Taking Low Impact Design (LID) to New Heights
The StormGarden Advantage
StormGarden is a patent-pending Low Impact Design (LID) micro-bioretention system that has been engineered for high flow treatment and high pollutant removal. The high flow-through rate of the engineered media results in a much smaller footprint than traditional bioretention systems, thus treating the same amount of stormwater runoff at a fraction of the cost.
Stormgarden is unique in that it has a “Runoff Reduction Infiltration Panel” that allows a portion of the runoff to infiltrate into the ground thus replenishing the groundwater supply and reducing the volume of runoff discharging downstream. The panel also allows the unit to completely drain between storm events to prevent bacteria growth and nitrogen release during the next storm.

How it Works
Stormwater runoff enters the StormGarden unit through a curb inlet opening and flows down through the engineered filter media mixture that is contained in a landscaped concrete structure. The filter media captures sediment, nutrients, metals and hydrocarbons and removes them from the runoff. The stormwater runoff flows down through the media and into an underdrain pipe at the bottom of the structure, where the treated water is discharged. However, a portion of the treated water exits the structure through the infiltration panel into the surrounding soil.

Benefits
• 20% to 30% smaller footprint than the competition due to a higher media flow-through rate.
• Increased pollutant removal efficiencies due to runoff reduction capabilities.
• Factory installed bio-media insures that the system will perform as designed.
• Easily maintained by local landscape companies.

Expected Pollutant Removal
The following information on the pollutant removal efficiency of the StormGarden filter is based on third party field studies.
• Total Suspended Solids (TSS) > 91%
• Total Phosphorous > 60%
• Total Copper > 60%
• Dissolved Copper > 36%
• Total Zinc > 79%
• Dissolved Zinc > 64%
• Oil & Grease > 34%

Available Options
• External or Internal Bypass
• Side or End Inlet
• Multi-Chamber Systems with Pre-treatment Chamber
• Roof Drain Systems
• Outlet/Junction Chamber
• Boxless Filters
STORMGARDEN SIZING CHART

<table>
<thead>
<tr>
<th>Filter Sizes (ID)</th>
<th>Tree/Grate Quantity</th>
<th>Rated Flow Capacity (cfs)</th>
<th>Rated Flow Capacity (gpm)</th>
<th>Max. Drainage Area Treated (ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W (ft)</td>
<td>L (ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1 EA</td>
<td>0.052</td>
<td>23.3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1 EA</td>
<td>0.065</td>
<td>29.1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1 EA</td>
<td>0.091</td>
<td>40.7</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>2 EA</td>
<td>0.143</td>
<td>64.0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1 EA</td>
<td>0.097</td>
<td>43.6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1 EA</td>
<td>0.136</td>
<td>61.1</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>1 EA</td>
<td>0.175</td>
<td>78.5</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>2 EA</td>
<td>0.214</td>
<td>96.0</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>2 EA</td>
<td>0.253</td>
<td>113.4</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>2 EA</td>
<td>0.295</td>
<td>132.4</td>
</tr>
</tbody>
</table>

C=1.00, I=0.20 in/hr
C - Values from San Diego County Hydrology Manual (2002)
I - Values reflect Uniform Intensity Approach targeting 85%-ile storm (CASQA)
STANDARD CONFIGURATION

PRE-TREATMENT CONFIGURATION

ROOFDRAIN CONFIGURATION