CS3244 : Machine Learning

Semester 1 2023/24

Lecture 3 : kNN, k-d Tree, Decision Tree,
Random Forest, Gradient Boosting

Xavier Bresson

https://twitter.com /xbresson

NUS

National University
of Singapore

Department of Computer Science
National University of Singapore (NUS)

Xavier Bresson

https://twitter.com/xbresson

Outline

@ Admin

Xavier Bresson

Outline

e kNN

Xavier Bresson

Xavier Bresson

kNN

@ kNN algorithm

Assumption : Close data points have similar labels, i.e. class or regression value.

Algorithm : For a test data point x, assign the most common labels in its k nearest
neighbors in the training set S.

Formalization

@ kNN classification :

fr(z) = mode({y (z,y) € S];})

with S* = k — nearest neighbor of = defined as

kNN binary
Sg’j — {Qj’ © max d(x,;(;/) < d(x,x”), V' € S \ SI;} classification with k=3
x’' €Sk x belongs to blue class

and d(x, z) = Z (Ja; — z¢|p)1/p, p =1 (Manhattan), p = 2 (Euclidean)

1

@ kNN regression : S

r_,
fr(z) = mean({y : (z,y) € Si}) w,,

kNN

@ Q1 : In case of a draw, what is a good solution?
@ Randomly select the class label from the tied classes.

@ Q2: How does the value k affect the kNN solution?

@ Small k value : Model fits the training data accurately. If data has good quality, good
performance. If data has noise or outliers, bad result.

@ Large k value, performance is influenced by a population/statistics of data points, more
robust and generalizable.

Xavier Bresson

Xavier Bresson

Curse of dimensionality

@ Euclidean/LP distances between points :

k-NN assumption “close data points have similar labels” works if we can define a
meaningful distance between two data points.

Unfortunately, in high-dim spaces, data points sampled from a random probability
distribution, are far from each other with (almost) the same distance value.

@ Let us sample points uniformly at random within the unit cube and let us the
compute the distance between all pair of points when the dimensionality increases.

2 dims 3 dims 10 dims
2 25 35
3
1.5 2
A 2 X X 25
c £15 c
T SIS Sinim e smmss g 5 z g 2
Lol e 1 c c
| 5 g g 15
1 o o o
1¢------- e £ 2 £ 1
I 0.5
\ 05
\ 0.5
1
1 0 0 0
| 0 0.5 1 1.4142 0 7 1 1.51.7321 0 1 2 331623
! distances distances distances
1
1
i 100 dims 1000 dims 10000 dims
: 5 25 60
[
4 20 50
40
" S c S
= 33 = 15 =
1 2 2 230
32 310 3
g g g 20
1 5 10
0 0 0

N

4 6 8 10 0 10 20 330228 50 100
distances distances distances

o

Blessing of structure

@ Real-world data does not follow a random probability distribution!
@ Data has structure, s.a. edges, textures for natural images.
@ This means that data lie in a much lower dimensional sub-space than Rd.

@ For example, images of human face can be accurately described with e.g. 50
features s.a. male/female, blond/dark hair, etc, although the original image lie in a
space of 1M dimensions (1,000 x 1,000 pixels).

Rd

\

Xavier Bresson

kNN summary

@ kNN algorithm is the simplest machine learning technique for classification

(binary and multiple classes) and regression. % e

P
. . . ° o o .°°.°"0:.®: Heagane s
@ It is expressive as it can produce non-linear boundary decision. A

i g0
b L e
. St "0‘0‘\~'::"Q:o:% :g i
@ As n—oo, kNN becomes provably very accurate, but also intractable. S P S

@ Real-world applications have a large number n of training data.

@ As d—oo, curse of dimensionality kicks in and kNN breaks for Euclidean
distances.

@ kNN works if distances are semantically meaningful.

@ Combining kNN and deep learning representation is today a strong baseline.

Xavier Bresson

Outline

@ k-d tree

Xavier Bresson

Xavier Bresson

kNN complexity

@ kNN time complexity is O(n.d.k), where n the number of training data, d the number of
data dimensions and k is the number of k nearest neighbors.

@ This complexity means that kNN becomes very slow and memory consuming when n is
large but we want to have n as large as possible to get the best possible accuracy.

@ Can we improve the speed? Yes, by leveraging data structure.

10

Xavier Bresson

k-d tree

@ General idea : When we search for the closest point(s), most data points are actually far
away and hence there is no need to compute the distances for these far away points.

@ How to achieve this goal?
@ Solution is to partition the d-dim feature space with a binary tree structure.

)

11

Xavier Bresson

k-d tree speeds up kNN

@ For example, let us consider the full dataset and one
partition as follows:

Make a cut along one feature dimension that divides
the data into two sets, i.e. Left and Right, with
approximatively the same number of data in each half.

Consider a new data point x, or which we want to find
the closest neighbor.

Identify which set the data x lies, here the right set R.
Find the nearest neighbor xxyy® in R, it requires O(n/2).
Compute the distance d(x,C) between x and the cut C.

If d(x,C) > d(x, xxyn®) then all x in L can be discarded
(by triangle inequality) and kNN gets a 2x speed-up!

c

o
| dtxd)
ﬂ(x,u‘.‘,.,)
R
X

=

[
o

—

—_—— N ——

R

Cut /split the space S into 2
sets R and L with = the same
number of points

o
dx.c) %

Al sf,)

(7]

d(z, 23y) < d(z,C)

4

All points in L cannot be
NN, we can discard /prune
the space by a factor 2. 12

Triangle inequality

@ All points in regions L have a distance > d(x,C) by triangle inequality :

S
° o
0 Yo 0‘(’ hr"r)» A(”,G) 0
o o
”0 ’)t) 2 &('7.,6) '
o
@€
o /'c de.c) J;[x,ufm)
%R
NN
A
-~ AN,
L / R

Xavier Bresson

Xavier Bresson

k-d tree speeds up kNN (on

® Q: What happens if d(x,C) < d(x, xyn®)?

It is possible that the NN lies in L — so we need to
compute all distances d(x,xL).

Speed complexity is then O(n), same as kNN.

Worst case complexity of k-d tree is kNN complexity,
but it is actually much better in practice (average
complexity).

average)

4

We need to compute the
distance to all points in L.

S
(-] . o
0 0
0 - A(*Vasz f
°\:.% d(»»%)
o dlx,c) o
o
¢ |
— — ——
L R
R
d(z, zny) > d(z, C)

if d(z, 2Ry) < d(z, zky) then zny = 28y,

otherwise xnN = Ty

Complexity is O(n).

14

k-d tree construction

@ Tree construction / training stage

@ Split recursively in half along each feature dimension.

@ Iterate over all feature dimensions.

@ Tree depth is actually small = O(logsn), e.g. 1log,103=10, log,10~20, log,109=30

@ How to select the feature dimensions?

@ A good heuristic is to select the feature dimension that captures the largest variation of
data (similar to PCA, done as pre-processing). . . ot

. o.'?. .
P2 s S5 LI A is {‘ LT

e . Y
= =] — @ ot Lo TR
° YL N-TR
L 9°

[
0
(AR 0

o : /N YN
= 2 @ () () (R 1555 o
——— L_ €, R o S

Xavier Bresson 15

Xavier Bresson

@ Example of NN search process in 2D space

@ Which order of search?

@ Which partition to prune?

k-d tree search

@ Once the tree is constructed, the next step is to run the search process.

16

k-d tree search #1

@ Running the NN search process

@ Which order of search?

@ Follow the tree structure given

the data features of the new
data.

@ Which partition to prune?

@ Partitions which are too far
away.

@ Best case scenario O(logon) when
new data directly falls in the right
partition.

@ For this example, complexity is

(n/4.d)

Xavier Bresson

k-d tree search #2

@ Running the NN search process %1 S i
@ Worst case scenario . || o RY ¥ Am
©
] "

’)«T‘ 5 S
° CP B o RO | Y“’-"R
b] o °
t’l‘} ’ == %, Ot A,
. N YN YN
LD X% RD @ @
46 R >

d(xcpe) & d e xp)

Xavier Bresson 18

k-d tree search #2

@ Running the NN search process

S 5
) WOI’St case Scenario ° Lﬂ> r o ?} Y- A-ﬂk
L [J ° arz]
4K =
" ° o . Y Y
° :\: >,: \1 / S|
A4 pe@®
- ¥ " KL d(2,xT) > d (= 20)
- discvd TRD
’*3‘) 5
Lﬂ [: RV ‘ w
° o o Y=L \N-b'k
I @ &
& =
° o ;‘*f' o N N v
: S YN YN
= | @A
L D R —, @

S

(=, x‘;‘:ﬁ) >4 (’f-,cé.)

Xavier Bresson

19

Xavier Bresson

@ Worst case scenario

k-d tree

@ Running the NN search process

search #2

| . LV I—\ o R |
L". L . o ‘__J‘(-_l.‘tt) 5 o °
L—la ’__\"T i
w o
_ | :”J
L € R %,
1 s
-~ =
— o,
¢L:', (]
L\ o N s O
£R ° =
LD o
) 3
L & R %,

5

A

YN YN

©OFH

Ala,28) > dlx, &t)

S5

Y- L /‘ lN-ﬂ'R

N YN

©OHE D

dCo, 229) >l % act,

- dusewrd RO

20

k-d tree search #2

@ Running the NN search process

S

S
r ° j”: o ?ﬁ y-»-"k
: o‘ —.4\4 °_
1 J AN YN
MSJ

OICIOND

A, 2l0) > d(a,x0)

— ddiscarde Lo

v
pu—

@ Worst case scenario O(d.n)

&

LD
- Lyy S ¥

Xavier Bresson

21

Xavier Bresson

k-d tree complexity

@ Suppose k=1 (i.e. nearest neighbor)
@ Training / building k-d tree (assume d large enough, i.e. d >logyn)

® Space/memory complexity : tree depth
/
O(2°) — O(n) with p = O(log, n)

/
#nodes in the tree (Space complexity for data : O(nd))

@ Time/speed complexity (average case) :
/#regions

Z 0(2% x 2P) = O(pn) — O(nlogyn)
p N\

splitting time needed per feature
dimension in each region

#hierarchy levels —

@ Inference / NN search (features are pre-ordered)
@ Time/speed complexity (best case) : O(p) — O(logy,n) with p = O(log, n)
@ Time/speed complexity (worst case, like NN) : O(dn)

@ Time/speed complexity (average case) : O(dlogy n)

22

Number of nodes

@ How many nodes in kd trees?

@ Given n the number of (training) data points, the number V of nodes is O(n).

@ The depth of the tree is O(logyn).

123Ys¢C? &
r)c,,/i L O A
~ Kd, ree
toa L/ \J
=D €6 8 O O e dephh = 3
3 ¢ v < 7N
s ¢ SGO @) O3 On
& YA AY AR
F—%%l S 6 ? g 3 4 { 2
n: & JAaha ro“‘rS ‘hfﬂ‘ = 3 . 'e’azc" 3) of H« }eec
dephh#
V- 8+2 = a ~1 = 2-1 =15
P nodes i He |vee
"4 n =\ 0(") v

Xavier Bresson

Number of features

@ Why do we need the number of features d >logon?

@ More importantly, not all features are expressive, i.e. able to provide a clear partitioning of
the feature space. But again, no theoretical results to select the best features.

OLL/[

. G 12315¢7¢8 ,r
led (ree
d S wx @ @ | Ak
3 *r;, v < N
Lt ff/_é “@ ,,@ @3 (@2
‘ %8 YA A N/
¢ — o oo oOoOC ©
/ ' — 92, s <5 & 32 4 2
%} e
n: & JA Po"“.S J‘rrh s 3 . 2033("‘8) of H« "fc. -
d,: 2 ‘Fy.\fuus OL s 9 %&(“_g) nwa'nv ° S

bo parbihem He Prees
Xavier Bresson

24

Xavier Bresson

Notation

Note that the “k” in the name “k”-d tree means the number of data features.
Note that the “d” in the name k-"d” tree means “dimension”.

In our lecture, we usually call the number of data features d and the number of nearest
neighbors k.

25

k-d tree with k nearest neighbors

@ Search process for a number k > 1 of nearest neighbors

9o) (2]
L4 L) a
A o o I:—-— o o
tl b P) RV
N oo

step
¢ 3
Voo) $ A Gallm)ie JGlc,)

Fren dhscod all Sl rogies.

Xavier Bresson

26

k-d tree with k nearest neighbors

@ Search process for a number k > 1 of nearest neighbors

S

V/Y‘ ’Z/\

jolcole

step
‘r Amlr ("r muc*‘) > J(Q’C:)

Fren expard RN cendh b v e on RO .

Xavier Bresson

27

Xavier Bresson

Summary

kNN is slow because it does a lot of unnecessary distance computations.

k-d tree partitions the feature space so we can discard space partitions that are further
away than our closest k neighbors.

Pros :
@ Exact kNN, but approximation can be used e.g. no backtracking in parent nodes.
@ Easy to implement.

@ Average inference complexity is O(d.logyn), compared to O(d.n) with kNN.

Cons :

@ Cuts are axis-aligned which does not generalize well to higher dimensions.

@ [Not included] Ball tree partitions the manifold of data points (assumption),
as opposed to the whole space. This performs much better in higher dimensions.

28

Xavier Bresson

Decision tree

Outline

29

Xavier Bresson

Motivation

kNN requires to store the full training set to make a prediction.

@ When n becomes large, it becomes intractable.

Real-world assumption : Most data are not random and usually concentrate in regions with
the same predicted target e.g. class or regression value.

@ This enables faster nearest neighbor search with k-d tree data structure.

However, the ultimate goal is not to find the closest data points, but to solve a classification
or a regression problem.

@ The data identity, i.e. data features, is irrelevant for the classification/regression task.
@ What is critical is to identify areas where all points have the same class label.

@ For example, if a test point falls into a cluster of 1,000 points with all positive class
label, then we know that its kNN will all be positive before computing the distances to
the 1,000 points.

30

Decision tree

@ Decision tree leverages the idea that a data point has the same class label or same
regression value when it falls into a cluster of same label or same regression value.

@ Major advantage : There is no need to load to memory the full training set for inference.

@ Instead, we can build and load a tree structure that recursively splits the feature space into
regions with similar label/value.

Xavier Bresson 31

Xavier Bresson

Construction

@ Decision tree construction / training stage

Start from the root node of the tree that represents the entire dataset.

Split this set into two halves with approximatively the same size by cutting along a feature
dimension e.g. x; with a threshold value t;. This produces two sets of data points R and L.

Threshold t; and dimension x; are chosen such that the resulting children nodes R and L are
purer than their parent node S w.r.t. class label or regression value.

If all points in R have the same e.g. positive class label and all points in L have also the same
negative class label, then the decision tree is done.

If not, the current leaf nodes are split again until all leaves are pure, i.e. all data points in the

node have the same label. %T - s
L: — z = - RU
B e ¥ o+ o4 v N T/\"
- - LJ)J + Ry @ @ @
N J J &]
= s HE B

32

Xavier Bresson

Inference

@ Inference with decision tree

@ Once the tree is constructed, there is no need to keep in memory the training set.
@ What we need to store

@ The tree structure which has a depth of log,n < 30.

@ Class probability /regression value in the final leaf nodes.

@ If pure classes, only class label is stored.

@ Decision tree does not require any distance computation.

@ The cut is based on feature value.

@ Hence, inference is very fast with O(logyn), independent of feature dimension d.

33

Inference

@ Inference with decision tree

b2 J":’ poret S
T ’ﬁ H.T‘—_/"_] o L/A‘,R

X+ - -
== ! L - +w HL_ ’ = j Y r
¢ . - o+ o4 NS 7&: - 7N 2
| OICIOAO ol -] QOO
J vod \

L & L —
N TS

class label

T e e G

class probability

)
+
+
+
(s

Xavier Bresson 34

Xavier Bresson

Optimal decision tree

Q: Can we build a decision tree that is
@ Maximally compact, i.e. small depth.
@ Only has pure leaves.
Yes in theory, if no two data points have same features but different labels.
No in practice, as finding a minimum size tree is NP-hard.
But there exists a greedy algorithm that can approximate effectively small decision trees.

@ We split the data recursively by minimizing a function that measures label purity in
the children’s nodes.

35

Purity function

Define

(D et wede
S {(xi,yi) "y}, i € RY 4 = {1,...,c}, cis the number of classes O/ \O
Sk:{(y):y:k}, s CS, S=5U..US8,
DL = 15| fraction of data with label k N\ /\
‘S’ O O O O [eof nedes

~ 0

We want pure leaf nodes, i.e. pr = 1 for a specific k and pyr = 0,VEk' # k

1
The worst case is when all leaves are random prediction, i.e. Pr = E,Vk

To avoid the worst case, we will maximize the KL distance between the random prediction and
the best candidate p obtained by splitting

1
max KL(p,q Zpk log —, with q, = —,Vk
P k=1 Uk ¢

Xavier Bresson 36

Xavier Bresson

T
Entropy
@ Maximizing the KL distance reduces to minimizing the entropy :
- Pt . 1
KL(p, q) = Zpk log —, with qx = —,Vk
k=1 Ik C
: 1
= prlogpy, — prlog gk, with g, = -
- Zpk: log pr, + pr logc
— Zpk log p. + lochpk, with Zpk =1

=) _prlogpy +loge
> H(p)

max KL(p7 Q) = Inax Zpk: 1ngk _|_y& 1
P p

- H;}“ N Zpk log pr
0.5

= min H(p) Entropy
p

37

Xavier Bresson

@ Entropy of binary tree :

Entropy of binary tree

H(S)
5

V) lAl-o'R

0,

ey v plR), HE

H(L,R) = p(L)H(L) + p(R)H(R)
_ Ll

=5t

H(R)

38

Xavier Bresson

Information gain

Definition : The information that is gained by splitting a set of data points.
In the case of decision tree, the splitting is controlled by a specific feature value, i.e. x; < t;.

The entropy of the subsets S;,...,S; is defined as

H(Sy,...,S Zp (Sk)H
Z ‘rssﬁ’ (k)

Finally, the information gain (IG) is the difference between the entropy of the original set S
and the weighted sum of the entropy of the subset S,.

1G(S, Sy, ..., S.) = H(S) — H(S, ..., S.)

— > p(SK)H(S
k=1

39

Xavier Bresson

Feature and threshold selection

@ Goal is to find subsets maximizing the information gain, achieving the purest possible subsets.
@ Identifying the purest subsets is to find a feature x; and a threshold value t;.
@ Decision tree construction (pseudo-code)
@ While leaf nodes are not pure (or > threshold)
@ Loop over (remaining) feature dimensions, i.e. X;,Xs,...,Xq (we suppose d > log,n)

@ Loop over n thresholds (e.g. middle points between two consecutive points,
such as t;=(x;,1-x;)/2)

@ Compute information gain for R and L
@ Save (dimension, threshold value) with maximum information gain.

@ Split space with best (dimension, threshold value) and remove dimension x; from
loop.

@ Complexity is O(n.d), but approximations are used in practice for speed-up.

40

Xavier Bresson

Regression tree

@ It is straightforward to extend decision tree to other tasks s.a. regression as long as a purity
function can be defined for the new task :

1 :
= prlogpe — L(S) = sl Y (y—us)* (variance)
(x,y)€S
1
with yg = ﬁ Z y (mean)
(z,y)€S

Classification task Regression task

\ True regression
function (black)

\ Regression function (blue)

learned with regression tree
(mean value in each leaf node)

41

Xavier Bresson

Complexity

@ Training / building decision tree (assume d large enough, i.e. d >log n)

@ Space/memory complexity :

O(2%) — O(n) with p = O(log, n)
/

#nodes in the tree

o Time/speed complexity (average case) :

Z 0(2% x 2P) = O(pn) — O(nlogyn)

time required to compute

@ Inference / NN search purity in each region

@ Time/speed complexity : p — O(logyn)

42

Xavier Bresson

@ How many nodes in decision trees?

Number of nodes

@ Given n the number of (training) data points, the number V of nodes is O(n).

@ The depth of the tree is O(logyn).

OLL/[

n: & A r,;d‘s

mw‘ sow h‘ (=

o 123vs¢2 &

f

deplh = 3

43

General vs. specific/heuristic algorithm

@ General algorithm :

Xavier Bresson

kd /decision tree construction : Split recursively in half along some selected feature
dimensions. Stop at the depth =logsn, n is the number of data points.

Inference time is guaranteed to be O(d logyn) kd-tree, O(logsn) decision tree.

Question : How do we select the best features for kd-trees? Unfortunately, no theory to
pick the optimal features. In practice, we select the features with maximum data .
variance.

KN .o o?... -" o
%
['-f?‘

o

Question : Do we have enough features to build a tree? We need at least d >logsn
features to build the tree. More importantly, we need expressive features to distinguish
distinct classes.

Question : Does this algorithm guarantee to have trees with minimum depth? No, there
may be better trees with smaller depth than logsn.

44

Xavier Bresson

General vs. specific/heuristic algorithm

kd /decision tree techniques are general-purpose algorithms, designed independently of the
dataset!

It means that, for a specific dataset, there is no guarantee they will be optimal. In fact,
there is almost no chance they will provide the best possible kd-tree or decision tree.

For a specific small dataset, it is possible to identify manually by trial-and-error the
optimal tree, but this approach is not scalable to larger datasets.

Example: Classification task of flower data, with n =150, d =15, depth =log,n = 8.

@ General algorithm requires at least 8 levels to decide, when humans can actually design
a smaller and optimal decision tree with 4 levels.

45

Xavier Bresson

Bagging

Outline

46

Xavier Bresson

Bagging

@ Decision trees have great advantages at inference

@ Speed complexity is very fast, i.e. O(logyn) <30

@ Memory complexity is low, i.e. O(n) independent of d
@ However, these techniques have high variance performance.

@ This means that the quality of the classification /regression solutions vary
significantly (see next slide).

@ They are known as weak learners (classifiers or regressors).

47

Bias and variance (lecture 5)

@ Quality of predictive models are evaluated by their bias-variance properties.

@ For example, let assume that the task of the model is to predict the red center of the target

Xavier Bresson

below

High Variance

Low Variance

High variance and low bias
The model is able to find the

Low variance and low bias
correct solution on average.

The perfect model!

High variance and high bias
The worst model

The model has not only bad

bias but also large variance.

Low variance and high bias
The model favors some
solutions, far from the true
ones.

High Bias

Low Bias

48

Xavier Bresson

Bias and variance (lecture 5)

@ Long history of analysis of the bias-variance trade-off (but recently questioned by deep learning).
@ It is highly challenging to design the perfect model (i.e. low bias and low variance).

@ Formalization data

Mean over /E(m,y) [(fS (:lf) _ y)2}
data points V4 ™~ target

Predictive model Assumption: no noise

= B [(Fs(0) = Jo) + @) = 9)?). with flo) = [forlolp(S")as’
/ S'CS*

Average predictor /
True data distribution

= B [(f5(@) = F(@)°] + By [(f (@) =)]

/ —_
v - — f
Error between prediction model Error between average Bias
and average over all predictors predictor and target

Variance Bias?

49

Xavier Bresson

Reducing variance

@ Decision trees have low bias but high variance, i.e. solutions vary around the true solution.

@ Goal : Design a technique that reduces variance, i.e.

min E,) [(fS(CC) - f(x))Q]

@ Most common idea is to take the average of multiple solutions, a.k.a. ensemble technique :

Q

fs(x) f($)2%2f53($)—>f(x) as m — 0o

where {51, ..., 5, } C S (true data distribution)

50

Xavier Bresson

Reducing variance

@ Why averaging classifiers reduces variance ?
@ Because of the law of large numbers :

The law of large numbers states for i.i.d. (independent and identically distributed)
random variable x; with mean 7 :

1 m
—g xr; — T as m — o0
mi=3

@ Apply to learners : Assume we have m training datasets Sy,...,S, sampled from S*, the
true data distribution.

S*

Train a learner on each training set and average the result: / J N
1 _ S 5 T Om
f:a;fsj%fasm%oo L I} |

j:
ﬁ. -Fst FS'"
J &

51

Xavier Bresson

Bagging

Averaging several classifiers/regressors will decrease the variance and make the ensemble
classifier /regressor more accurate.

But we do not have access to more training sets {Sy,..,5,} than the original set S.
@ Because we do not know the true distribution S*.
@ How do we create new training sets?
@ Solution is bagging.
Bagging algorithm
@ Sample m datasets S;,..,S,, from original S with replacement.

@ For each training set S;, train a classifier fg;.

. 1 &
o Final/ensemble classifier is f(z) = p Z fs.(x)
j=1

52

Xavier Bresson

Sampling with replacement

@ What is sampling with replacement?

@ When a data is selected, it continues to be part of the set and can be sampled again
(unlike sampling without replacement, once a data is selected then it is removed from

the set and cannot be sampled again).

-
.
_) 3

Sampling with replacement

sawple 41
/7
@ #)
D 2
et b

Ny

Sampling without replacement

53

Sampling with replacement

@ When we sample without replacement, two samples are not independent, i.e. not i.i.d.

@ For example, let us consider a set of n balls numbered from 1 to n. If we first sample
the ball number 3, then the next sampled ball will depend on the first ball as the
remaining set of balls is {1,2,4,5,6}.

@ However, when we sample with replacement, two samples are independent, i.e. a sample
does not affect another sample, i.e. they are i.i.d.

@ Based on the example above, if we first sample the ball number 3 and we replaced this
ball in the set, then the next sampled ball will not depend on the first ball as the set of
balls is the unchanged original set {1,2,3,4,5,6}.

Xavier Bresson

54

Xavier Bresson

Bagging

As sampling with replacement produces i.i.d. data, then training sets S; are i.i.d.

Applying the law of large numbers guarantees the following asymptotic result :

m

fzi fs;, = f
mjzl

As a result, in practice, bagging reduces the variance quite effectively.

We say that bagging reduces the variance without increasing the error of an unbiased
classifier.

@ Unbiased classifier produces the correct solution in average.

55

Xavier Bresson

Bagging

@ Advantages
@ Easy to implement
@ Easy to reduces variance for high variance classifiers/regressors.
e Bagging also provides an error estimate of the test error (for free).

@ During sampling S;, some training data x;, will not be selected and hence can act as
a test data for the ensemble of classifiers.

/7 @ > F' Hrese Learrers
wnevey Saw
\Q data ¢ i Sy
S 2 -3 '?2)
2 |
\ Haes Ash s
_) 3 best oAb

‘FOV 'F; wnd Fz_

2?2 5, ™ f;

3 (@

56

Random forest

@ One of the most popular and useful bagging algorithms is random forest.
@ Random forest is an ensemble of decision trees.
@ Algorithm
@ Sample m training datasets Si,...,S, from S with replacement.
@ For each S;, train a decision tree fg; with one important modification :
@ Only consider a randomly small number of k of splits with k < d features.

@ Goal is to make sure that all classifiers fg; are all very different. As such, they will
make different errors at test time, but averaging will correct most of the errors.

. 1 <&
o Final classifier i = — |
inal classifier is f(z) - Zl fs; ()
@ Hyper-parameters a
@ k= +/d is a good heuristic

@ m is as large as computational resource permits

Xavier Bresson

57

Random forest

© Example with two-moon binary classification

tree 0 tree 1 tree 2

feature 1
feature 1
feature 1

feature 0

feature 0

tree 3 tree 4

feature 1
feature 1
feature 1

feature 0

feature 0

feature 0

Xavier Bresson

Xavier Bresson

Boosting

Outline

59

Boosting

@ Let us consider the case where classifiers/regressors have
high bias, i.e. these prediction models have large errors on
the training set.

@ An example of such high-bias models are decision trees
with limited depth, e.g. value 4.

@ (Q: Can we design an ensemble method that combines a large
number of weak learners to generate a strong learner with
low bias?

@ Yes, this class of algorithms is called boosting.

@ Boosting reduces bias.

Xavier Bresson

High Bias

60

Xavier Bresson

Boosting

@ Vanilla boosting algorithm

@ Assume we have an ensemble classifier at step t =T, i.e. Fp(x) = Z at fi(x), ap >0

® We would like to add a new (weak) learner f to Ft to decrease the prediction error as
much as possible. The weak learner f is selected by minimizing the following loss :

fer1 = argmin,.y L(Fr + af), a >0 and small
H: hypothesis space

@ After we found the new learner f; ;, we simply add it to Fr:

Fri1=Fr+afi

61

Xavier Bresson

Gradient boosting

@ How do we solve the optimization problem?
fer1 = argmin,. gy L(Fr + af)

@ We use a first-order Taylor approximation of L :
gradient
L(F+ af)~ L(F)+ a(VL(F), f)

~ L(F) + az alf(l;i).f(xi)

Example with MSE : L(F(x;)) = %(F(iﬁz) — yi)2
OL O(F (i) — vi)

or(e) ~ 0) TR

= F'(z;) —

62

Xavier Bresson

Gradient boosting

Optimization problem :

argminc y L(Fr + af) ~ argminfeH}({) + a(VL(F), f)

, — 0L
A2 argmin p¢ y Z OF(x)f(xZ)
i=1 ¢

At last, we need an algorithm that computes f € H, H is known as the hypothesis space, i.e.

a space of solutions for the task at hand.

As the goal of boosting is to reduce the bias of predictors, the space H is supposed to
contain high-bias models s.a. decision trees with limited depth.

Another major advantage of gradient boosting is that solution f does not have to be exact,
i.e. any approximation f can used as long as the dot product is negative (see next slides for

justification) :

1=1

63

Xavier Bresson

@ Step-by-step optimization :

Suppose L(F) =

Gradient boosting

OL
oOF

DO | —

, oL oL
Then argmmfeH(a—F,ﬁ & argmaxf€H<—a—F,f>

(F—y)2, then — = F —

Find candidate f that best

aligns to — gradient, which
always points to the solution y.

x,
x 2 [*{}
%3
POx.)
R") . F("(;)
F(x)
£o0)
-ECE) b [F, ()
ﬁ(%z)

64

Xavier Bresson

@ Step-by-step optimization :

Gradient boosting

,’ 3.

65

Xavier Bresson

@ Pseudo-code

Gradient boosting (AnyBoost)

Input: L, o, {(z;,v;)}, A (predictor)
Fo =0
Fort=0:T

_ OL(Fy(%i), y:)
T R ()

frr1 =argmingcy Y gi-f(w), with f = A{(zi,9:)})

1=1

if Zgi.ft+1(ﬂji) < 0 then
i=1

Fipi=F +afin

(gradient)

else

return F;

66

Summary

@ Boosting is a powerful technique to turn weak learners into a strong learner.
@ Class of boosting algorithms
@ Gradient boosting
@ C(lassification and regression tasks
@ Weak learners are regression trees of depth e.g. 4
e Adaptative boosting (AdaBoost)
@ Specific case of binary classification (cannot bne applied directly to multi-class, regression)
@ Specific case of exponential loss, i.e. L(F) = Z e Yo F(xi)
@ Step size a can be computed optimally (closeicT-lform solution)
@ Training error decreases exponentially, O(logn) convergence (can be proved)
@ A hybrid algorithm that combines advantages of bagging and boosting can be designed :

@ Stochastic gradient boosting : sub-sample with replacement + low-depth trees

Xavier Bresson 67

Xavier Bresson

Conclusion

Outline

68

Xavier Bresson

Conclusion

kNN is a simple and expressive learning technique but time and memory consuming.
k-d tree speeds up kNN by discarding far away data points.

Decision tree improves the memory complexity (no loading of data points required) and speeds
up inference with tree structure.

Bagging is an ensemble method that combines a large number of weak learners with high
variance to generate a strong learner with low variance.

Boosting is an ensemble method that combines a large number of weak learners with high bias
to generate a strong learner with low bias.

Bagging /boosting are universal, i.e. agnostic of the algorithm used.

@ Use these ensemble techniques to boost your algorithm accuracy by a few percentage,
e.g. to win Kaggle competitions ©.

69

Xavier Bresson

Material used for preparation

@ Prof Kilian Weinberger, CS4780 Cornell, Machine Learning, 2018
® https://www.cs.cornell.edu/courses/cs4780/2018fa

@ Prof Min-Yen Kan, CS3244 NUS, Machine Learning, 2022
@ https://knmnyn.github.io/cs3244-2210

70

https://www.cs.cornell.edu/courses/cs4780/2018fa
https://knmnyn.github.io/cs3244-2210

7

(Questions

71

Xavier Bresson

