic Review*, 102(6), 2437–71.

Delrée, H., & Linard de Guerchin, A. (1963). Esquisse historique de la législation et de l'Administration des Mines. *Annales des Mines de Belgique*(1), 45–59.

Dobbelaere, S., & Mairesse, J. (2013). Panel data estimates of the production function and product and labor market imperfections. *Journal of Applied Econometrics*, 28(1), 1–46.

Drèze, G. (1905). *Le livre d'or de l'Exposition Universelle et Internationale de 1905: Histoire complète de l'exposition de Liège* (Vol. 2). Liège: Imp. Aug. Bénard.

Dubois, G. (1960). *Enquête sur la structure et les activités des associations professionnelles*. Liège: Institut de Sociologie de l'Université de Liège.

Engels, F. (1892). *The condition of the working-class in England in 1844: With preface written in 1892*. London: Swan Sonnenschein & Co.

Feinstein, C. H. (1998). Pessimism perpetuated: Real wages and the standard of living in Britain during and after the Industrial Revolution. *The Journal of Economic History*, 58(3), 625–658.

Fernihough, A., & O'Rourke, K. H. (2021). Coal and the European Industrial Revolution. *The Economic Journal*, 131(635), 1135–1149.

Fishback, P. V. (1992). *Soft coal, hard choices: The economic welfare of bituminous coal miners, 1890-1930*. Oxford: Oxford University Press.

Gadisseur, J. (1979). *Le produit physique de l'économie Belge 1831-1913: Présentation critique des données statistiques* (Unpublished doctoral dissertation). Université de Liège, Liège.

Gaier, C. (1988). *Huit siècles de houillerie Liégeoise: Histoire des hommes et du charbon à Liège*. Liège: Editions du Perron.

Gallardo-Albarrán, D., & de Jong, H. (2021). Optimism or pessimism? A composite view on English living standards during the Industrial Revolution. *European Review of Economic History*, 25(1), 1–19.

Geerkens, É., Leboutte, R., & Péters, A. (2020). Le travail des ouvriers mineurs en Belgique (ca 1830-1930). *Revue du Nord*(2), 289–309.

Gibson, M. (2021). *Employer market power in Silicon Valley* (Working Paper). IZA.

Huberman, M. (2008). Ticket to trade: Belgian labour and globalization before 1914. *The Economic History Review*, 61(2), 326–359.

Huberman, M., & Lewchuk, W. (2003). European economic integration and the labour compact, 1850–1913. *European Review of Economic History*, 7(1), 3–41.

Huberman, M., Meissner, C. M., & Oosterlinck, K. (2017). Technology and geography in the Second Industrial Revolution: New evidence from the margins of trade. *The Journal of Economic History*, 77(1), 39–89.

Humphries, J., & Schneider, B. (2019). Spinning the industrial revolution. *The Economic History Review*, 72(1), 126–155.

Jedwab, R., Johnson, N. D., & Koyama, M. (2022). The economic impact of the Black Death. *Journal of Economic Literature*, 60(1), 132–78.

Krueger, A. B. (2018). Reflections on dwindling worker bargaining power and monetary policy. In *Luncheon address at the Jackson Hole Economic Symposium* (Vol. 24).

Krueger, A. B., & Ashenfelter, O. (2018). *Theory and evidence on employer collusion in the franchise sector* (Working Paper No. 24831). National Bureau of Economic Research.

Kurgan-van Hentenryk, G., & Puissant, J. (1990). Industrial relations in the Belgian coal industry since the end of the nineteenth century. In G. D. Feldman & K. Tenfelde (Eds.), *Workers, owners and politics in coal mining: An international*

comparison of industrial relations (pp. 203–270). Oxford: Berg Publishers.

Kurgan-Van Hentenryk, G., Puissant, J., & Montens, V. (1996). *Dictionnaire des patrons en Belgique: Les hommes, les entreprises, les réseaux*. Brussels: De Boeck Université.

Lamadon, T., Mogstad, M., & Setzler, B. (2022). Imperfect competition, compensating differentials, and rent sharing in the US labor market. *American Economic Review*, 112(1), 169–212.

Lamoreaux, N. R. (2019). The problem of bigness: From Standard Oil to Google. *Journal of Economic Perspectives*, 33(3), 94–117.

Leboutte, R. (1988). *Le livret d'ouvrier dans la province de Liège: Une source méconnue en histoire sociale. Présentation et premier résultats d'exploitation*. Liège: Editions du Musée de la Vie Wallone.

Leboutte, R. (1991). Mortalité par accident dans les mines de charbon en Belgique aux XIXe-XXe siècles. *Revue du Nord*, 73(293), 703–736.

Lebrun, P., Bruwier, M., Dhont, J., & Hansotte, G. (1981). *Essai sur la révolution industrielle en Belgique: 1770-1847*. Brussels: Palais des Académies.

Lefèvre, P. (2004). L'organisation des patrons charbonniers montois de 1830 à 1870. In K. Bertrams & S. Jaumain (Eds.), *Patrons, gens d'affaires et banquiers. Hommages à Ginette Kurgan-van Hentenryk* (pp. 129–140). Brussels: Livre Timperman.

Leo XIII. (1891). *Rerum novarum*. https://www.vatican.va/content/leo-xiii/en/encyclicals/documents/hf_l-xiii_enc_15051891_rerum-novarum.html. (Accessed: 05-08-2022)

Levinsohn, J., & Petrin, A. (2003). Estimating production functions using inputs to control for unobservables. *The Review of Economic Studies*, 70(2), 317–341.

Loots, F. (1936). Les mouvements fondamentaux des prix de gros en Belgique de 1822 à 1913. *Bulletin de l'Institut des Sciences Économiques*, 8(1), 23–47.

Luyten, D. (1995). *Sociaal-economisch overleg in België sedert 1918*. Brussels: VUB Press.

Mahaim, E. (1911). Les ouvriers mineurs abonnés aux chemins de fer en Belgique. *Annales des Mines de Belgique*, 16, 69-115.

Manning, A. (2011). Imperfect competition in the labor market. In O. Ashenfelter & D. Card (Eds.), *Handbook of labor economics* (Vol. 4B, pp. 973–1041). Amsterdam: Elsevier.

Manning, A. (2021). Monopsony in labor markets: A review. *ILR Review*, 74(1), 3–26.

Martins, P. S. (2020). *What do employers' associations do?* (Working paper No. 13705). IZA Institute of Labor Economics.

Marx, K., & Engels, F. (1985). *Marx & Engels collected works: Volume 21 Marx and Engels 1867–1870*. London: Lawrence & Wishart.

Mertens, M. (2020). Labor market power and the distorting effects of international trade. *International Journal of Industrial Organization*, 68(102562), 1-16.

Michel, C., & Weiergraeber, S. (2018). *Estimating industry conduct in differentiated products markets* (Working paper). Universitat Pompeu Fabra.

Michel, J. (1977). Un maillon plus faible du syndicalisme minier: La fédération nationale des mineurs Belges avant 1914. *Revue Belge de Philologie et d'Histoire*, 55(2), 425–473.

Miller, N. H., & Weinberg, M. C. (2017). Understanding the price effects of the MillerCoors joint venture. *Econometrica*, 85(6), 1763–1791.

Mokyr, J. (1976). *Industrialization in the Low Countries, 1795-1850*. London: Yale University Press.

Morlacco, M. (2020). *Market power in input markets: Theory and evidence from French manufacturing* (Working paper). University of Southern California.

Mottequin, P. (1973). *Réunions du comité des directeurs des travaux des charbonnages du Couchant de Mons, patronnées par la Société Générale (1848-1876)*. Leuven: Éditions Nauwelaerts.

Murray, J. E., & Silvestre, J. (2015). Small-scale technologies and European coal mine safety, 1850–1900. *The Economic History Review*, 68(3), 887–910.

Murray, J. E., & Silvestre, J. (2020). Integration in European coal markets, 1833–1913. *The Economic History Review*, 73(3), 668–702.

Naidu, S., Posner, E. A., & Weyl, G. (2018). Antitrust remedies for labor market power. *Harvard Law Review*, 132, 536–601.

Naidu, S., & Yuchtman, N. (2013). Coercive contract enforcement: Law and the labor market in nineteenth century industrial Britain. *American Economic Review*, 103(1), 107–44.

Naidu, S., & Yuchtman, N. (2018). Labor market institutions in the gilded age of American economic history. In L. P. Cain, P. V. Fishback, & P. W. Rhode (Eds.), *The Oxford handbook of American economic history*. Oxford: Oxford University Press.

Ogilvie, S. (2019). *The European guilds: An economic analysis*. Princeton: Princeton University Press.

Olley, G. S., & Pakes, A. (1996). The dynamics of productivity in the telecommunications equipment industry. *Econometrica*, 64(6), 1263–1297.

Pluymers, B. (1992). *De Belgische industriële produktie 1811-1846: Reconstructie van een databank van de fysieke produktie en de bruto-toegevoegde waarde* (Working paper). KU Leuven.

Rubens, M. (2021). *Market structure, oligopsony, and productivity* (Working paper). KU Leuven.

Rubens, M. (2022). *Oligopsony power and factor-biased technology adoption* (Working paper). KU Leuven.

Rubens, M. (forthcoming). Management, productivity, and technology choices: Evidence from U.S. mining schools. *RAND Journal of Economics*.

Scholliers, P. (1995). A century of real industrial wages in Belgium, 1840–1939. In P. Scholliers & V. Zamagni (Eds.), *Labour's reward: Real wages and economic change in 19th- and 20th-century Europe* (pp. 106–137). Aldershot: Edward Elgar Publishing.

Schubert, G., Stansbury, A., & Taska, B. (2021). *Employer concentration and outside options* (Working paper). Harvard University.

Segers, Y. (2003). *Economische groei en levensstandaard: Particuliere consumptie en voedselverbruik in België, 1800-1913*. Leuven: Leuven University Press.

Sokolova, A., & Sorensen, T. (2021). Monopsony in labor markets: A meta-analysis. *ILR Review*, 74(1), 27–55.

Stengers, J. (2004). Histoire de la législation électorale en Belgique. *Revue belge de Philologie et d'Histoire*, 82(1), 247–270.

Stevens, F. (1998). Het coalitieverbod in België (1795–1866). In *Liber amicorum Roger Blanpain* (pp. 395–413). Bruges: Die Keure.

Vandaele, K. (2004). ‘In het getal ligt onze macht’: Een politiek-wetenschappelijke analyse van de vakbondsledenevolutie in België 1898–1995 (Unpublished doctoral dissertation). Ghent University, Ghent.

Van den Eeckhout, P. (2005). Van werkboekje tot arbeidscontract. De negentiende-eeuwse arbeidsrelaties revisited. *Journal of Belgian History*, 35(2-3), 153–200.

Van Overfelt, W., Annaert, J., De Ceuster, M., & Deloof, M. (2009). Do universal banks create value? Universal bank affiliation and company performance in Belgium, 1905–1909. *Explorations in Economic History*, 46(2), 253–265.

Vanthemsche, G. (1983). De Belgische overheid en de kartels tijdens het interbellum: Situering en analyse van de wetgeving op de verplichte kartelvorming. *Revue belge de Philologie et d'Histoire*, 61(4), 851–894.

Vanthemsche, G. (1995). De geschiedenis van de Belgische werkgeversorganisaties: Ankerpunten en onderzoekshorizonten. *NEHA-Bulletin*, 9(1), 3–20.

Wibail, A. (1934). L'évolution économique de l'industrie charbonnière Belge depuis 1831. *Bulletin de l'Institut des Sciences Économiques*, 6(1), 3–30.

Yarmie, A. H. (1980). Employers' organizations in mid-Victorian England. *International Review of Social History*, 25(2), 209–235.

Yeh, C., Macaluso, C., & Hershbein, B. (2022). Monopsony in the U.S. labor market.

Data sources & government reports

Administration des Mines. (1831–1933). *Inventaire des archives de la deuxième inspection générale des mines: Liège (1831–1933)*. Brussels: State Archives in Belgium, Brussels. (BE-A0510.254, Series 101–124 & 179–204)

Administration des Mines. (1896–1913). *Annales des mines de Belgique*. Brussels: Ministère de l'Industrie et du Travail.

Association charbonnière (...). (1931). *L'association charbonnière et l'industrie houillière des bassins de Charleroi et de la Basse-Sambre*. Couillet: Éditions Sogédi S.A.

Demeur, A. (1878). *Les sociétés commerciales de la Belgique: Années 1876, 1877, 1878*. Brussels: Chez l'Éditeur.

Laureyssens, J. (1975). *Industriële naamloze vennootschappen in België 1819-1857* (Vol. 78). Leuven: Nauwelaerts.

Office du Travail. (1896a). *Recensement général des industries & des métiers (31 octobre 1896): Volume II: Répartition par commune des industries et des métiers: Hainaut, Liège, Limbourg, Luxembourg, Namur*. Brussels: Hayez.

Office du Travail. (1896b). *Recensement général des industries & des métiers (31 octobre 1896): Volume I: Répartition par commune des industries et des métiers: Anvers, Brabant, Flandre Occidentale, Flandre orientale*. Brussels: Hayez.

Office du Travail. (1903). *Statistique des grèves en Belgique: 1896-1900*. Brussels: J. Lebègue & Compagnie.

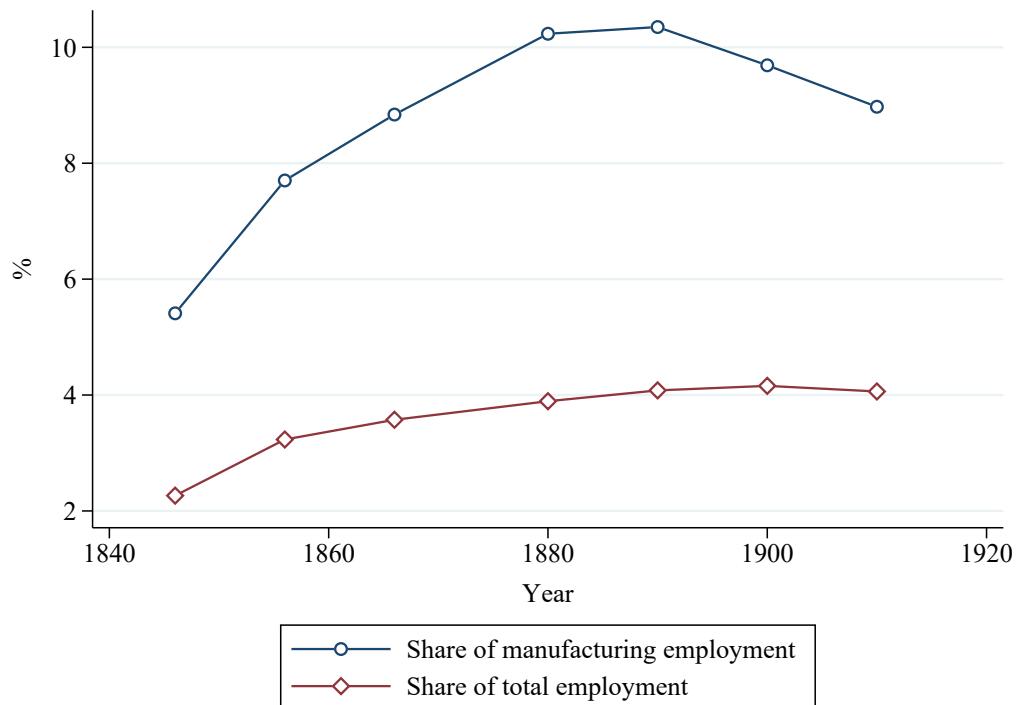
Office du Travail. (1907). *Statistique des grèves en Belgique: 1901-1905*. Brussels: J. Lebègue & Compagnie.

Office du Travail. (1911). *Statistique des grèves et lock-out en Belgique: 1906-1910*. Brussels: J. Lebègue & Compagnie.

Office du Travail du Belgique. (1896–1913). *Revue du travail*. Brussels: Ministère de l'Industrie et du Travail.

Recueil Financier. (1893). *Le recueil financier annuel: 1893-1894*. Brussels: l'Industrie.

Statistique de la Belgique. (1858). *Mines, minières, usines minéralurgiques et machines à vapeur: 1851 à 1855*. Brussels: Ministre de l'Intérieur.


Union des charbonnages (...). (1869–1913). *Bulletin de l'Union des charbonnages, mines et usines métallurgiques de la province de Liège*. Liège: Imprimerie H. Vaillant-Carmanne.

Appendices

A Background data

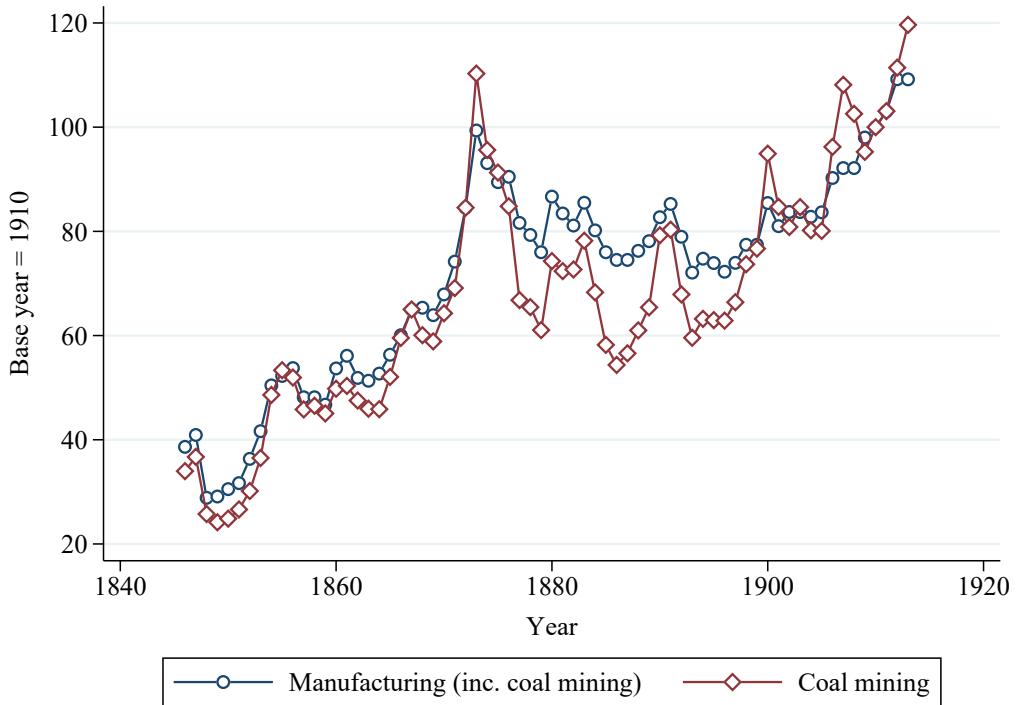

A.1 The Belgian coal industry in the long 19th century

Figure A1: Share of coal mining activities in Belgian manufacturing and total employment, 1846-1910

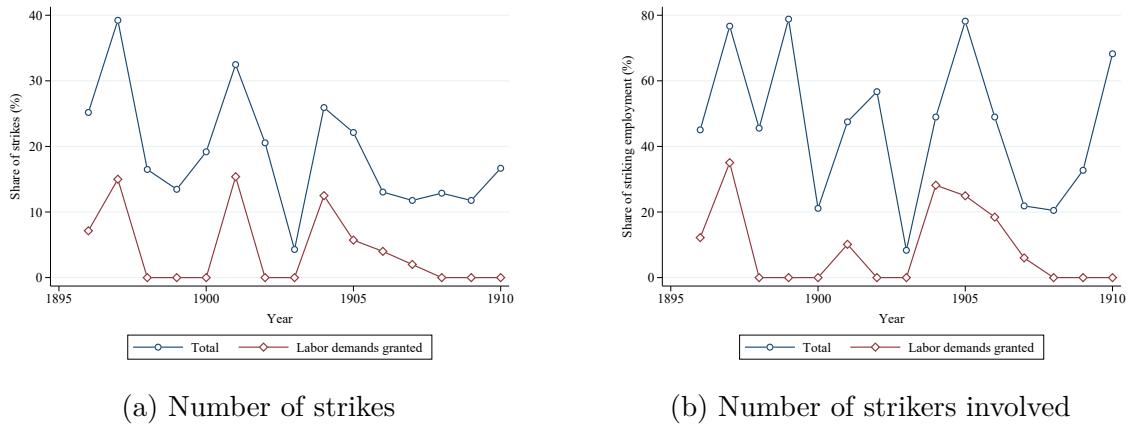
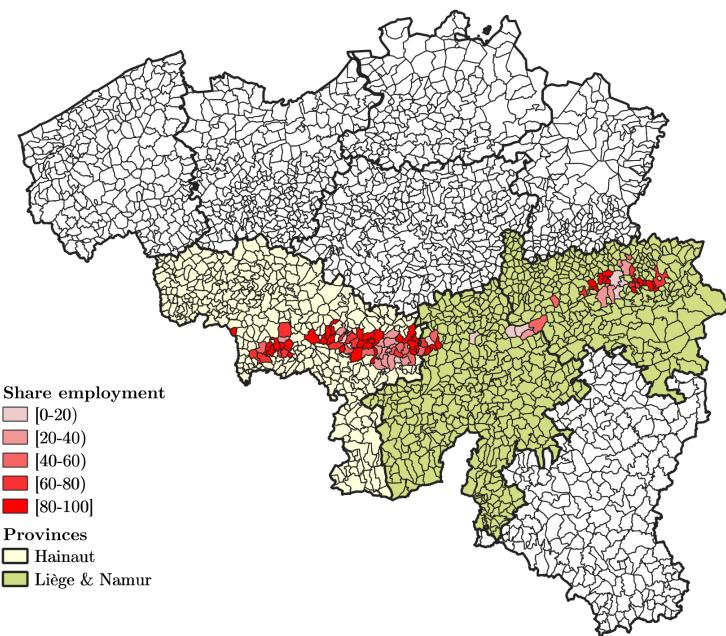

Source: Coal mining employment is from the published accounts of the *Administration des Mines*, as cited in Gadisseur (1979). Manufacturing and total employment are based on Buyst (forthcoming).

Figure A2: Real wage index in Belgian coal mining and the entire Belgian manufacturing and mining sector, 1846-1913

Source: Coal mining wages are from the published accounts of the *Administration des Mines*, as cited in Scholliers (1995). Manufacturing wages and the Consumer Price Index are based on Segers (2003).

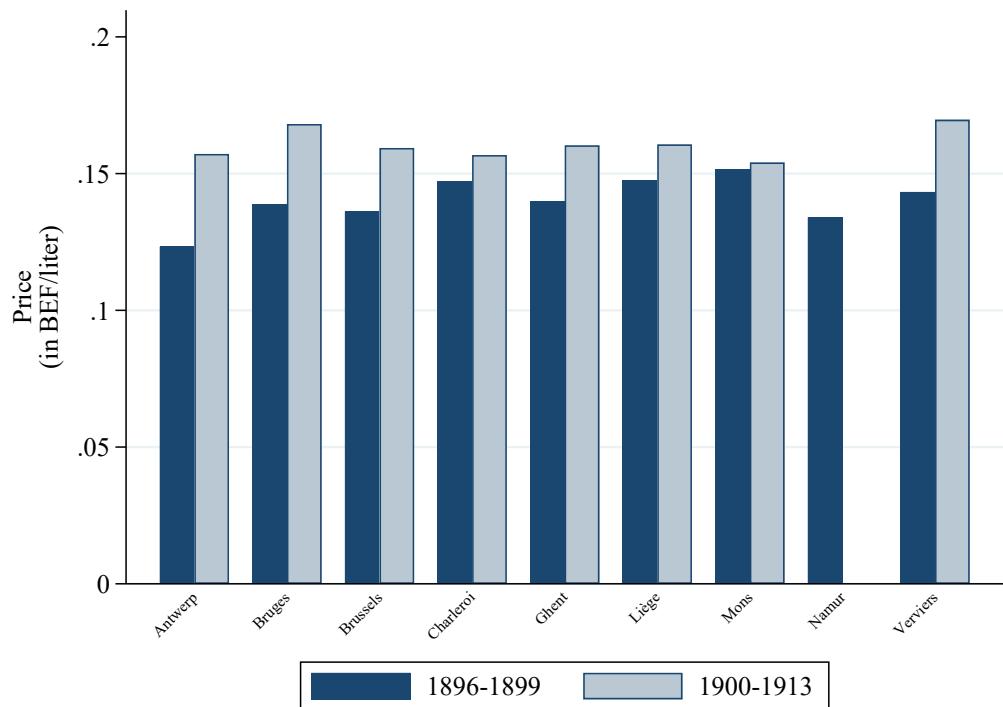
Figure A3: Share of coal mining employees involved in Belgian strikes, 1896-1910


(a) Number of strikes

(b) Number of strikers involved

Notes: The registration of strike action might be biased towards the coal industry, due to the high government supervision of this sector. However, the lack of success from the perspective of the employees indicates that there were rents to be fought over, and that employers had a particularly strong bargaining position in the decade before the First World War.

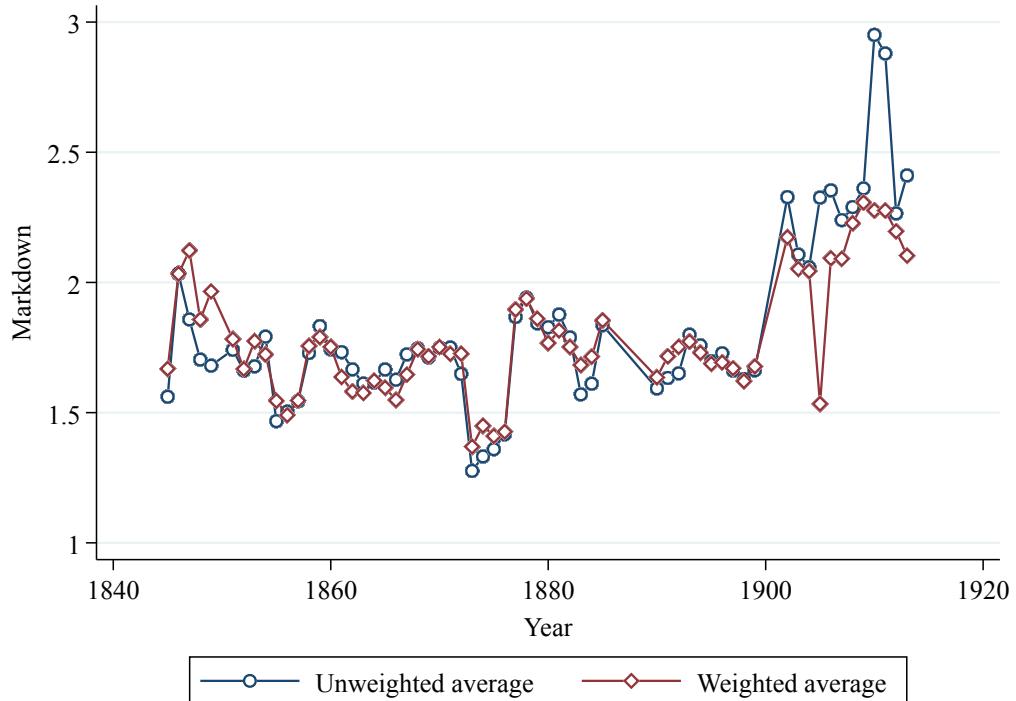
Source: Data are adapted from Office du Travail (1903, 1907, 1911).


Figure A4: Map of share of coal employment of total industrial manual employment, 1896

Notes: Historical community borders of 1890.

Source: Data are adapted from the industrial census of 1896 (Office du Travail, 1896a, 1896b). This source was digitized by the *Quetelet Center for Quantitative Historical Research* (Ghent University).

Figure A5: Average retail price for petroleum in major urban centers,
1896-1913

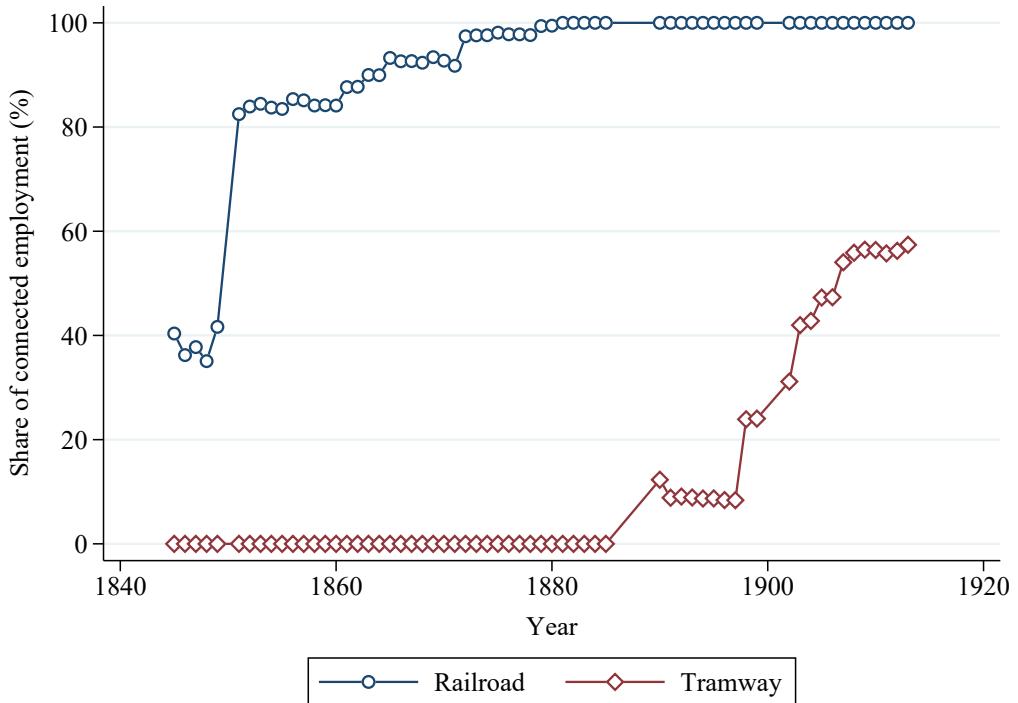


Notes: Based on monthly prices for the period 1896-1899 and on quarterly prices for the period 1900-1913.

Source: Data are adapted from the monthly publications by the Belgian *Office du Travail* (1896-1913), who collected monthly (quarterly from 1903) updates on the retail prices in Belgian urban centers.

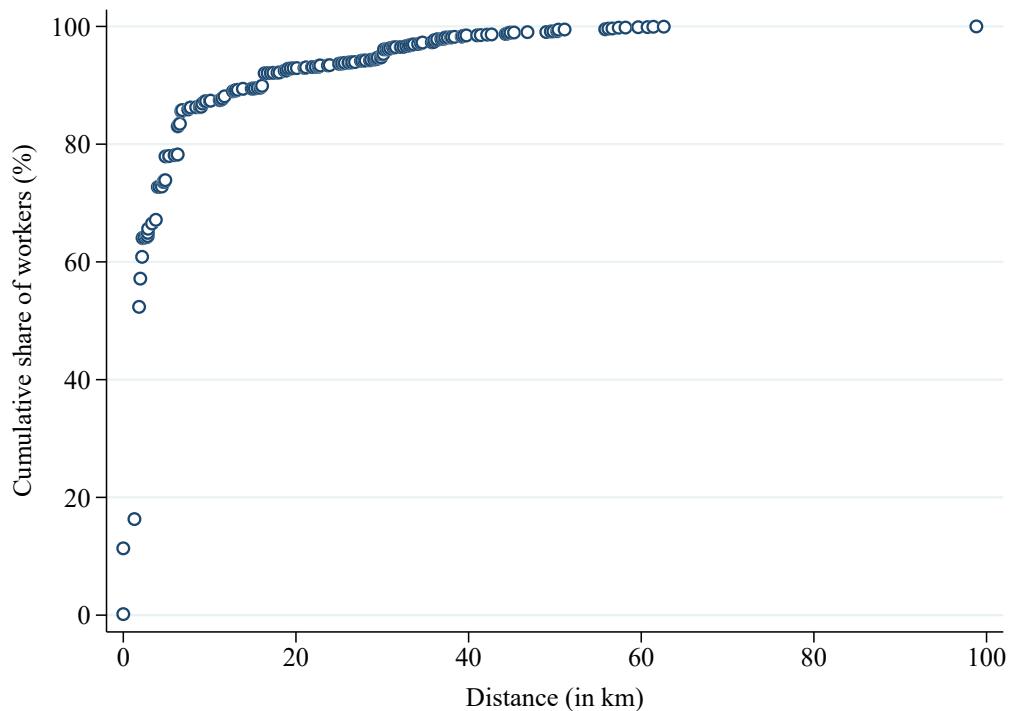
A.2 The Liège and Namur-based coal industry in the long 19th century

Figure A6: Markdown reallocation



Notes: This graph shows compares the evolution fo the unweighted and weighted average (by employment) of the wage markdown in Liège and Namur coal mines from 1845-1913.

Figure A7: Expansion of the railroad and tramway networks, connection to Liège and Namur mines, 1845-1913


(a) Share of connected mines (firms)

(b) Share of connected employment

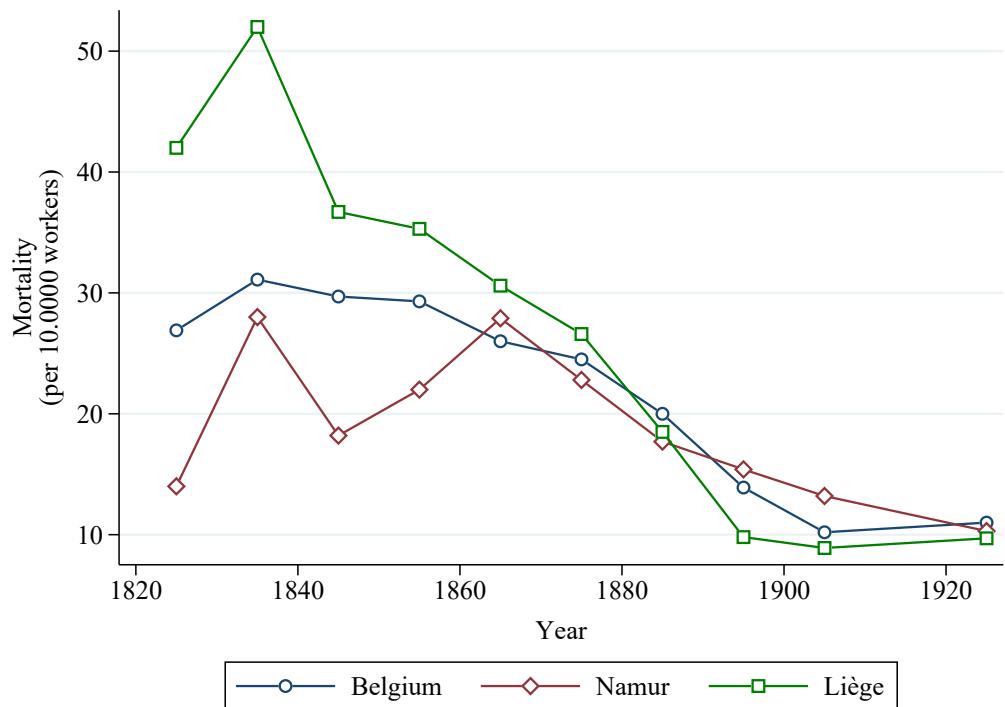
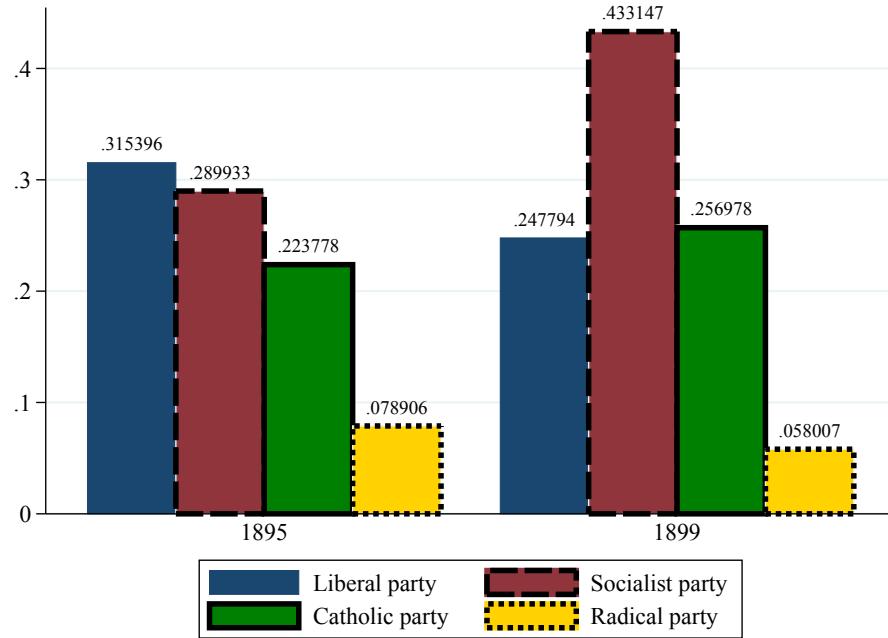
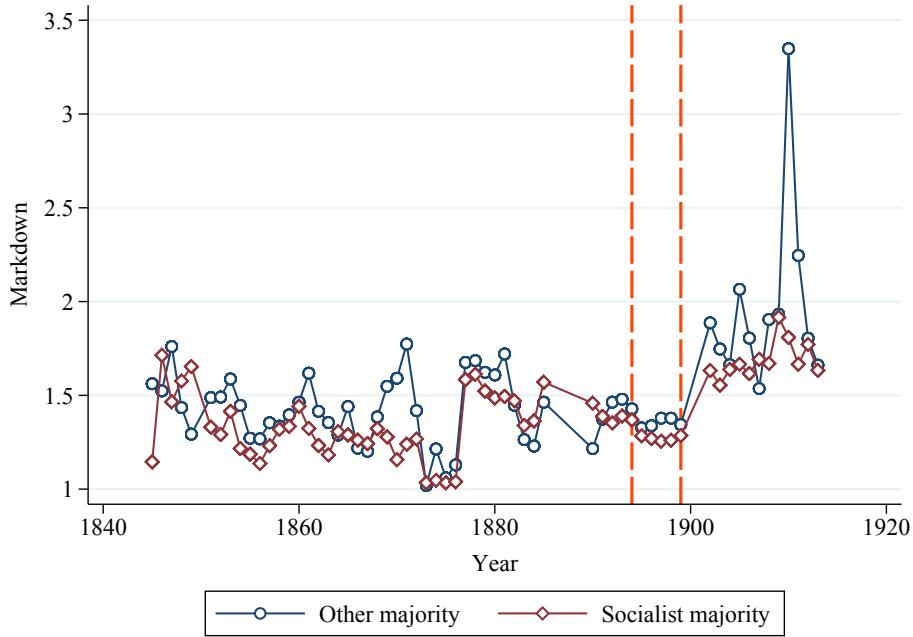

Source: Authors' database. Opening dates of Belgian train stations are provided by the *Quetelet Center for Quantitative Historical Research* (Ghent University). For more information, see Section B.2.

Figure A8: **Commuting distances in 1905**

Source: Own calculations based on the survey by Mahaim (1911) at the Liège-based firms *Ougrée-Marihaye* and *Espérance-Bonne-Fortune*.

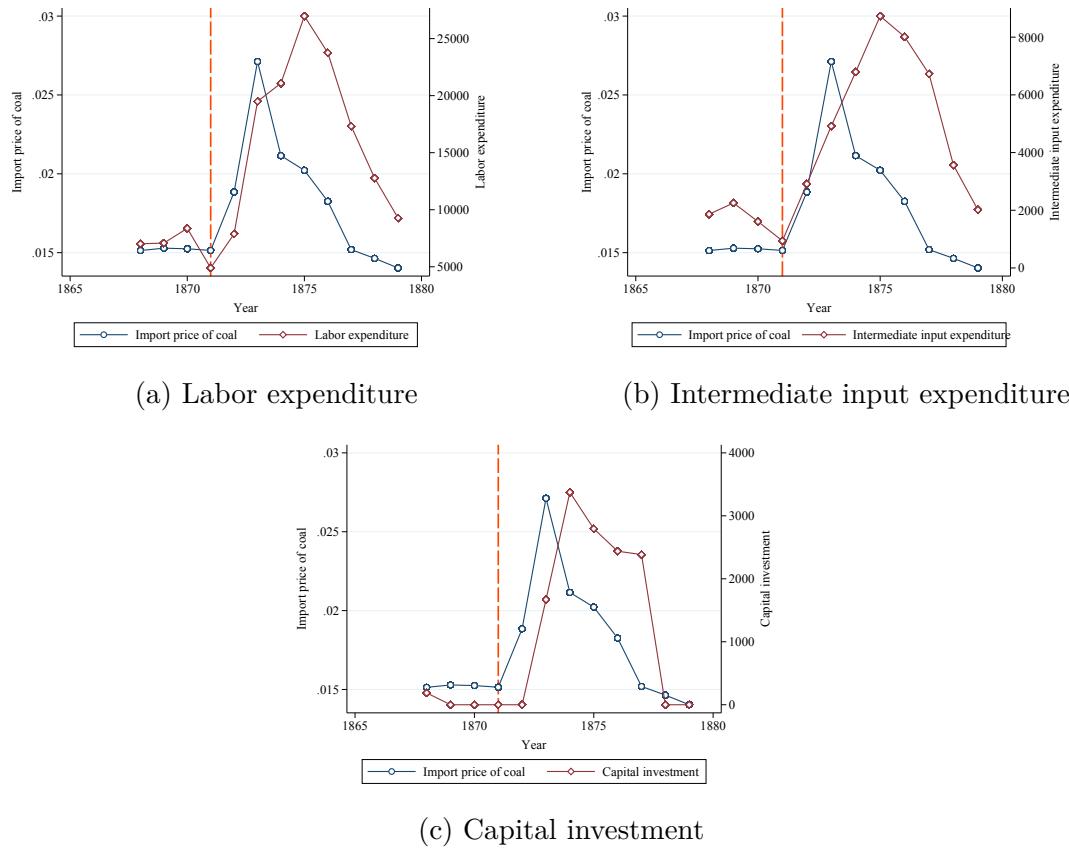

Figure A9: Number of mortal casualties in Liège-based coal mining (per 10.000 workers), 1850-1970


Notes: Plotted are the decadal averages. No data is shown for the period 1910-1920.

Source: Coal mining accident data and employment are from the published accounts of the *Administration des Mines*, as cited in Leboutte (1991).

Figure A10: Local election results in the coal communities of Liège and Namur, 1895-1899

(a) Evolution of voter shares



(b) Community-level markdown evolution by political majority

Notes: The upper panel documents the substantial and increasing support of the POB in the communities of our sample. In the lower panel, we differentiate between communities with a socialist or another-party majority based on the results of the 1899 local elections. The two dashed vertical lines represent the 1895 and 1899 elections respectively.

Source: Local election results can be found in the archives of the Belgian ministry of internal affairs. This source was digitized by the *Quetelet Center for Quantitative Historical Research* (Ghent University).

Figure A11: Impulse-response function of input usage

Notes: The dashed vertical lines represent the coal demand shock.

Table A1: Agricultural wages and mining labor supply

	Est.	S.E.
$\Delta \log(\text{Agricultural wage})$	-0.445	0.129
R-squared	.137	
Observations	58	

Notes: This table reports the estimates of a regression of the yearly change in the log total number of workers in the Liège and Namur coal basin on the yearly change in log agricultural wages in Belgium, between 1845 and 1913.

B Data

B.1 *Administration des Mines* archives

Historical background

The institutional framework of Belgian coal mining was installed by the French state, which governed the region from 1794 to 1814. By law of 28 July 1791, all mineral resources belonged to the state, and could only be exploited under concession and surveillance of the state. Accordingly, the *Conseil des Mines* was founded: this government institute dispatched inspectors and mining engineers to all mining concessions on a yearly basis. While these visits were initially of a rather advisory nature, the role of the mine inspection would gradually be expanded towards an effective supervision unit in terms of “vices, dangers or abuses” by the end of the French period (Caulier-Mathy, 1971, 117).⁵¹ The fall of the French empire, and Belgium’s annexation to the Netherlands, would not have a major impact on the French mining legislation in place, (Leboutte, 1991, 707).⁵² In fact, the new Belgian government would call to life the *Conseil des Mines de Belgique* by the law of 2 May 1837, which would fill the institutional gap left behind by its French counterpart (Geerkens et al., 2020, 293).

Due to its French roots, the close supervision of the mining industry presents us with a valuable exception on the aforementioned *laissez-faire* principles of the Belgian state. Crucially, this translated into a vast body of statistical inquiries and visit reports. We leverage this archival information to construct a micro-level panel data set, covering all coal mining activities in Liège and Namur on a yearly basis. The oldest consistent data we could retrieve, traces back to 1845, allowing us to build a comprehensive data set from 1845 to 1913. This endeavour was facilitated by the consistent nature of reporting by the engineers of the *Administration des Mines*, allowing for the

⁵¹Important was the law of 21 April 1810, which imposed a set of requirements (*cahier de charges*) on mine exploitations to guarantee their competencies. Official engineers were tasked to verify and enforce these regulations under the banner of the *Administration des Mines*, established on 3 January 1813.

⁵²From a governance perspective, some changes were implemented as most state engineers quit Belgium after the retreat of the imperial army in 1814. The French engineer Boüesnel would, however, stay and be appointed Chief Engineer under Dutch rule. He would subsequently also enter Belgian service, providing continuity and knowledge transfers to the mining department (Delrée & Linard de Guertechin, 1963, 54-55).

straightforward integration of the yearly accounts into a uniform data structure.⁵³

Construction of the variables

In this section, we provide a structural overview of how we constructed the variables for our empirical analysis. As outlined above, the data collected by the mining engineers are remarkably consistent over the almost-70-year period. In the case of the expenditure statistics, however, some changes in terminology were implemented throughout the years:

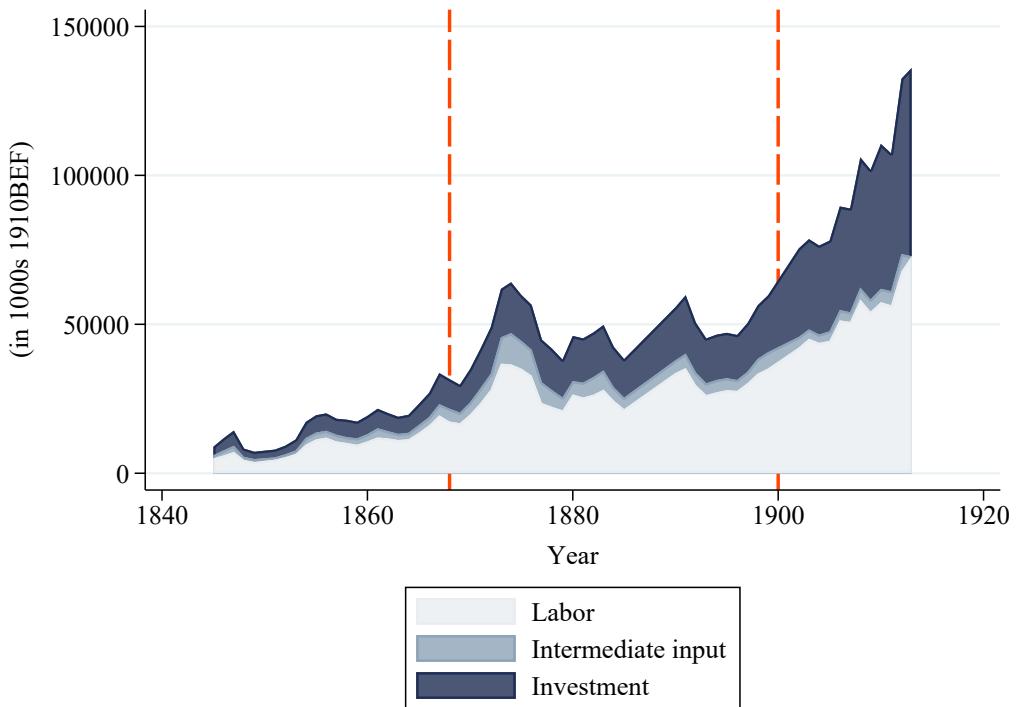
❖ Up to 1868:

- Labor = Labor expenditure
- Intermediate inputs = Other current expenditure
- Investment = Preparatory investment (*Depenses préparatoires*)

❖ 1869-1899:

- Labor = Current labor expenditure
- Intermediate inputs = Other current expenditure
- Investment = Extraordinary expenditure (*Depenses extraordinaires*)

❖ 1900-1913:


- Labor = Current labor expenditure
- Intermediate inputs = Other current expenditure
- Investment = Extraordinary expenditure (*Depenses extraordinaires*) + ‘Expenses for first use’ (*Depenses premier ...*).

The class of extra-ordinary expenses, which changes in terminology throughout the years, includes all costs related to major expansion, transformation and preparation works within the mines (Wibail, 1934, 13). Using these aggregations, we were able to create consistent measures of input expenditures and capital investments. In Figure B.1, we plot the cost shares according to our database. The dashed vertical lines indicate the years in which possible discontinuities in the variable definitions occur. The great continuity in the cost structure around these structural breaks alleviates any concerns regarding inconsistent definitions of the variables.

⁵³This consistency was already exploited at the macro-level using the aggregated published statistics in Wibail (1934). The hand-written mine-level files were, however, largely left untouched by historical research.

Figure B.1: Structural composition of the expenses, 1845-1913

Notes: The dashed vertical lines represent the changes in terminology of the variables.

Source: Authors' database.

Concession and firm composition

As outlined in Section B.2, Belgium's coal mining sector was organized around concessions, in which firms conditionally received mining rights to the state's mineral resources. The general regulation was thus generally organized according to these concessions. Such concessions were typically independent and separate production units, with their own respective *directeurs des travaux* (managers). In the main analysis, we consequently considered these concessions to be independent firms.

Nevertheless, it is important to emphasize that this assumption potentially discards certain firm dynamics regarding the acquisition and merger of mining concessions. Firms were legally allowed to own multiple concessions⁵⁴, and this implies that our findings of monopsony and employer collusion are potentially biased upwards by within-firm coordination. We argue, however, that this is not a likely driver behind our conclusions on the ubiquity of collusive wage-setting. For the period 1896-1913, we do have access to comprehensive accounts of active mining concessions and their respective *sociétés exploitantes* (exploiting firms), in the form of the *Tableaux des mines de houille en activité* (Administration des Mines, 1896-1913). Table B.1 reveals that, for the *bassins* of Liège and Namur, all but one firm exploited a single concession in 1896. By 1913 (see Table B.2), there were still only two exceptions to this rule.⁵⁵ This confirms that our empirical evidence on employer collusion for this period is not driven merely by labor market coordination across concessions within single firms.

Going back in time, however, our view on the firm-concession relationship becomes somewhat more obscure. Fortunately, we were able to reconstruct the histories of most Liège- and Namur-based *Sociétés Anonymes* (or S.A., an equivalent to public companies). This type of enterprise was very popular among the biggest coal companies, as it facilitated funds acquisition the in the capital-intensive business of mining. In other words, the biggest holdings - which are arguably the most likely to have exploited multiple concessions - are covered by our manually collected database of

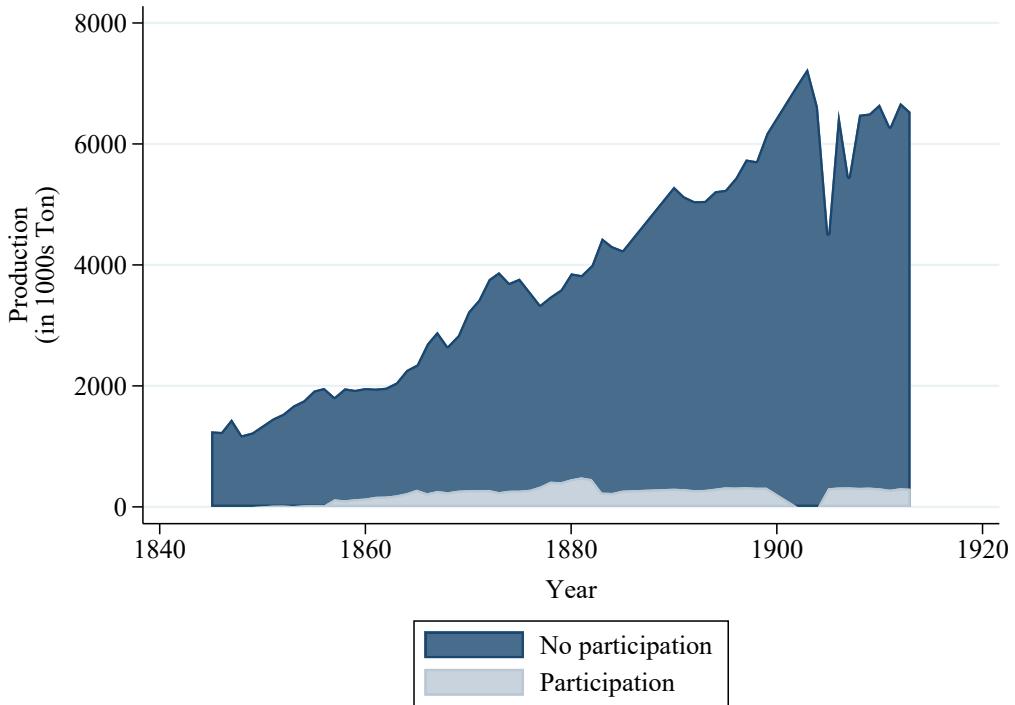
⁵⁴Article 31 in the law of 21 April 1810 reads:

Several concessions may be brought together in the hands of the same concessionnaire, either as an individual or as a representative of a company, but at the expense of maintaining the operation of each concession.

⁵⁵Multiple-concession firms appear to have been located primarily in the *Bassin du Couchant de Mons*, not surprisingly the area in which universal banks had the strongest hold on the coal industry: we return to this issue of inter-firm ownership below.

19th-century public coal companies.

In general, it appears that firms preferred to unite concessions under their supervision, as “their reunion and a single concession can only be advantageous to the good development and economic exploitation of the mine”.⁵⁶ Specific reasons include the removal of fences (for example, see Demeur, 1878, 672), the ability to mine veins under concession borders (for example, see Recueil Financier, 1893, 159), as well as administrative simplicity in terms of government supervision. As a consequence, most firm mergers or acquisitions were followed by the unification of the firms’ concessions as well.⁵⁷


A more prevalent connection between the concessions in our database appeared to have in been the form of *common* and, more importantly, *inter-firm ownership*. Collusion due to *common ownership* is probable if powerful investment banks had a strong hand in multiple exploitations. As discussed in Section 2.2, Hainaut-based coal firms with their mutual ties to the *Société Générale de Belgique* were indeed openly colluding in wage setting. In the case of Liège- and Namur-based coal mining, however, this appears to have been less apparent. Our analysis of the portfolio of the *Société Générale*, by far the most powerful and omnipresent universal bank in 19th-century Belgium (Van Overfelt, Annaert, De Ceuster, & Deloof, 2009), reveals that its involvement in coal mining was strongly confined to the aforementioned *bassins* in Hainaut.⁵⁸ In Figure B.2, we decompose coal production in Liège and Namur by whether a firm had some financial ties (in the form of stock ownership) with the *Société Générale*. This illustrates that the universal bank’s control over this industry was limited and that its development over time does little to explain the observed monopsony and employer collusion surge after the turn of the century. This conclusion aligns with historical appraisals of the industrial relations in Liège during that era (Kurgan-van Hentenryk & Puissant, 1990).

⁵⁶This is a quote from the royal decree regarding the unification of the concessions from the *SA des charbonnages de la Chartreuse et Violette* (Demeur, 1878, 680-681).

⁵⁷For examples, see the aforementioned case of *SA des charbonnages de la Chartreuse et Violette*, as well as the *SA des charbonnages de Bonne-Fin*, who fully acquired the concession of Baneux in August 1863. Early next year, the concessions of Bonne-Fin and Baneux were accordingly united (Laureyssens, 1975, 139).

⁵⁸We thank Gertjan Verdickt and the *StudieCentrum voor Onderneming en Beurs* or SCOB (University of Antwerp) for help with this data.

Figure B.2: Involvement of the *Société Générale de Belgique* in Liège- and Namur-based coal mining, 1845-1913

Source: Authors' database and the yearbooks of the *Société Générale de Belgique* (SCOB).

Inter-firm ownership, on the other hand, implies that industrial conglomerates had a hand in multiple, competing concessions other than their own exploitation, pressuring its managers into aligning their labor market strategies. We see this as a plausible source of employer-side collusion in industrial labor markets. A prime example is undoubtedly the influential Liège-based Orban family. Jean Michel Orban (1752-1833) was among the first to successfully implement innovations in mechanized water pumping and animal-powered coal transport. Hence, other firms asked him to participate in their coal mining ventures, expanding his involvement in the local coal industry. His son Henri Joseph Orban (1779-1846) and other relatives would continue to tighten the family's grip on the local industry (Kurgan-Van Hentenryk, Puissant, & Montens, 1996, 491). At Henri Joseph Orban's death in 1846, his inheritance listed financial ties with various firms in our sample, including the *Houillère de Nouvelle Bonnefin*, the *Houillère des Baneux* and the *Houillère du Bon Buveur* (Capitaine, 1858, 13). Comprehensively charting such financial ties over time for the Orban family, as well as for other industrial dynasties such as the Cockerill family, is beyond the scope

of this paper (if not beyond the scope of the available historical sources as well). Nevertheless, we do see the connection between inter-firm ownership and labor market collusion as an exciting avenue for future research.

Figure B.3: Example of one of the count sheets of the *Administration des Mines*

N° D'ORD. DE LA CARTE	NOMS DES MINES.	COMMUNES.	DATE CONCESSIONS.	ÉTENDUE DE LA SURFACE			NOMBRE DES SIÈGES D'EXPLOITATION			NOMS ET PUISSANCE DES COUCHES D'EXPLOITATION.	MOYENS D'EXTRACTION, D'ÉPUISSEMENT, D'ÉVACUATION	GALERIES ABOUSSANT AU JOUR, SERVANT	CHEVAUX EMPLOIES	NOMBRE ET SALAIRE DES OUVRIERS									
				CONCEDÉE.	ATTRIBUÉE PROVISOIREEMENT	Hectares.	EN ACTIVITÉ	EN NON ACTIVITÉ	EN CONSTRUCTION					DE L'ATTELIER.									
														Nombre	Salaires	Nombre	Salaires	Nombre	Salaires				
23. 44	Stélysius (C)	Leys	77 ^{me} 1838	188.88	11	1	1	1	1	1	0.24. Novata 0.25. 1.3 0.26. 1.05 0.27. 1.05 0.28. 1.05 0.29. 1.05	1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)	9	64	19	169	12	295	196	196	196		
24. 45	Argy-Bessie (C)	Argy	30 ^{me} 1834	168.56	1	1	1	1	1	1	0.24. Novata 0.25. 1.3 0.26. 1.05 0.27. 1.05 0.28. 1.05 0.29. 1.05	1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)	4	13	246	1.90	29	1.05	278	1.81			
25. 46	Argy-Bessie (C)	Argy	20 ^{me} 1834	168.56	1	1	1	1	1	1	0.24. Novata 0.25. 1.3 0.26. 1.05 0.27. 1.05 0.28. 1.05 0.29. 1.05	1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)	1	1	1	179	1.94	2.8	1.02	207	1.82		
26. 47	Ural Novot (C)	Ural Novot	12 ^{me} 1834	168.56	1	1	1	1	1	1	0.24. Novata 0.25. 1.3 0.26. 1.05 0.27. 1.05 0.28. 1.05 0.29. 1.05	1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)	1	1	1	169	2.32	2.60	1.16	528	1.95		
27. 48	Herz (C)	Herz	8 ^{me} 1837	274.00	1	1	1	1	1	1	0.24. Novata 0.25. 1.3 0.26. 1.05 0.27. 1.05 0.28. 1.05 0.29. 1.05	1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)	1	2	2	119	1.60	1.20	1.00	142	1.65		
28. 49	Gossen (C)	Gossen	20 ^{me} 1834	338.78	1	1	1	1	1	1	0.24. Novata 0.25. 1.3 0.26. 1.05 0.27. 1.05 0.28. 1.05 0.29. 1.05	1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)	12	3	191	2.16	29	1.03	246	1.97			
29. 50	Ural Charlier (C)	Ural Charlier	13 ^{me} 1836	112.80	1	1	1	1	1	1	0.24. Novata 0.25. 1.3 0.26. 1.05 0.27. 1.05 0.28. 1.05 0.29. 1.05	1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)	6	8	169	2.92	6	0.92	33	2.74			
30. 51	Borovier (C)	Borovier	20 ^{me} 1834	158.55	1	1	1	1	1	1	0.24. Novata 0.25. 1.3 0.26. 1.05 0.27. 1.05 0.28. 1.05 0.29. 1.05	1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)	1	1	1	119	1.99	21	0.95	140	1.83		
31. 52	Malenton Cog (C)	Malenton Cog	8 ^{me} 1834	132.83	1	1	1	1	1	1	0.24. Novata 0.25. 1.3 0.26. 1.05 0.27. 1.05 0.28. 1.05 0.29. 1.05	1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)	1	1	1	227	1.63	37	0.76	264	1.81		
32. 53	Bonne et Bellois (C)	Bonne et Bellois	19 ^{me} 1844	190.66	1	1	1	1	1	1	0.24. Novata 0.25. 1.3 0.26. 1.05 0.27. 1.05 0.28. 1.05 0.29. 1.05	1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)	1	2	4	133	1.94	21	0.73	94	1.85		
33. 54	G. Martell (C)	G. Martell	24 ^{me} 1840	112.65	1	1	1	1	1	1	0.24. Novata 0.25. 1.3 0.26. 1.05 0.27. 1.05 0.28. 1.05 0.29. 1.05	1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)	1	2	6	142	1.73	6	0.98	182	1.67		
34. 55	Champ d'Orléans (C)	Champ d'Orléans	26 ^{me} 1844	71.81	1	1	1	1	1	1	0.24. Novata 0.25. 1.3 0.26. 1.05 0.27. 1.05 0.28. 1.05 0.29. 1.05	1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)	1	1	1	1	1	1	1	1	1		
35. 56	Rejouster (C)	Rejouster	28 ^{me} 1839	237.00	2	1	1	1	1	1	0.24. Novata 0.25. 1.3 0.26. 1.05 0.27. 1.05 0.28. 1.05 0.29. 1.05	1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)	3	19	106	1.69	373	1.93	134	1.06	323	1.61	
											1/2 (V) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P) 1/1 (P)												

Source: Administration des Mines (1831-1933, Series 103).

Table B.1: Concession and firm concordance in Liège and Namur, 1896

Basin & District		Concession	Firm
Bassin de Namur	5	Hazard	SC du charbonnage du Hazard
	5	Auvelais Saint-Roch	SA des charbonnages de Saint-Roch-Auvelais
	5	Falisolle	SA du charbonnage de Falisolle
	5	Arsimont	SA du charbonnage d'Arsimont
	5	Ham-sur-Sambre	SA des charbonnages de Ham-sur-Sambre et Moustier
	5	Malonne	SA des charbonnages de Malonne et Floreffe
	5	Le Château	SC du charbonnage de Château
	5	Basse-Marlagne	SC du charbonnage de Basse-Marlagne
	5	Stud-Rouvroy	SC du charbonnage de Stud-Rouvroy
	5	Andenelle	SC du charbonnage d'Andenelle
	5	Grognne	SC du charbonnage de Grognne
Bassin de Liège	6	Bonnier	SA du charbonnage du Bonnier
	6	Sarts-au-Berleur	SA du charbonnage du Corbeau-au-Berleur
	6	Gosson-Lagasse	SA des charbonnages de Gosson Lagasse
	6	Horloz	SA des charbonnages du Horloz
	6	Kessales-Artistes	SA des charbonnages des Kessales
	6	Concorde	SA des charbonnages réunis de la Concorde
	6	Nouvelle-Montagne	SA de Nouvelle-Montagne
	6	Halbosart	Famille Farcy
	6	Ben	Desoer et Compagnie
	6	Marihaye	SA des charbonnages de Marihaye
	6	Bois de Gives et Saint-Paul	SC des charbonnages de Gives et Saint-Paul
	7	Angleur	SA des charbonnages d'Angleur
	7	Sclessin-Val Benoit	SA des charbonnages du Bois d'Avroy
	7	Espérance et Bonne Fortune	SA des charbonnages d'Espérance et Bonne Fortune
	7	La Haye	SA des charbonnages de La Haye
	7	Patience-Beaujonc	SA des charbonnages de Patience-Beaujonc
	7	Bonne-Fin Bâneux	SA des charbonnages de Bonne-Fin
	7	Ans et Glain	SA des Mines de houille d'Ans
	7	Grande-Bacnure	SA de la Grande Bacnure
	7	Petite-Bacnure	SA des charbonnages de la Petite Bacnure
	7	Belle-Vue et Bien Venue	SA des charbonnages de Belle-Vue et Bien-Venue
	7	Espérance (Herstal)	<u>SA de Bonne-Espérance et Batterie</u>
	7	Batterie	<u>SA de Bonne-Espérance et Batterie</u>
	7	Abhooz et Bonne-Foi-Hareng	SA des charbonnages d'Abhooz et Bonne-Foi-Hareng
	7	Bicquet-Gorée	SA des charbonnages d'Oupeye
	8	Cockerill	SA John Cockerill
	8	Cowette-Rufin	SC de Cowette-Rufin, Grand-Henri
	8	Crahay	SA de Maireux et Bas-Bois
	8	Hasard-Melin	SA du Hasard
	8	Herman-Pixherotte	SC de Herman-Pixherotte
	8	Herve-Wergifosse	SA de Herve-Wergifosse
	8	Lonette	SA de Lonette
	8	Micheroux	SA des Bois de Micheroux
	8	Minerie	SA de la Minerie
	8	Ougrée	SA d'Ougrée
	8	Près de Fléron	SC des Près de Fléron
	8	Quatre Jean	SA des Quatre Jean
	8	Six-Bonniers	Société charbonnière des Six-Bonniers
	8	Steppes	SC du canal de Fond-Piquette
	8	Trou-Souris-Houilleux-Homvent	Charbonnages réunis de l'Est de Liège
	8	Wandre	Suermontd, frères
	8	Wérister	SA de Wérister

Notes: *Sociétés Anonymes* and *Sociétés Civiles* are abbreviated as SA and SC respectively.
Firms underlined and in blue are multiple-concession firms.

Source: Annales des Mines de Belgique (1896–1913, vol. I).

Table B.2: Concession and firm concordance in Liège and Namur, 1913

Basin & District	Concession	Firm
Bassin de Namur	5 Tamines	SA des charbonnages de Tamines
	5 Auvelais Saint-Roch	SA des charbonnages de Saint-Roch-Auvelais
	5 Falisolle	SA du charbonnage de Falisolle
	5 Ham-sur-Sambre, Arsimont et Mornimont, Franière et Diminche	SA des charbonnages de Ham-sur-Sambre et Moustier
	5 Jemeppe-sur-Sambre	SA du charbonnage de Jemeppe-Auvelais
	5 Soye, Floriffoux, Floreffe, Flawinne, La Lâche et extensions	SA des charbonnages réunis de la Basse Sambre
	5 Le Château	SC du charbonnage de Château
	5 Basse-Marlagne	SC du charbonnage de Basse-Marlagne
	5 Stud-Rouvroy	SC du charbonnage de Stud-Rouvroy
	5 Groynne	SC du charbonnage de Groynne
	5 Andenelle, Hautebise et Les Liégeois	SC du charbonnage de Hautebise
	5 Muache	Victor Massart
Bassin de Liège	6 Bois de Gives et Saint-Paul	SC des charbonnages de Gives et Saint-Paul
	6 Halbosart-Kivelterie	SA des charbonnages de Halbosart
	6 Sart d'Avette et Bois des Moines	SA des charbonnages du Pays de Liège
	6 Arbre Saint-Michel, Bois d'Ottheit et Cowa	SA des charbonnages de l'Arbre Saint-Michel
	6 Nouvelle-Montagne	SA de Nouvelle-Montagne
	6 Marihaye	<u>SA d'Ougrée-Marihaye: Division Marihaye</u>
	6 Kessales-Artistes	SA des charbonnages des Kessales
	6 Concorde	SA des charbonnages réunis de la Concorde
	6 Sarts-au-Berleur	SA du charbonnage du Corbeau-au-Berleur
	6 Bonnier	SA du charbonnage du Bonnier
	6 Gossen-Lagasse	SA des charbonnages de Gossen Lagasse
	6 Horloz	SA des charbonnages du Horloz
	7 Espérance et Bonne Fortune	SA des charbonnages d'Espérance et Bonne Fortune
	7 Ans et Glain	SA des Mines de houile d'Ans et de Rocour
	7 Patience-Beaujondc	SA des charbonnages de Patience-Beaujondc
	7 La Haye	SA des charbonnages de La Haye
	7 Sclessin-Val Benoit	SA des charbonnages du Bois d'Avroy
	7 Bonne-Fin Bâneux	SA des charbonnages de Bonne-Fin
	7 Batterie	<u>SA de Bonne-Espérance et Batterie</u>
	7 Espérance et Violette	<u>SA de Bonne-Espérance et Batterie</u>
	7 Abhooz et Bonne-Foi-Hareng	SA des charbonnages d'Abhooz et Bonne-Foi-Hareng
	7 Petite-Bacnure	SA des charbonnages de la Petite Bacnure
	7 Grande-Bacnure	SA de la Grande Bacnure
	7 Belle-Vue et Bien Venue	SA des charbonnages de Belle-Vue et Bien-Venue
	7 Bicquet-Gorée	SA des charbonnages d'Oupeye
	8 Cockerill	SA John Cockerill
	8 Six-Bonniers	Société charbonnière des Six-Bonniers
	8 Ougrée	<u>SA d'Ougrée-Marihaye</u>
	8 Trou-Souris-Houilleux-Homvent	Charbonnages réunis de l'Est de Liège
	8 Steppes	SC du canal de Fond-Piquette
	8 Cowette-Rufin	SC de Cowette-Rufin, Grand-Henri
	8 Wérister	SA des charbonnages de Wérister
	8 Quatre Jean	SA des Quatre Jean
	8 Lonette	SA de Lonette
	8 Hasard-Fléron	SA des charbonnages de Hasard
	8 Crahay	SA des charbonnages de Maireux et Bas-Bois
	8 Micheroux	SA du charbonnage de Bois de Micheroux
	8 Herve-Wergifosse	SA de Herve-Wergifosse
	8 Minerie	SA des charbonnages réunis de la Minerie
	8 Wandre	Suermondt, frères
	8 Cheratte	SA des charbonnages de Cheratte
	8 Basse-Ransy	SA des charbonnages de la Basse-Ransy

Notes: Sociétés Anonymes and Sociétés Civiles are abbreviated as SA and SC respectively.

Firms underlined and in blue are multiple-concession firms.

Source: Annales des Mines de Belgique (1896–1913, vol. XVIII).

B.2 Other sources

❖ Membership of the *Union des charbonnages*

To quantify membership of the *l'Union des charbonnages, mines et usines métallurgiques de la province de Liège* throughout the years, we constructed a yearly binary membership variable for each firm in our data set. In their monthly *Bulletin* publications (1869–1913), the organization disseminated the minutes of its meetings, as well as noteworthy news in the local coal industry. On a yearly basis, a complete list of its members was also published. We used the latter as a source for our membership variable.

This variable does not cover the period before the *Union* was officially recovered, from 1840 to 1868. Based on the available member lists, there is no evidence of exit from the union, so we assume that all members who remained member from 1868 to 1913 were founding members and accordingly create a time invariant membership dummy.

❖ Employers' associations in Namur

Most *bassins* in Belgium had their own respective employers' organizations, much like the *Union*. However, the smaller and diluted Namur coal industry - the other *bassin* in our data set next to Liège, Basse-Sambre - was an exception. The Charleroi-based *Association des charbonnages du bassin de Charleroi* did attempt to gain control over this area. In order to attract more Namur-based coal mines, the organization changed their name into *L'Association charbonnière et l'industrie houillière des bassins de Charleroi et de la Basse-Sambre* (Association charbonnière (...), 1931, 30). Membership lists of said organization reveal that the reach of these efforts was very limited in terms of membership, however.

❖ Access to the railroad network

We assigned the coal mines' location to their respective communities. The transport database of the *Quetelet Center for Quantitative Historical Research* (Ghent University) gives us access to the opening years of all train and tramway stations in Belgium. By combining these two pieces of information, we were able to retrace all coal mines'

approximate year of connection to the Belgian railroad network.

❖ Cartel membership

The work of contemporary economist Georges De Leener is without a doubt considered to be the seminal source on Belgian cartels of that era (for example, see Vanthemsche, 1995, 18). We obtain the cartel membership list in 1905 from De Leener (1909). We trace this cartel membership data back to 1898 by taking into account name changes of mines, and assume that no firms entered or exited the cartel between 1898-1905. This results in 27 cartel firms in 1898, which is in line with anecdotal evidence in De Leener (1904). After 1905, we take into account the exit of the *Gosson-Lagasse* mine in 1907, mentioned by De Leener (1909), and for the remainder we assume that the cartel membership remained stable, as no mention of any other exiters or entrants was made in De Leener (1909).

B.3 Capital stock

In this section, we describe how we construct the capital stock K_{ft} . In every year between 1846 and 1912, we observe capital investment I_{ft} , from the variable *dépenses extraordinaires*. We specify the usual capital accumulation equation:

$$K_{ft} = K_{ft-1}(1 - d) + I_{ft}$$

In order to determine the amount of depreciation, we estimate the capital transition process for both machine horsepower and equine horsepower. The estimates are in Table B.3. If no investment has taken place in the previous year, machine horsepower decreases by 12.7%, and equine horsepower by 15.1%. If there has been investment in the previous year, machine horsepower increases by 1.7%, but equine horsepower remains stable: investments in horses were mainly replacement investments, not expanding the amount of horses used. Given that the depreciation rates lied around 13%, we set $d = 0.13$ in order to calculate the capital stock. For years in which investment data are missing, we linearly interpolate missing investments.

One problem is which capital stock to assume in the first year of the data set, 1845. This was most likely not zero. We proceed as follows to find the initial capital stock. We regress yearly investment on changes in the number of horsepower for excavation and extraction, K^1 and K^2 , and the change in the number of horses K^h , in order to recover the price per horse and the price per unit of horsepower for each machine.

$$I_{ft} = W^1(K_{ft}^1 - K_{ft-1}^1) + W^2(K_{ft}^2 - K_{ft-1}^2) + W^h(K_{ft}^h - K_{ft-1}^h) + u_{ft}$$

Next, we compute the initial capital stock in 1845 as:

$$K_{f,1845} = W^1 K_{f,1845}^1 + W^2 K_{f,1845}^2 + W^h K_{f,1845}^h$$

We assume the deflated prices per horse and horsepower are constant across firms and years. This assumption could be violated if machine technologies became cheaper over time. However, we only need the price per horsepower and horse in 1845 to construct the initial capital stock, not the price per horsepower and horse in every year.

Table B.3: **Depreciation**

<i>(a) Machine horsepower</i>	(I)		(II)	
	Not invested		Invested	
	Est.	SE	Est.	SE
$1 - \delta$	0.873	0.008	1.017	0.003
R-squared	.782		.974	
Observations	3550		3277	

<i>(b) Equine horsepower</i>	(I)		(II)	
	Not invested		Invested	
	Est.	SE	Est.	SE
$1 - \delta$	0.849	0.009	0.993	0.005
R-squared	.721		.934	
Observations	3550		3277	

C Drivers of wage markdowns

What drove the level and growth of wage markdowns documented in the previous section? First, we investigate a traditional driver of monopsony power, labor market concentration, and geographical lock-in of workers. Second, we examine the role of non-wage amenities and firm differentiation. Third, we examine collusion between firms.

Concentration and market integration

In Table B.4a, we examine whether wage markdowns were larger in more concentrated labor markets. This requires defining geographical labor markets. Figure A8 in Appendix A.2, which is based on a 1911 survey in two large Liège-based mines, shows that almost 90% of the workers lived within 10 km of the mine. Hence, we define labor markets as a bit more aggregated than the village-level, by grouping villages to the 3-digit postal code level, which corresponds to current municipality boundaries.⁵⁹ We regress the log wage markdown on an indicator variable of whether there were one, two, or three firms in the firm's municipality. In column (I), we do not include mine fixed effects, in column (II), we do include these. In either specification, we do not find markdowns to differ significantly from the local labor market structure. We also do not find any differences between wage markdowns in urban areas, defined as municipalities that are part of the cities of Liège or Namur, compared to rural areas.

Next, we examine whether wage markdowns differed in villages that were connected to the railroad or tramway network, given that 10% of workers commuted between 10 and 60 km, which indicates the usage of trains or tramways. Figure A7 in Appendix A.2 shows that the railroad network expanded mainly from the 1840s to the 1870s, by 1880 all villages in our data set were connected to the railroad network. Starting in the 1880s, a local tramway network was added, which increased commuting options for workers who lived far from the local train station. We do not find that wage markdowns differed between villages connected to transport infrastructure and unconnected villages, and find no difference between urban and rural municipalities.

All these estimates indicate that labor markets were unconcentrated and flexible

⁵⁹Current-day Belgian municipalities usually contain multiple historical villages.

and that firms did not derive labor market power from being located in concentrated or isolated labor markets because workers could move around. This is consistent with the fact that Belgian coal mines, even those in rural areas, were located close to industrial urban centers, which offered outside employment options to the miners.⁶⁰ It is also consistent with the low geographical wage variation observed across the Liège and Namur coal basin, as we show in the next paragraph.

Firm differentiation

A second driver of equilibrium wage markdowns could be firm differentiation. Even in unconcentrated labor markets, firms that are differentiated from the workers' perspective could charge wage markdowns due to their non-wage amenities.⁶¹ To test this, we run a variance decomposition for wages and wage markdowns in Table B.4c. We regress log wages and log wage markdowns on year, province, and firm fixed effects, and report the R^2 of these regressions. Only including year dummies explains 88.5% of wage variation in the data: there seems to be a single, integrated market for labor in the Liège and Namur coal basin. This also explains why the local labor market structure did not affect wage rates. Adding town fixed effects slightly increases the R^2 to 0.917. Firm fixed effects increase it further to an R^2 of 0.932. Firm fixed effect hence explain barely 1.5% of wage variation. This seems inconsistent with a model where non-wage firm amenities play an important role.

When doing the same variance decomposition for wage markdowns, the R^2 increases from 0.126 when only including year dummies, to 0.400 when including year and firm dummies. Hence, there is substantial variation in marginal products of labor across villages, and across different firms within villages.

⁶⁰This stands in stark contrast with the well-known examples of isolated mining towns in the U.S. (such as in Fishback, 1992). Rubens (2022) shows that in such a setting, looking at the Illinois coal mining sector, markdowns did vary with local labor market structure.

⁶¹Examples of monopsonistic models with employer amenities include Lamadon et al. (2022) and Card et al. (2018). An example of an oligopsonistic model with differentiation is Azar et al. (2019).

Table B.4: **Markdown covariates**

<i>(a) Concentration</i>	log(Markdown)		log(Markdown)	
	Est.	SE	Est.	SE
1(Railroad)	-0.005	0.057	0.001	0.049
1(Tramway)	-0.059	0.053	0.026	0.066
1(Urban)	0.067	0.044	0.000	0.000
One firm	0.069	0.222	0.084	0.140
Two firms	0.100	0.079	0.136	0.077
Three firms	0.032	0.083	0.041	0.067
Mine FE		No		Yes
Year FE		Yes		Yes
R-squared		.124		.129
Observations		3215		3215

Notes: Reference category is the period between 1845-1859. Bootstrapped standard errors, 200 iterations.

Collusion

Given that labor markets were both integrated and unconcentrated, and firms undifferentiated from the workers' perspective, there is no reason to suspect wage markdowns in a world where firms set wages non-cooperatively. However, coal firms might have colluded in their employment decisions, and hence in their wage decisions. As described in Section 2, there is considerable anecdotal evidence for wage collusion within the Liège employers' association, the *Union des Charbonnages*. Second, the introduction of coal cartels might also have led to employer collusion.

Employers' associations Based on internal communication by the *Union*, we created a time-invariant variable indicating the *Union* membership of each firm.⁶² We regress the log wage markdown on employers' association membership in Table B.4b. We find that members of employer unions (in the form of the employers' association of Liège coal firms) were indeed driving wage markdowns: the wage markdown at members of the *Union* was 11% higher compared to non-members. Interestingly, the difference between employer union members and non-members vanished after 1898. In this last time period, when wage markdowns spiked, employer collusion was not significantly different between employer union members and other firms.

Downstream cartels This can be undoubtedly tracked to a second big shift in the competitive environment of both coal and labor markets, which happened in 1897 when the coal cartel *Syndicat des Charbonnages Liégeois* was set up. As was explained in Section 2, this cartel imposed production quota in order to restrict output in the coal basin, and it covered a market share of a sizeable share of the market. We have shown in Figure 5 that the start of the cartel coincided with the sharp rise in employer market power.

Although the cartel did not set employment quota but set output quota, with imperfect competition upstream and downstream, output cartels also appear to have affected input market collusion. The reason is clear: although the cartel restricted output quantities, this pushed down input demand, and hence resulted in decreased labor usage. As a result, employment and wages fell, resulting in a higher wage

⁶²For more information, we refer to Appendix B.2.

markdown.

Some firms, especially smaller ones, deviated from the cartel: the cartel contained 38% of firms but produced 75% of output in 1898. Cartel defiers increased their output, but due to their small size and a likely capacity constraint, they could not let the cartel unravel by compensating for the decrease in output by the cartel firms. In Table B.4c, we compare wage markdowns between cartel and non-cartel members. Cartel members charged a markdown that was 9% higher compared to non-members. When only looking at time series variation, in column (II), the markdown difference increases to 41%. These comparisons do not capture the full effect of the cartel on wage markdowns, though. An important nuance is that, given that labor markets were integrated, non-cartel firms also benefited from the decreased wages at the cartel firms. The post-1897 increase in wage markdowns happened both at the cartel firms and the cartel defiers: due to their collective size, the cartel firms were setting the market wage and coal price, whereas the small cartel defiers were price-takers on both the output and the input market.

C.1 Consequences of monopsony power in the long 19th century

The observed level and trend of labor market power had a marked impact on Belgian coal workers in terms of real wages. In Figure B.4, we use our estimates of ψ_{ft}^l to ask the question: how much would workers have earned in a counterfactual world with competitive labor markets? We provide a tentative answer through the calculation of a counterfactual wage series in the form of the marginal revenue product of labor. The limited difference between this counterfactual wage and the actual wages paid to Belgian coal workers, as shown in Figure B.4, underlines that labor markets were relatively competitive for large parts of the 19th century. In this context, explanations for Belgium's reputation as a low-wage country and the country's limited wage growth, despite its vast industrial successes and leadership role on the international economic stage, should be looked for elsewhere. Of course, these weighted averages forego cross-firm variation in market power, meaning that some workers might have been worse off due to labor market power held by their employer; employees at employer unions or cartel firms received a disproportionately low wage. This becomes strikingly clear

when we look at the divergence between the actual wage series and the counterfactual, perfectly competitive wage series skyrocketed in the run-up to the First World War. This implies that employer market power resulted in real and significant salary losses for the Belgian industrial worker after the turn of the 19th century: the actual daily average wages of around 5 BEF per day could have been well above 6 Francs per day. As shown in Table B.5, wages and marginal revenue products of labor both grew on average by around 2% per year prior to 1897. After 1897, however, wages grew at 3.3%, compared to marginal revenue product growth of 5.3%.

Figure B.4: **Wages and the marginal revenue product of labor (MRPL)**

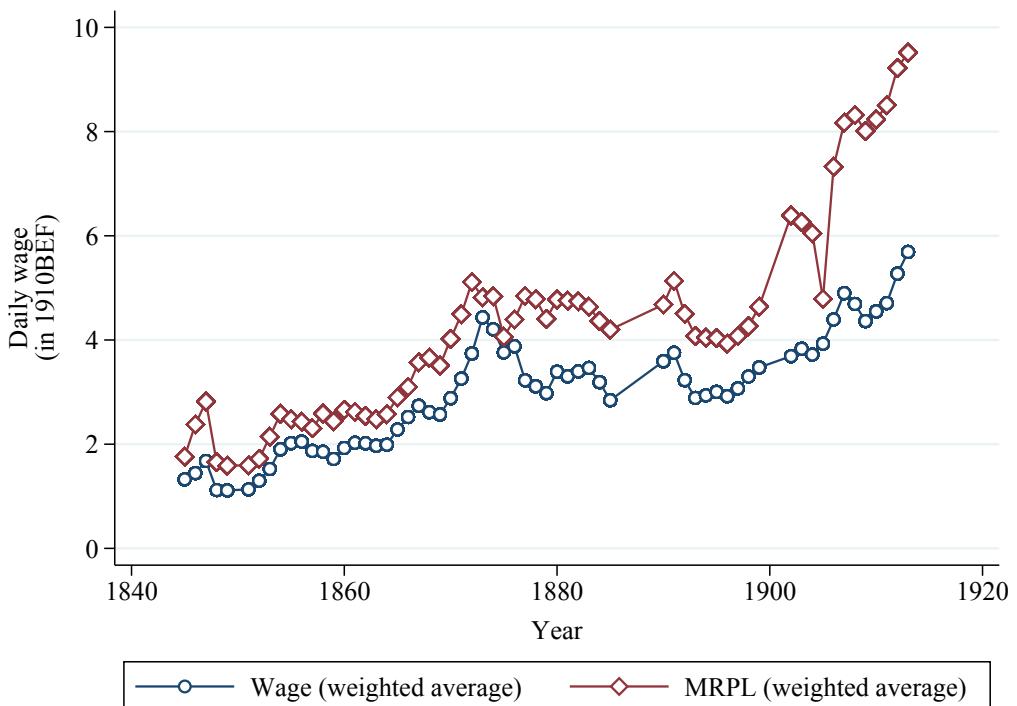


Table B.5: **Wage and MRPL growth**

	Annual wage growth (%)	Annual MRPL growth (%)
1845-1897	2.081	2.037
1898-1913	3.326	5.286

Notes: This table compares the annual growth rate of aggregate wages and marginal revenue products of labor (weighted by employment usage) between the pre- and post-cartel period.

D Robustness checks

D.1 Production function: extensions

Labor-capital complementarity

We extend the production function by allowing for an interaction effect between capital and labor, parametrized by β^{kl} .

$$q_{ft} = \beta^l l_{ft} + \beta^m m_{ft} + \beta^k k_{ft} + \beta^{kl} k_{ft} l_{ft} + \beta^{km} k_{ft} m_{ft} + \omega_{ft} \quad (\text{C.1})$$

We estimate Equation (C.1) using the same estimation strategy as in the main text, only adding the lagged interaction term between labor and capital as an instrument in the moment conditions. The results are in Table C.1. Capital usage decreases the output elasticity of labor, as could be expected, but the interaction term is very small and not significantly different from zero. The estimates of this extended model are hence not so different compared to the baseline model in which the interaction term between labor and capital is set to zero.

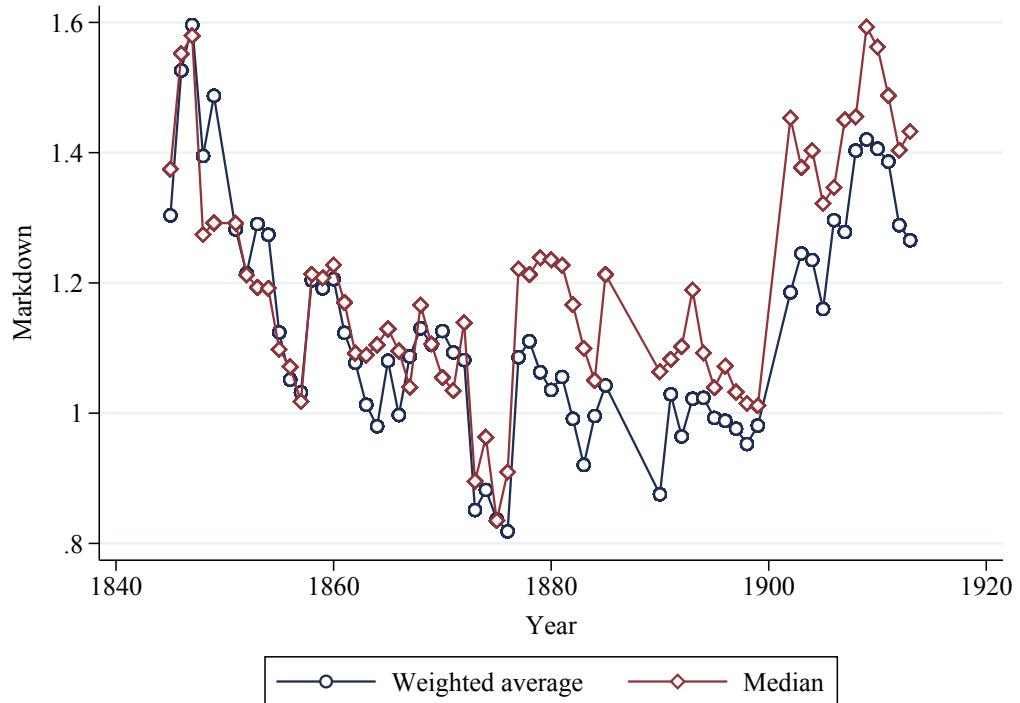
Using this extended production function to estimate markdowns yields the median and weighted average and median markdown series in Figure C.1a. The evolution of the wage markdown, being relatively constant up to 1900 and sharply increasing afterwards, looks very similar to the one in the main text.

Translog production function

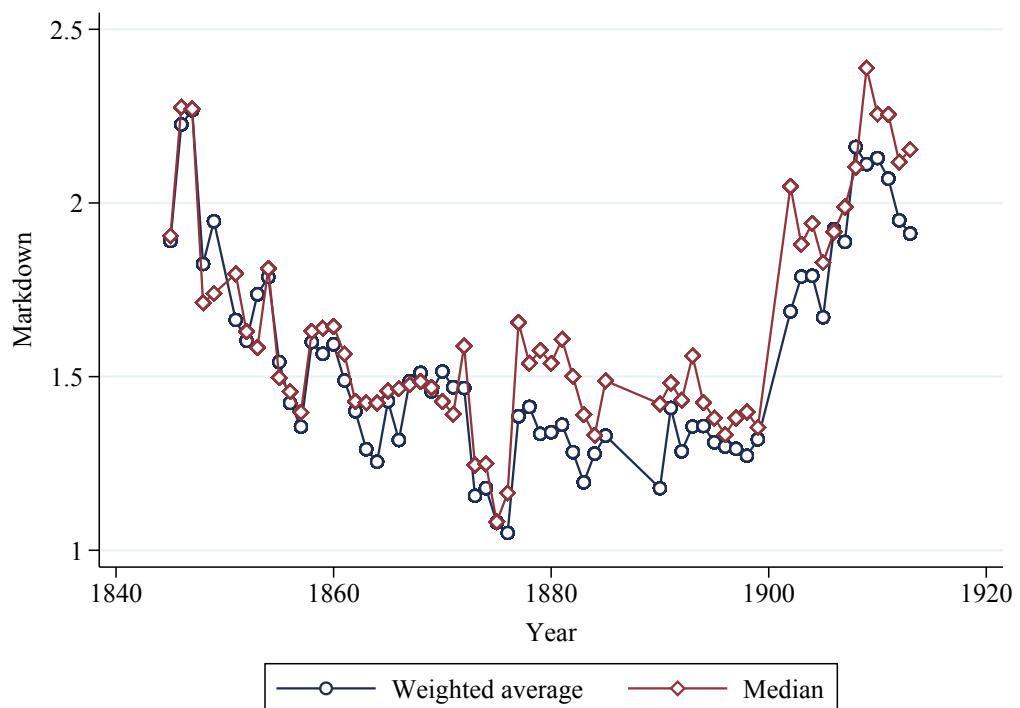
Next, we estimate a translog production function, to allow for interaction terms between all inputs, and for nonlinearities in the output elasticities.

$$q_{ft} = \beta^l l_{ft} + \beta^m m_{ft} + \beta^k k_{ft} + \beta^{kl} k_{ft} l_{ft} + \beta^{km} k_{ft} m_{ft} + \beta^{lm} l_{ft} m_{ft} + \beta^{ll} l_{ft}^2 + \beta^{kk} k_{ft}^2 + \beta^{mm} m_{ft}^2 + \omega_{ft} \quad (\text{C.2})$$

The resulting markdown series is in Figure C.1b. The markdown is still estimated to be roughly constant before 1898, and to increase sharply after 1897. The pre-1897 markdown level is estimated to be higher, between 2 and 3, indicating substantial wage markdowns even before the cartel. However, none of the interaction terms is statistically significant, which is why we stick to the Cobb-Douglas function in our


Table C.1: Production function with labor-capital interaction term

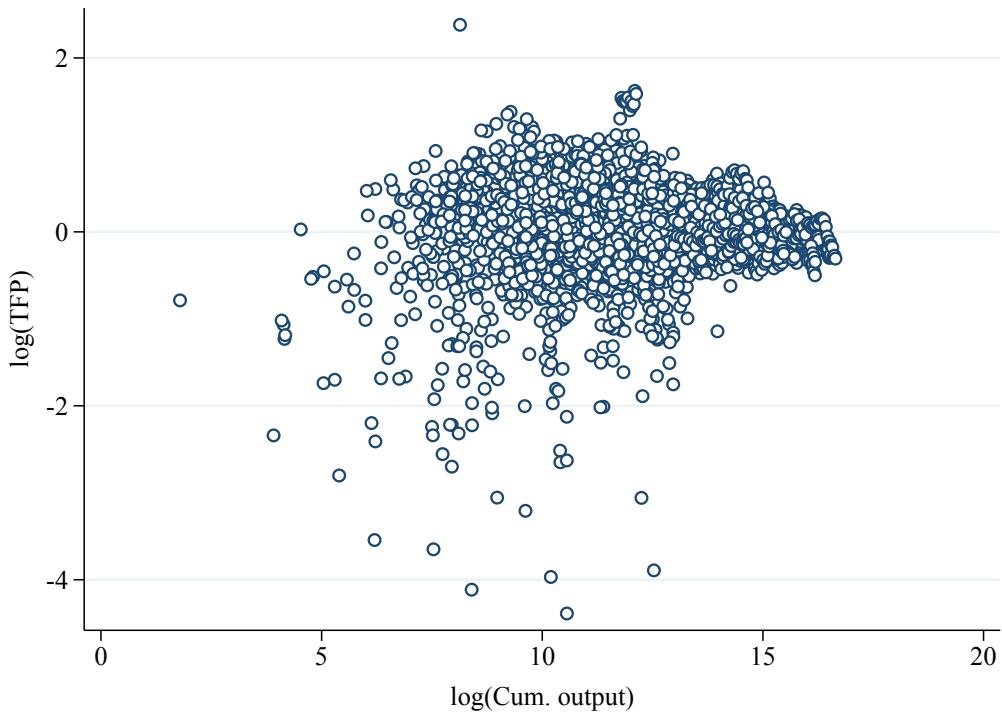
<i>(a) Production function</i>	(I)		(II)		
	OLS	SE	GMM	SE	
Est.	SE	Est.	SE		
log(Labor)	β^l	1.266	0.205	2.615	1.164
log(Materials)	β^m	-0.034	0.156	-1.159	1.072
log(Capital)	β^k	0.135	0.076	0.448	0.769
log(Labor)*log(Capital)	β^{lk}	-0.045	0.019	-0.193	0.115
log(Materials)*log(Capital)	β^{mk}	0.030	0.014	0.150	0.101
R-squared		.941		.938	
Observations		4476		3999	
<i>(b) Output elasticities</i>	(I)		(II)		
	OLS	SE	GMM	SE	
Est.	SE	Est.	SE		
Output elasticity of labor	θ^l	0.831	0.039	0.753	0.259
Output elasticity of materials	θ^l	-0.034	0.032	0.284	0.143
Returns to scale	ν	0.931	0.082	1.485	0.949


Notes: Bootstrapped standard errors, 200 iterations.

baseline analysis.

Figure C.1: Different production function specifications

(a) Labor-capital and material-capital complementarity


(b) Translog production function

D.2 Cost dynamics

We test for cost dynamics that would violate the AR(1) TFP transition assumed in the main text. In Figure C.2, we plot $\log(\text{TFP})$ against $\log(\text{cumulative past output})$. No positive relationship emerges, in contrast to what would be expected if cost dynamics matter, as in the model of Benkard (2000).

Second, the coefficient on the ratio of surface to underground workers, which is an indicator of mine depth, in the production function is close to zero and insignificant, which seems in contrast to a TFP transition model where TFP changes dynamically due to mine depth.

Figure C.2: Scatter plot of log TFP and log cumulative past output

E Theory: wage markdown interpretation

Assume that firms maximize the following joint profit function, which is the profit maximization analogue of the cost minimization problem in Equation 3. Assume, for simplicity, that the product and labor market coincide at i ; this does not have to be the case.

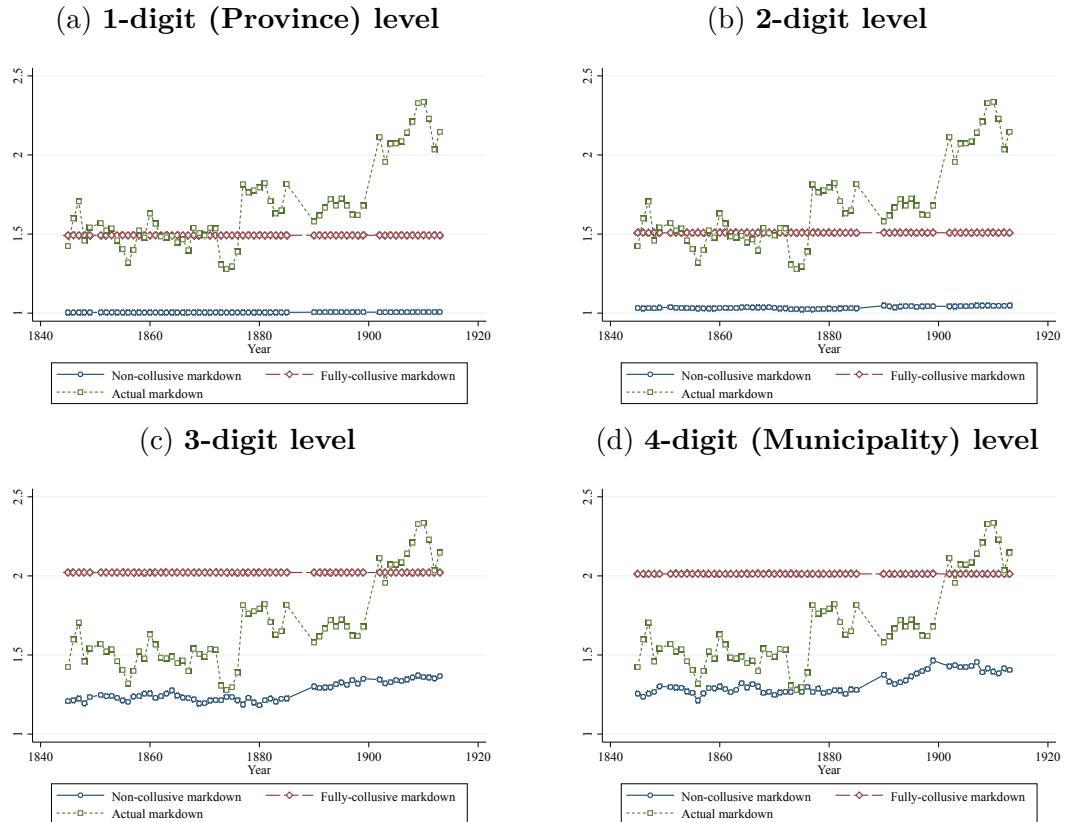
$$\max_{L_{ft}, M_{ft}} \underbrace{\left(P_{ft}Q_{ft} + \sum_{g \in \mathcal{F}_{i(f)t}} (\lambda_{fgt}Q_{gt}P_{gt}) - W_{ft}^l L_{ft} + W_{ft}^m M_{ft} \right)}_{\text{joint marginal revenue}} \underbrace{\left(\lambda_{fgt}L_{gt}W_{gt}^L + M_{gt}W_{gt}^M \right)}_{\text{joint marginal costs}} \quad (C.3)$$

Define the marginal (joint) revenue product of labor at firm f as

$$MRPL_{ft} \equiv \frac{\partial(\left(P_{ft}Q_{ft} + \sum_{g \in \mathcal{F}_{i(f)t}} (\lambda_{fgt}Q_{gt}P_{gt}) \right))}{\partial L_{ft}}$$

Working out the first-order condition for labor usage at firm f gives:

$$\psi_{ft}^l + \sum_{g \in \mathcal{F}_{i(f)t}} (\lambda_{fgt}\psi_{fgt}^l \frac{W_{gt}^l L_{gt}}{W_{ft}^l L_{ft}}) = \frac{MRPL_{ft}}{W_{ft}^l}$$


Hence, the term $\psi_{ft}^l + \sum_{g \in \mathcal{F}_{i(f)t}} (\lambda_{fgt}\psi_{fgt}^l \frac{W_{gt}^l}{W_{ft}^l L_{ft}})$ has the interpretation of a ‘wage markdown’: it is the ratio of the marginal joint revenue product of labor at firm f over its wage.

E.1 Alternative labor market definitions

We re-estimate the lower and upper markdown bounds under zero and full collusion at different market definitions. In Table C.3, we define labor markets consecutively at the single-digit postal code level, which corresponds to provinces, and the two-, three-, and four-digit postal code levels. The four-digit postal code level corresponds to municipalities, which is the market definition in the baseline specification. At the one- and two-digit levels, labor markets are so wide that individual firms have close to zero market shares, which implies that the non-collusive markdown in the Cournot model is close to one: individual firms have no wage-setting power. Using these market definitions, firms were already fully colluding on the labor market prior to forming

the cartel, and reach a markdown above the collusive upper bound after the cartel. Contrary to this, defining labor markets at the three-digit level, which corresponds to groups of 3-5 municipalities, delivers very similar markdown bounds to those in the baseline specification.

Figure C.3: Median employer collusion index: different market definitions

Notes: This graph plots the evolution of median wage collusion, by year, together with bootstrapped confidence intervals between 1845-1913.